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A system is described for acquiring a context- 
sensitive, phrase structure g rammar  which is applied by 
a best-path,  bot tom-up,  deterministic parser. The gram- 
mar  was based on English news stories and a high degree 
of success in parsing is reported. Overall, this research 
concludes that  CSG is a computationally and concep- 
tually tractable approach to the construction of phrase 
structure g rammar  for news story text. 1 

1 Introduct ion  

Although many papers report natural  language process- 
ing systems based in part  on syntactic analysis, their au- 
thors typically do not emphasize the complexity of the 
parsing and g rammar  acquisition processes that  were in- 
volved. The casual reader might suppose that  parsing is 
a well understood, minor aspect in such research. In fact, 
parsers for natural  language are generally very compli- 
cated programs with complexity at best of O(n 3) where 
n is the number of words in a sentence. The gram- 
mars they usually use are technically, "augmented con- 
text free" where the simplicity of the context-free form is 
augmented by feature tests, transformations, and occa- 
sionally arbi trary programs. The combination of even 
an efficient parser with such intricate grammars  may 
greatly increase the computat ional  complexity of the sys- 
tem [Tomita 1985]. It  is extremely difficult to write 
such grammars  and they must  frequently be revised to 
maintain internal consistency when applied to new texts. 
In this paper we present an alternative approach using 
context-sensitive g rammar  to enable preference parsing 
and rapid acquisition of CSG from example parsings of 
newspaper stories. 

Chomsky[1957] defined a hierarchy of grammars  in- 
cluding context-free and context-sensitive ones. For nat- 
ural language a g rammar  distinguishes terminal, single 
element constituents such as parts  of speech from non- 
terminals which are phrase-names such as NP, VP, AD- 
VPH, or SNT 2 signifying multiple constituents. 

1 This work was partially supported by the Army Research Office 
under contract DAAG29-84-K-0060. 

~NounPhrase, VerbPhrase, AdverbialPhrase, Sentence 

A context-free grammar  production is characterized 
as a rewrite rule where a non-terminal element as a left- 
side is rewritten as multiple symbols on the right. 

Snt -* NP + VP 

Such rules may be augmented by constraints to limit 
their application to relevant contexts. 

Snt --* NP + VP / anim(np),  
agree(nbr(np),nbr(vp)) 

To the right of the slash mark, the constraints are applied 
by an interpretive program and even arbitrary code may 
be included; in this case the interpreter would recognize 
that  the NP must be animate and there must be agree- 
ment in number between the NP and the VP. Since this 
is such a flexible and expressive approach, its many vari- 
ations have found much use in application to natural lan- 
guage applications and there is a broad literature on Aug- 
mented Phrase Structure Grammar  [Gazdar et. al. 1985], 
Unification Grammars  of various types [Shieber 1986], 
and Augmented Transition Networks [Allen, J. 1987, Sim- 
moils 1984]. 

In context-sensitive grammars,  the productions are 
restricted to rewrite rules of the form, 

uXv  ---* uYv 

where u and v are context strings of terminals or nonter- 
minals, and X is a non-terminal and Y is a non-empty 
string . Tha t  is, the symbol X may be rewritten as as 
the string Y in the context u - . . v .  More generally, the 
right-hand side of a context-sensitive rule must contain 
at least as many symbols as the left-hand side. 

Excepting Joshi 's Tree Adjoining Grammars  which 
are shown to be "mildly context-sensitive," [Joshi 1987] 
context-sensitive grammars  found little or no use among 
natural  language processing (NLP) researchers until the 
reoccurrance of interest in Neural Network computa- 
tion. One of the first suggestions of their potential 
utility came from Sejnowski and Rosenberg's NETtalk 
[1988], where seven-character contexts were largely suf- 
ficient to map each character of a printed word into 
its corresponding phoneme - -  where each character ac- 
tually maps in various contexts into several different 
phonemes. For accomplishing linguistic case analyses 
McClelland and Kawamoto [1986] and Miikulainen and 
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Dyer [1989] used the entire context of phrases and sen- 
tences to map string contexts into case structures. Robert 
Allen [1987] mapped nine-word sentences of English into 
Spanish translations, and Yu and Simmons [1990] ac- 
complished context sensitive translations between English 
and German. I t  was apparent that  the contexts in which 
a word occurred provided information to a neural net- 
work that  was sufficient to select correct word sense and 
syntactic structure for otherwise ambiguous usages of lan- 
guage. 

