
B O T T O M - U P P A R S I N G E X T E N D I N G C O N T E X T - F R E E N E S S

I N A P R O C E S S G R A M M A R P R O C E S S O R

M a s s i m o M a r i n o
D e p a r t m e n t o f L inguis t i cs - Un ive r s i ty o f P i sa

Via S. Mar i a 36 1-56100 Pisa - I T A L Y
Bitnet: massimom@icnucevm.cnuce.cnr.it

A B S T R A C T
A new approach to bottom-up parsing that extends

Augmented Context-Free Grammar to a Process Grammar
is formally presented. A Process Grammar (PG) defines a
set of rules suited for bottom-up parsing and conceived as
processes that are applied by a P G Processor. The matching
phase is a crucial step for process application, and a
parsing structure for efficient matching is also presented.
The PG Processor is composed of a process scheduler that
allows immediate constituent analysis of structures, and
behaves in a non-deterministic fashion. On the other side,
the PG offers means for implementing spec~c parsing
strategies improving the lack of determinism innate in the
processor.

1. I N T R O D U C T I O N
Bottom-up parsing methods are usually preferred

because of their property of being driven from both the
input's syntactic/semantic structures and reduced
constituents structures. Different strategies have been
realized for handling the structures construction, e.g.,
parallel parsers, backtracking parsers, augmented context-
free parsers (Aho et al., 1972; Grishman, 1976; Winograd,
1983). The aim of this paper is to introduce a new approach
to bottom-up parsing starting from a well known and based
framework - parallel bottom-up parsing in immediate
constituent analysis, where all possible parses are
considered - making use of an Augmented Phrase-S tructure
Grammar (APSG). In such environment we must perform
efficient searches in the graph the parser builds, and limit as
much as possible the building of structures that will not be
in the final parse tree. For the efficiency of the search we
introduce a Parse Graph Structure, based on the def'mition of
adjacency of the subtrees, that provides an easy method of
evaluation for deciding at any step whether a matching
process can be accomplished or not. The control of the
parsing process is in the hands of an APSG called Process
Grammar fPG), where grammar rules are conceived as
processes that are applied whenever proper conditions,
detected by a process scheduler, exist. This is why the
parser, called PG Processor, works following a non-
deterministic parallel strategy, and only the Process
Grammar has the power of altering and constraining this
behaviour by means of some Kernel Functions that can
modify the control structures of the PG Processor, thus

299

improving determinism of the parsing process, or avoiding
construction of useless structures. Some of the concepts
introduced in this paper, such as some definitions in Section
2 , are a development from Grishman (1976) that can be also
an introductory reading regarding the description of a
parallel bottom-up parser which is, even if under a different
aspect, the core of the PG Processor.

2. P A R S E G R A P H S T R U C T U R E
The Parse Graph Structure (PGS) is built by the parser

while applying grammar rules. If s = a a a2... a is an input
string the initial PGS is composed by a set of terminal nodes
<0,$>, <l,aa>, <2,a2> <n,a >, <n+l,$>, where nodes
0,n+ 1 represent border markers for the sentence. All the next
non-terminal nodes are numbered starting from n+2.
Definition 2.1. A PGS is a triple (Nr,Nr~,T) where N r is the
set of the terminal nodes numbers {0, 1 n, n+l}; N N is
the set of the non-terminal nodes numbers {n+2 }, and T
is the set of the subtrees.
The elements of N N and N T are numbers identifying nodes
of the PGS whose structure is defined below, and
throughout the paper we refer to nodes of the PGS by means
of such nodes number.
Definition 2.2. If ke Nr~ the node ie N r labeling a i at the
beginning of the clause covered by k is said to be the left
corner leaf of k lcl(k). If ke N r then lcl(k)=k.
Definition 2.3. Ifke N s the nodeje N T labeling aj at the end
of the clause covered by k is said to be the right corner leaf
of k rcl(k). If ke N T then rcl(k) = k.
Definition 2.4. Ifk~ N N the node he N r that follows the right
corner leaf of k rel(k) is said to be the anchor leafofk al(k),
and al(k) = h = rel(k)+L IfkeNT-{n+l } then al(k) = k+l.
Definition 2.5. If ke N T the set of the anchored nodes of
k an(k) is an(k) = {j~ NTUN s I alQ) = k}.
From this definition it follows that for every ke NT-{0},
an(k) contains at the initial time the node number (k-l).
Definition 2.6. a. If keN T the subtree rooted in k T(k) is
represented by T(k) = <k,lcl(k),rcl(k),an(k),cat(k)>, where
kis theroot node; lcl(k)-- rel(k)= k; an(k) = {(k-l)} initially;
cat(k) = a~, the terminal category of the node.
b. If ke Nr~ the subtree rooted in k T(k) is represented by
T(k)=<k,lcl(k),rcl(k),sons(k),cat(k)>, where k is the root
node; sons(k) = {s I sv}, sic NTuN s, i = 1 p, is the set
of the direct descendants of k; cat(k) = A, a non-terminal
category assigned to the node.

From the above definitions the initial PGS for a
sentence s=a~av..a n is: Nr={0,1 n ,n+l}, Ns={},
T= { T(0),T(1) T(n) ,T(n+ 1) }; and: T(0)=<0,0,0, { } ,$>,
T(i)=<i,i,i, { i- 1 } ,ai> for i= 1 n, and T(n+ 1)=<n+ 1,
n+l,n+l,{n} ,$>. With this PGS the parser starts its work
reducing new nodes from the already existing ones. If for
some k~Nr~, T(k)=<k,lcl(k),rcl(k),{s 1 sp},A>, and
T(s)=<si,lcl(sl),rcl(s~),{ s n s~t},zi>e T, for i = 1 p0 are
the direct descendants of k, then k has been reduced from
s~ ,s t by some grammar rule whose reduction rule, as we
shall see later, has the form (A~---z v ..zp), and the following
holds: lcl(k) = lcl(st), rcl(s~) = lcl(s2)-l, rcl(s2) = lcl(ss)-1
rcl(sr, l) = lcl(sr)- 1, rcl(sp) = rcl(k). From that we can give the
following definition:

<12,a12>

<14,a14> <13,a13>

<0,$> <l,al> <2,a2>

{} {0} {I}

of the match process the matcher must start from the last
scanned or built node z s, finding afterwards z 2 and z~,
respectively, sailing in the PGS right-to-left and passing
through adjacent subtrees. Steps through adjacent subtrees
are easily accomplished by using the sets of the anchored
nodes in the terminal nodes. It follows from the above
def'mitions that if k~ N N then the subtrees adjacent to T(k)
are given by an(lel(k)), whereas ff k~ N r then the adjacent
subtrees are given by an(k). The lists of the anchored nodes
provide an efficient way to represent the relation of
adjacency between nodes. These sets stored only in the
terminal nodes provide an efficient data structure useful for
the matcher to accomplish its purpose. Figure 1 shows a
parse tree at a certain time of a parse, where under each

I

T(9) = <9,1,2,{1,2},a9>
TOO) = <10,2,2,{2},a10>
T(l l) = <11,2,3,{ 10,3},al 1>
T(12) = <12,1,3,{9,3},a12>
T(13) = <13,4,5, {4,5 },a13>
T(14) -- <14,3,5,{3,4,5 },a14>

<3#3> <4,a4> <5,a5> <6,a6> <7,a7> <8,$>

{2,9,10} {3,11,12} {4} {5,13,14} {6} {7}

Figure 1. A parse tree with the sets of the anchored nodes

5

,41
4

8

a7 I
7

a6 I
6

a5 a14

13 14

3 11 12

2 9 10 1

l a l a l [

1 1
Figure 2.

Definition 2.7. If { s t s.} is a set of nodes in the PGS, then
their subtrees T(s a) T(~p) are said to be adjacent when
rcl(si) = lcl(si.~)-1 or, alternatively, al(si) = lcl(sm), for i =
1 ,p-1.
During a parsing process a great effort is made in finding a
set of adjacent subtrees that match a fight-hand side of a
reduction rule. Let (A~z~ z 2 z 3) be a reduction rule, then the
parser should start a match process to find all possible sets
of adjacent subtrees such that their categories match z a z 2 z 3.
The parser scans the input string left-to-right, so reductions
grow on the left of the scanner pointer, and for the efficiency

300

Adjacency Tree

terminal node there is the corresponding list of the anchored
nodes. A useful structure that can be derived from these sets
is an adjacency tree, recursively defined as follows:
Definition 2.8. If (Nr,NwT) is a PGS for an input sentence
s, and Isl = n, then the adjacency tree for the PGS is so built:
- n+1 is the root of the adjacency tree;
- for every k~Nr-{0,1}uN ., the sons ofk are the nodes in
an(Icl(k)) unless an(Icl(k))= {0}.
Figure 2 shows the adjacency tree obtained from the partial
parse tree in Figure 1. Any passage from a node k to one of
its sons h in the adjacency tree represents a passage from a