An explicit use of context-sensitive grammar  was de- 
veloped by Simmons and Yu [1990] to solve the prob- 
lem of accepting indefinitely long, recursively embedded 
strings of language for training a neural network. How- 
ever although the resulting neural network was trained 
as a satisfactory grammar,  there was a problem of scale- 
up. Training the network for even 2000 rules took several 
days, and it was foreseen that  the cost of training for 
10-20 thousand rules would be prohibitive. This led us to 
investigate the hypothesis that  storing a context-sensitive 
grammar  in a hash-table and accessing it using a scoring 
function to select the rule that  best matched a sentence 
context would be a superior approach. 

In this paper we describe a series of experiments in 
acquiring context-sensitive grammars  (CSG) from news- 
paper stories, and a deterministic parsing system that  
uses a scoring function to select the best matching con- 
text sensitive rules from a hash-table. We have accumu- 
lated 4000 rules from 92 sentences and found the resulting 
CSG to be remarkably accurate in computing exactly the 
parse structures that  were preferred by the linguist who 
based the grammar  on his understanding of the text. We 
show that  the resulting grammar  generalizes well to new 
text and compresses to a fraction of the example training 
rules. 

2 Context -Sens i t ive  Parsing 

The simplest form of parser applies two operations shift 
or reduce to an input string and a stack. A sequence of 
elements on the stack may be reduced - -  rewritten as a 
single symbol, or a new element may be shifted from the 
input to the stack. Whenever a reduce occurs, a subtree 
of the parse is constructed, dominated by the new symbol 
and placed on the stack. The input and the stack may 
both be arbitrarily long, but the parser need only consult 
the top elements of the stack and of the input. The parse 
is complete when the input string is empty and the stack 
contains only the root symbol of the parse tree. Such a 
simple approach to parsing has been used frequently to 
introduce methods of CFG parsing in texts on computer 
analysis of natural language [J. Allen 1987], but it works 
equally well with CSG. In our application to phrase struc- 
ture analysis, we further constrain the reduce operation 
to refer to only the top two elements of the stack 

2 .1  P h r a s e  S t r u c t u r e  A n a l y s i s  w i t h  C F G  

For shift/reduce parsing, a phrase structure anMysis takes 
the form of a sequence of states, each comprising a condi- 
tion of the stack and the input string. The final state in 
the parse is an empty input string and a stack containing 
only the root symbol, SNT. In an unambiguous analy- 
sis, each state is followed by exactly one other; thus each 
state can be viewed as the left-half of a CSG production 
whose right-half is the succeeding state. 

stacksinpu~ ~ ::¢, s~ack,+ l inpu~,+ l 

News story sentences, however, may be very long, 
sometimes exceeding fifty words and the resulting parse 
states would make cumbersome rules of varying lengths. 
To obtain manageable rules we limit the stack and input 
parts of the state to five symbols each, forming a ten sym- 
bol pat tern for each state of the parse. In the example of 
Figure 1 we separate the stack and input parts with the 
symbol "*", as we illustrate the basic idea on the sentence 
"The late launch from Alaska delayed interception." The 
symbol b stands for blank, ax-1; for article, adj  for adjec- 
tive, p for preposition, n for noun, and v for verb. The 
syntactic classes are assigned by dictionary lookup. 

The analysis terminates successfully with an empty 
input string and the single symbol "snt" on the stack. 
Note that  the first four operations can be described as 
shifts followed by the two reductions, adj n --* np and art 
np --, up. Subsequently the p and n were shifted onto the 
stack and then reduced to a pp; then the np and pp on 
the stack were reduced to an np, followed by the shifting 
of v and n, their reduction to vp, and a final reduction of 
np vp ~ snt. 

The grammar  could now be recorded as pairs of suc- 
cessive states as below: 

b b b np p *  n v n  b b - - * b  b n p p  n *  v n  b 
b b  
b b np p n *  v n b  b b--~ b b b np p p *  v n 
b b b  

but some economy can be achieved by summarizing the 
right-half of a rule as the operations, shift or reduce, that  
produce it from the left-half. So for the example imme- 
diately above, we record: 

h b b n p p * n v n b b - - ~ ( S )  

b b n p  p n *  v n  b b b--* ( R p p )  

where S shifts and (R pp) replaces the top two 
elements of the stack with pp to form the next 
state of the parse, 

Thus we create a windowed confexf of 10 symbols as the 
left half of a rule and an operation as the right half. Note 
that  if the stack were limited to the top two elements, 
and the input to a single element, the rule system would 
reduce to a CFG; thus this CSG embeds a CFG. 
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The l a t e  l aunch  f rom Alaska  
a r t  ads n p n 

d e l a y e d  i n t e r c e p t i o n .  
V n 

b b b b b * ~ t  ads n p n 
b b b b ~ t  * adS n p n v 
b b b ~ t  ads * n p n v n 
b b ~ t  ads n * p n v n b 
b b b ~ t  u p *  p n v n b 
b b b b n p * p n v n b  
b b b n p p * n v n b b  
b b n p p n * v n b b b  
b b b np pp * v n b b b 
b b b b n p * v n b b b  
b b b n p v * n b b b b  
b b n p v n * b b b b b  
b b b n p ~ * b b b b b  
b b b b sn t  * b b b b b 

Figure 1: Successive Stack/ Input  States in a Parse 

2 . 2  A l g o r i t h m  f o r  S h i f t / R e d u c e  P a r s e r  

The algorithm used by the Shift/Reduce parser is de- 
scribed in Figure 2. Essentially, the algorithm shifts el- 
ements from the input onto the stack under the control 
of the CSG productions. I t  can be observed that  unlike 
most grammars  which include only rules for reductions, 
this one has rules for recognizing shifts as well. The re- 
ductions always apply to the top two elements of the stack 
and it is often the case tha t  in one context a pair of stack 
elements lead to a shift, but  in another context the same 
pair can be reduced. 

An essential aspect of this algorithm is to consult 
the CFG to find the left-half of a rule that  matches the 
sentence context. The most important  part  of the rule is 
the top two stack elements, but  for any such pair there 
may be multiple contexts leading to shifts or various re- 
ductions, so it is the other eight context elements that  
decide which rule is most applicable to the current state 
of the parse. Since many thousands of contexts can exist, 
an exact match cannot always be expected and there- 
fore a scoring function must be used to discover the best 
matching rule. 

C S . S  R -  P . r s e ~ ( I n p u t  ,Csg)  

I n p u t  is a s t r i n  K o f  s y n t a c t i c  c l a s s e s  
Cs s i s  t h e  Kiven C S Q  p r o d u c t i o n  ru les .  

S t , c k  :---~ e m p t y  
d o  u = f i I ( I n p u t  --.~ e m p t y  ~ m d  Steck  ~ (SNT)) 

Windowed-context :---- Append(Top.five(stack),First.five(input)) 
O p e r a t i o n  :---- C o n s u I t . C S G ( W i n d o w - c o n t e x t , C s g )  
i f  F i r s t ( O p e r ~ t l o n )  = SHIFT 
t h e n  S t a c k  : =  P n s h ( F i r s t ( l n p u t ) , S t a c k )  

I n p u t  :~-~ R e s t ( I n p u t )  
e l s e  S t a c k  := P u s h ( S e c o n d ( C ) p e r a t l o n ) , P o p ( P o p ( S t a c k ) ) )  

e n d  d o  

T h e  func t ions~  Top . f ive  a n d  F i r s t . f i v e ,  r e t u r n  t h e  l i s t s  o f  t o p  (o r  f i r s t )  f i v e  e l e m e n t s  
o f  t h e  Stack  a n d  t h e  I n p u t  r e s p e c t i v e l y .  I f  t h e r e  Lre  n o t  e n o u g h  e l e m e n t s ,  t h e s e  
p r o c e d u r e s  p a d  w i t h  b l ~ n k s .  T h e  f u n c t i o n  A p p e n d  c o n c a t e n a t e s  t w o  l i s t s  i n t o  one ,  
C n n s u l t - C S G  c o n s u l t s  t h e  g iven  C S O  rules  t o  f i n d  t h e  n e x t  o p e r a t i o n  t o  t~ke.  T h e  
d e t a i l s  o f  t h l 8  f u n c t i o n  a r e  t h e  s u b j e c t  o f  t h e  n e x t  s e c t i o n .  P u s h  a n d  P o p  . d d  or 
d e l e t e  o n e  e l e m e n t  t o / f r o m  a s t a c k  w h i l e  F i r s t  a n d  S e c o n d  r e t u r n  t h e  f i r s t  o r  s e c o n d  
e l e m e n t s  o f  a f la t ,  r e s p e c t l v e l y .  R e s t  T e t u r n s  t h e  g l v e n  l lst  m i n u s  t h e  f i r s t  e l e m e n t .  