3 11 12 2 9 10

t alt
2 9 10 1 1 1

I "1
1 1

subtree T(k) to one of its adjacent subtrees T(h) in the PGS.
Moreover, during a match process this means that a
constituent of the right-hand side has been consumed, and
matching the first symbol that-match process is f'mished.
The adjacency lace also provides further useful information
for optimizing the search during a match. For every node k,
if we consider the longest path from k to a leaf, its length is
an upper bound for the length of the right hand side still to
consume, and since the sons ofk are the nodes in an(lcl(k)),
the longest path is always given by the sequence of the
terminal nodes from the node 1 to the node lcl(k)- 1. Thus its
length is just lcl(k)-l.
Property 2.1. If (Nr,Ns,T) is a PGS, (A~zl . . . z v) is a
reduction rule whose right-hand side has to be matched, and
T(k)~ T such that cat(k) = z , then:
a. the string z t ... zp is matc'hable i f fp < lcl(k);
b. for i = p 1, zt is partially matchable to a node

Definition 2.10. If (Nr,Ns,T) is a PGS, an adjacency
digraph can be represented as follows:
a. for any ke N r, k has outgoing arcs directed to the nodes in
an(k);
b. for any k¢ N N, k has one outgoing arc directed to lcl(k).
In the classic literature the lists of the anchored nodes are
called adjacency lists, and are used for representing graphs
(Aho et at., 1974). A graph G=(V,E) can be usually
represented by IVI adjacency lists. In our representation we
can obtain an optimization representing an adjacency
digraph by n adjacency lists, if n is the length of the sentence,
and by INsl simple pointers for accessing the adjacency lists
from the non-terminal nodes, with respect to n+lNsl
adjacency lists for a full representation of an adjacency
digraph composed of arcs as in Det'mition 2.10.a.
Figure 3 shows how a new non-terminal node is connected
in an adjacency digraph, and Figure 4 shows the adjacency

k [lcl(k) ~I- - - - k access from k to lcl(k)

,ql-lcl(k-1) ~ lcl(k) ,~- ... al(k) = r c l (k) + l . ~ - I r ~ k T(k) is adjacent to T(r)

Figure 3. Adding a non-terminal node k to an adjacency digraph

04$_ 1 ~ 4 r "a~ " " " ; ~ " " ~ _ ~ a4 5.4t.....~..__~ ~ 7 . ~ . ~ _ _ 8

".. , / , " . . j ' - - .
-Id" '~ l l P " " " ' 1 4 ~ '13 r

Figure 4. Adjacency Digraph

he NNuN riff cat(h) = z i and i < Icl(h).
Property 2. I. along with the adjacency relation provides a
method for an efficient navigation within the PGS among
the subtrees. This navigation is performed by the matcher in
the PGS as visiting the adjacency tree in a pre-order fashion.
It is easy to see that a pre-order visit of the adjacency tree
scans all possible sequences of the adjacent subtrees in the
PGS, but Property 2.1 provides a shortcut for avoiding
useless passages when matchable conditions do not hold.
When a match ends the matcher returns one or more sets of
nodes satisfying the following conditions:
Definition 2.9. A set RSet = {n I ,np} is a match for a string
zl...zpiff cat(nl) ffi z i, for i = 1,...,p, and T(nl) is adjacent to
T(ni, l), for i = 1 ,p-1. The set RSet is called a reduction
set.
The adjacency tree shows the hypothetical search space for
searching the reduction sets in a PGS, thus it is not a
representation of what memory is actually required to store
the useful data for such a search. A more suitable
representation is an adjacency directed graph defined by
means of the lists of the anchored nodes in the terminal
nodes, and by the pointers to the left comer leaf in the non-
terminal nodes.

301

digraph for the parse tree of Figure 1.

3. P R O C E S S G R A M M A R
The Process Grammar is an extension of the Augmented

Context-Free Grammar such as APSG, oriented to bottom-
up parsing. Some relevant features make a Process
Grammar quite different from classical APSG.
1. The parser is a PG processor that tries to apply the rules
in a bottom-up fashion. It does not have any knowledge
about the running grammar but for the necessary structures
to access its rules. Furthermore, it sees only its internal state,
the Parse Graph Structure, and works with a non-
deterministic strategy.
2. The rules are conceived as processes that the PG
processor schedules somehow. Any rule defines a reduction
rule that does not represent a rewriting rule, but rather a
statement for search and construction of new nodes in a
bottom-up way within the Parse Graph Structure.
3. The rules are augmented with some sequences of
operations to be performed as in the classical APSG. In
general, augmentations such as tests and actions concern
manipulation of linguistic data at syntactic and/or semantic
level. In this paper we are not concerned with this aspect (an

informal description about this is in Marino (1989)), rather
we examine some aspects concerning parsing strategies by
means of the augmentations.