Figure 2: Context Sensitive Shift Reduce Parser 

One of the exciting aspects of neural network re- 
search is the ability of a trained NN system to discover 
closest matches from a set of patterns to a given one. We 
studied Sejnowski and Rosenberg's [1988] analyses of the 
weight matrices resulting from training NETtalk.  They 
reported that  the weight matr ix  had maximum weights 
relating the character in the central window to the output 
phoneme, with weights for the surrounding context char- 
acters falling off with distance from the central window. 
We designed a similar function with maximum weights 
being assigned to the top two stack elements and weights 
decreasing in both directions with distance from those 
positions. The scoring function is developed as follows. 

Let "R be the set of vectors {R1, R 2 , . . . ,  Rn} 
where R~ is the vector [rl, r 2 , . . . ,  rl0] 
Let C be the vector [Cl, c2 , . . . ,  c10] 
Let p(ci, rl) be a matching function whose 
value is 1 if ci = n ,  and 0 otherwise. 

is the entire set of rules, P~ is (the left-half of) a par- 
ticular rule, and C is the parse context. 

Then 7~' is the subset of 7~, where 
if R~ 6 7~' then #(n4,  c4). P(ns ,  c5) = 1. 
The statement above is achieved by accessing the hash 
table with the top two elements of the stack, c4, c5 to 
produce the set 7~'. 

We can now define the scoring function for each R~ 6 
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3 1 0  

Score = E It(c,, r,) . i 4- E It(c,, r , ) ( l l  - i) 
i = 1  i = S  

The first summation scores the matches between the 
stack elements of the rule and the current context while 
the second summation scores the matches between the 
elements in the input string. If  two items of the rule 
and context match, the total score is increased by the 
weight assigned to that  position. The maximum score for 
a perfect match is 21 according to the above formula. 

From several experiments, varying the length of vec- 
tor and the weights, particularly those assigned to blanks, 
it has been determined that  this formula gave the best 
performance among those tested. More importantly, it 
has worked well in the current phrase structure and case 
analysis experiments. 

3 Experiments  with CSG 

To support the claim that  CSG systems are an improve- 
ment over Augmented CFG, a number of questions need 
be answered. 

• Can they be acquired easily? 

• Do they reduce ambiguity in phrase structure anal- 
ysis? 

• How well do CSG rules generalize to new texts? 

• How large is the CSG that  encompasses most of the 
syntactic structures in news stories? 

3 . 1  A c q u i s i t i o n  o f  C S G  

It has been shown that  our CSG productions are essen- 
tially a recording of the states from parsing sentences. 
Thus it was easy to construct a g rammar  acquisition sys- 
tem to present the successive states of a sentence to a lin- 
guist user, accepting and recording the linguist's judge- 
ments of shift or reduce. This system has evolved to a 
sophisticated grammar  acquisition/editing program that  
prompts the user on the basis of the rules best fitting the 
current sentence context. I t ' s  lexicon also suggests the 
choice of syntactic class for words in context. Generally 
it reduces the linguistic task of constructing a grammar  
to the much simpler task of deciding for a given context 
whether to shift input or to rewrite the top elements of the 
stack as a new constituent. It  reduces a vastly complex 
task of g rammar  writing to relatively simple, concrete 
judgements that  can be made easily and reliably. 

Using the acquisition system, it has been possible 
for linguist users to provide example parses at the rate of 
two or three sentences per hour. The system collects the 
resulting states in the form of CSG productions, allows 
the user to edit them, and to use them for examining the 
resulting phrase structure tree for a sentence. To obtain 
the 4000+ rules examined below required only about four 
man-weeks of effort (much of which was initial training 
time.) 

3 . 2  R e d u c e d  A m b i g u i t y  i n  P a r s i n g  • 

Over the course of this s tudy six texts were accumulated. 
The first two were brief disease descriptions from a youth 
encyclopedia; the remaining four were newspaper texts. 
Figure 1 characterizes each article by the number of CSG 
rules or states, number of sentences, the range of sentence 
lengths, and the average number of words per sentence. 

T e x t  St~teJ I Seateaces 'Wdl/Snt Mn-Wdl/Sat 
H e p & t l t / l  2 3 6  12 4 - 1 9  10 .3  
Measles  3 1 6  I 0  4 - 2 5  16 .3  
News-Stor}~ 4 7 0  I 0  9 - 5 1  23 .6  
A P W i r e - R o b o t s  i 0 0 5  21 1 1 - 5 3  26 .0  
A P W ~ r e - R o c k e t  1 4 3 7  2 5  6 - 4 7  2 9 . 2  
A P W i r e - S h u t t l e  5 9 8  14 1 2 - 3 2  2 1 . 9  

Total  4 0 6 2  I 9 3  4 - 5 3  2 2 . 8  

Table 1: Characteristics of the Text Corpus 

It  can be seen that  the news stories were fairly com- 
plex texts with average sentence lengths ranging from 22 
to 29 words per sentence. A total  of 92 sentences in over 
2000 words of text resulted in 4062 CSG productions. 

It  was noted earlier that  in each CFG production 
there is an embedded context-free rule and that  the pri- 
mary function of the other eight symbols for parsing is to 
select the rule that  best applies to the current sentence 
state. When the linguist makes the judgement of shift or 
reduce, he or she is considering the entire meaning of the 
sentence to do so, and is therefore specifying a semanti- 
cally preferred parse. The parsing system has access only 
to limited syntactic information, five syntactic symbols 
on the stack, and five input word classes and the parsing 
algorithm follows only a single path. How well does it 
work? 

The CSG was used to parse the entire 92 sentences 
with the algorithm described in Figure 2 augmented with 
instrumentation to compare the constituents the parser 
found with those the linguist prescribed. 88 of the 92 
sentences exactly matched the linguist 's parse. The other 
four cases resulted in perfectly reasonable complete parse 
trees that  differed in minor ways from the linguist's pre- 
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scription. As to whether any of the 92 parses are truly 
"correct", that  is a question that linguists could only de- 
cide after considerable study and discussion. Our claim 
is only that the grammars we write provide our own pre- 
ferred interpretations - -  useful and meaningful segmen- 
tation of sentences into trees of syntactic constituents. 

Figure 3 displays the tree of a sentence as analyzed 
by the parser using CSG. It is a very pleasant surprise to 
discover that using context sensitive productions, an ele- 
mentary, deterministic, parsing algorithm is adequate to 
provide (almost) perfectly correct, unambiguous analyses 
for the entire text studied. 

Another mission soon scheduled that also would have pri- 
ority over the shuttle is the first firing of a trident two 
intercontinental range missile from a submerged subma- 
rine. 

h 

- - v l N  ~, 

- - p  

Figure 3: Sentence Parse 

3.3 G e n e r a l i z a t i o n  o f  C S G  

One of the first questions considered was what percent of 
new constituents would be recognized by various accumu- 
lations of CSG. We used a system called union-grammar 
that  would only add a rule to the grammar if the gram- 
mar did not already predict its operation. The black line 
of Figure 4 shows successive accumulations of 400-rule 
segments of the grammar after randomizing the ordering 
of the rules. Of the first 400 CS rules 50% were new; and 

for an accumulation of 800, only 35% were new. When 
2000 rules had been experienced the curve is flattening to 
an average of 20% new rules. This curve tells us that if 
the acquisition system uses the current grammar to sug- 
gest operations to the linguist, it will be correct about 4 
out of 5 times and so reduce the linguist's efforts accord- 
ingly. The curve also suggests that our collection of rule 
examples has about 80% redundancy in that earlier rules 
can predict newcomers at that level of accuracy. On the 
down-side, though, it shows that only 80% of the con- 
stituents of a new sentence will be recognized, and thus 
the probability of a correct parse for a sentence never seen 
before is very small. We experimented with a grammar 
of 3000 rules to attempt to parse the new shuttle text, 
but found that only 2 of 14 new sentences were parsed 
correctly. 

J 

oo 

7o 

! °  
! , o  

I -  
ra 

Io  

o I ....... t . . . . . . . . . .  ...... i . . . . . .  
~ m n l b ~  d W  ~ 

Figure 4: Generalization of CSG Rules 

If  two parsing grammars equally well account for the 
same sentences, the one with fewer rules is less redundant, 
more general, and the one to be preferred. We used union- 
grammar to construct the "minimal grammar" with suc- 
cessive passes through 3430 rules, as shown in Figure2. 
The first pass found 856 rules would account for the rest. 
A second pass of the 3430 rules against the 856 extracted 
by the first pass resulted in the addition of 26 more rules, 
adding rules that although recognized by earlier rules 
found interference as a result of later ones. The remaining 
8 rules discovered in the next pass are apparently identical 
patterns resulting in differing operations - -  contradicto- 
ries that need to be studied and resolved. The resulting 
minimal grammar totaling 895 rules succeeds in parsing 
the texts with only occasional minor differences from the 
linguist's prescriptions. We must emphasize that the un, 
retained rules are not identical but only similar to those  
in the minimal grammar. 
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I Pass I Unretained 

2574 
3404 
3422 
3425 

Retained Total Rules 

856 
26 

8 
5 

3430 

3430 
3430 

3430 

Table 2: Four Passes with Minimal Grammar  

3 . 4  E s t i m a t e d  S i z e  o f  C o m p l e t e d  C S G  

A question, central to the whole argument for the utility 
of CSG, is how many rules will be required to account for 
the range of structures found in news story text? Refer 
again to Figure 4 to try to estimate when the black line, 
CS, will intersect the abscissa. It  is apparent that  m o r e  
data is needed to make a reliable prediction. 

Let us consider the gray line, labeled CF that  shows 
how many new context-free rules are accumulated for 400 
CSG rule increments. This line rapidly decreases to about 
5% new CFG rules at the accumulation of 4000 CSG pro- 
ductions. We must recall that  it is the embedded context- 
free binary rule that  is carrying the most weight in deter- 
mining a constituent, so let us notice some of the CFG 
properties. 

We allow 64 symbols in our phrase structure analy- 
sis. Tha t  means, there are 642 possible combinations for 
the top two elements of the stack. For each combination, 
there are 65 possible operations3: a shift or a reduction to 
another symbol. Among 4000 CSG rules, we studied how 
many different CFG rules can be derived by eliminating 
the context. We found 551 different CFG rules that  used 
421 different left-side pairs of symbols. This shows that  
a given context free pair of symbols averages 1.3 different 
operations. 

Then, as we did with CSG rules, we measured how 
many new CFG rules were added in an accumulative fash- 
ion. The shaded line of Figure 4 shows the result. No- 
tice that  the line has descended to about 5% errors at 
4000 rules. To make an extrapolation easier, a log-log 
graph shows the same data in Figure 5. From this graph, 
it can be predicted that,  after about 25000 CSG rules 
are accumulated, the grammar  will encompass an Mmost 
complete CFG component. Beyond this point, additional 
CSG rules will add no new CFG rules, but only fine-tune 
the grammar  so that  it can resolve ambiguities more ef- 
fectively. 

Also, it is our belief that,  after the CSG reaches 
that  point, a multi-path, beam-search parser would be 

3 Actually, there are many fewer than  65 possible operat ions since 
the stack elements can be reduced only to non- terminal  symbols.  

I 1 ! 
;,o ! 

1 
... J 

IGO 1,000 4,0o0 10,000 2s.ooo 100,000 

Nbr of  Aaaumukt ted Ruloe 

Exlrq~lalon, l ie  gray Ine, predc~ I lat  99% of ~ COnlmxt Iree pldrs vdll be achlemcl ~ ~ 
ac~mlUlalon d 2~.000 c~nte~ sensiUve rules. 

Figure 5: Log-Log Plot of New CFG Rules 

able to parse most newswire stories very reliably. This 
belief is based on our observation that  most failures in 
parsing new sentences with a single-path parser result 
from a dead-end sequence; i.e., by making a wrong choice 
in the middle, the parsing ends up with a state where 
no rule is applicable. The beam-search parser should be 
able to recover from this failure and produce a reasonable 
parse. 

4 D i s c u s s i o n  a n d  C o n c l u s i o n s  

NeurM network research showed us the power of con- 
textuM elements for selecting preferred word-sense and 
parse-structure in context. But since NN training is still 
a laborious, computation-intensive process that  does not 
scale well into tens of thousands of patterns, we chose to 
study context-sensitive g rammar  in the ordinary context 
of sequential parsing with a hash-table representation of 
the grammar,  and a scoring function to select the rule 
most applicable to a current sentence context. We find 
that  context-sensitive, binary phrase structure rules with 
a context comprising the three preceding stack symbols 
and the oncoming five input symbols, 

s tack1-3 binary-rule input l_5  --~ operation 

provide unexpected advantages for acquisition, the com- 
putation of preferred parsings, and generalization. 
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A linguist constructs a CSG with the acquisition sys- 
tem by demonstrating successive states in parsing sen- 
tences. The acquisition system presents the state result- 
ing from each shift/reduce operation that  the linguist pre- 
scribes, and it uses the total  g rammar  so far accumulated 
to find the best matching rule and so prompt  the linguist 
for the next decision. As a result CSG acquisition is a 
rapid process that  requires only that  a linguist decide for 
a given state to reduce the top two elements of the stack, 
or to shift a new input element onto the stack. Since t h e  
current g rammar  is about  80% accurate in its predictions, 
the linguist 's task is reduced by the prompts to an alert 
observation and occasional correction of the acquisition 
system's  choices. 

The parser is a bot tom-up,  determinis- 
tic, shift/reduce program tha t  finds a best sequence of 
parse states for a sentence according to the CSG. When 
we instrument the parser to compare the constituents it 
finds with those originally prescribed by a linguist, we 
discover almost perfect correspondence. We observe that  
the linguist used judgements based on understanding the 
meaning of the sentence and that  the parser using the 
contextual elements of the state and matching rules can 
successfully reconstruct the linguist 's parse, thus provid- 
ing a purely syntactic approach to preference parsing. 

The generalization capabilities of the CSG are 
strong. With the accumulation 2-3 thousand example 
rules, the system is able to predict correctly 80% of sub- 
sequent parse states. When the grammar  is compressed 
by storing only rules that  the accumulation does not al- 
ready correctly predict, we observe a compression from 
3430 to 895 rules, a ratio of 3.8 to 1. We extrapolate from 
the accumulation of our present 4000 rules to predict that  
about  25 thousand rule examples should approach com- 
pletion of the CF grammar  for the syntactic structures 
usually found in news stories. For additional fine tun- 
ing of the context selection we might suppose we create 
a total  of 40 thousand example rules. Then if the 3.8/1 
compression ratio holds for this large a set of rules, we 
could expect our final g rammar  to be reduced from 40 to 
about 10 thousand context sensitive rules. 

In view of the large combinatoric space provided by 
the ten symbol parse states - -  it could be as large as 641° 
- -  our prediction of 25-40 thousand examples as mainly 
sufficient for news stories seems contra~intuitive. But our 
present g rammar  seems to have accumulated 95% of the 
binary context free rules - -  551 of about 4096 possible 
binaries or 13% of the possibility space. If  551 is in fact 
95% then the total  number of binary rules is about 580 
or only 14% of the combinatoric space for binary rules. 
In the compressed grammar,  there are only 421 different 

left-side patterns for the 551 rules, and we can notice that 
each context-free pair of symbols averages only 1.3 differ- 
ent operations. We interpret this to mean that  we need 
only enough context patterns to distinguish the different 
operations associated with binary combinations of the top 
two stack elements; since there are fewer than an average 
of two, it appears reasonable to expect that  the context- 
sensitive portion of the grammar  will not be excessively 
large. 

We conclude, 

• Context sensitive grammar  is a conceptually and 
computationally tractable approach to unambigu- 
ous parsing of news stories. 

• The context of the CSG rules in conjunction with a 
scoring formula that  selects the rule best matching 
the current sentence context allow a deterministic 
parser to provide preferred parses reflecting a lin- 
guist 's meaning-based judgements. 

• The CSG acquisition system simplifies a linguist's 
judgements and allows rapid accumulation of large 
grammars.  

• CSG grammar  generalizes in a satisfactory fashion 
and our studies predict that  a nearly-complete ac- 
counting for syntactic phrase structures of news sto- 
ries can be accomplished with about 25 thousand 
example rules. 
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