In a Process Grammar the rules can have knowledge of
the existence of other rules and the purpose for which they
are defined. They can call some functions that act as filters
on the control structures of the parser for the scheduling of
the processes, thus altering the state of the processor and
forcing alternative applications. This means that any rule
has the power of changing the state of the processor
requiring different scheduling, and the processor is a blind
operator that works following a loose strategy such as the
non-deterministic one, whereas the grammar can drive the
processor altering its state. In such a way the lack of
determinism of the processor can be put in the Process
Grammar, implementing parsing strategies which are
transparent to the processor.
Definition 3.1. A Process Grammar PG is a 6-tuple
(VT,Vs,S,R,Vs,F) where:
. V r is the set of terminal symbols;
- V N is the set of non-terminal symbols;
- S¢ V N is the Root Symbol of PG;
- R = {r 1 ,rt} is the set of the rules. Any rule r i in R is of
the form r i = <red(ri),st(ri),t(ri),a(Q>, where red(ri) is a
reduction rule (A~---a), A~ Vr~, ct~ (VruVN)+; st(r) is the
state of the rule that can be active or inactive; t(Q and a(Q
are the tests and the actions, respectively;
- V s is a set of special symbols that can occur in a reduction
rule and have a special meaning. A special symbol is e a, a
null category that can occur only in the left-hand side of a
reduction rule. Therefore, a reduction rule can also have the
form (e~¢---a), and in the following we refer to it as e-
reduction;
- F = {fl f] is a set of functions the rules can call within
their augmentations.
Such a definition extends classical APSG in some specific
ways: first, a Process Grammar is suited for bottom-up
parsing; second, rules have a state concerning the
applicability of a rule at a certain time; third, we extend the
CF structure of the reduction rule allowing null left-hand
sides by means of e-reductions; fourth, the set F is the
strategic side that should provide the necessary functions to
perform operations on the processor structures. As a matter
of fact, the set F can be further structured giving the PG a
wider complexity and power. In this paper we cannot treat
a formal extended definition for F due to space restrictions,
but a brief outline can be given. The set F can be defined as
F=Fr~uFt,. In F ~ are all those functions devoted to
operations on the processor structures (Kernel Functions),
and, in the case of a feature-based system, in Ft, are all the
functions devoted to the management of feature structures
(Marino, 1989). In what follows we are also concerned with
the combined use of e-reductions and the function RA,
standing for Rule Activation, devoted to the immediate
scheduling of a rule. RAe Fx~ ' and a call to it means that the

302

specified role must be applied, involving the scheduling
process we describe in Section 4. Before we introduce the
PG processor we must give a useful definition:
Definition 32. Let r eR be a rule with t(r)=[f,1;...;f.~],
a (r)=[f l ; . . . ; f] be sequences of operations in its
augmentations, f,~ f~,ft f e F . Let {n 1 rip) be a
reduction set for red(r) = (A ~ z r..zv), and he Nr~ be the new
node for A such that T(h) is the new subtree created in the
PGS, then we define the Process Environment for t(r) and
a(r), denoted briefly by ProcEnv(r), as:

ProcEnv(r) = {h,n 1 ,n.}
If red(r) is an e-reduction then ProcEnv(r) = {nl ,np}.
This definition states the operative range for the
augmentations of any rule is limited to the nodes involved
by the match of the reduction rule.

4. P G P R O C E S S O R
Process Scheduler. The process scheduler makes

possible the scheduling of the proper rules to run whenever
a terminal node is consumed in input or a new non-terminal
node is added to the PGS by a process. By proper rules we
mean all the rules satisfying Property 2.1.a. with respect to
the node being scanned or built. These rules are given by the
sets def'med in the following definition:
Definia'on 4.1. Vce VsuV r such that 3 r~ R where red(r) =
(Ac---ac), AeVNu{e~}, being c the right comer of the
reduction rule, and lacl _< L, being L the size of the longest
right-hand side having c as the right comer, the sets P(c,i),
P,(c,i) for i = 1 L, can be built as follows:

P(c,i) = {re R I red(r)=(At---cxc), 1 < Itxcl _< i, st(r)=aclive}
Pe(c,i)= {re R I red(r)=(eac---ac), 1 < lacl < i, st(r)=active}

Whenever a node he NruNr~ has been scanned or built and
k=lcl(h), then the process scheduler has to schedule the rules
in P(cat(h),k)uP,,(cat(h),k). In the following this union is
also denoted by Yl(cat0a),k). Such a rule scheduling allows
an efficient realization of the immediate constituent
analysis approach within a bottom-up parser by means of a
partitioning of the roles in a Process Grammar.
The process scheduler sets up aprocess descriptor for each
rule in l-l(cat0a),k) where the necessary data for applying a
process in the proper environment are supplied. In a Process
Grammar we can have three main kinds of rules: rules that
are activated by others by means of the function RA; e-
reduction roles; and standard rules that do not fall in the
previous cases. This categorization implies that processes
have assigned a priority depending on their kind. Thus
activated rules have the highest priority, e-reduction rules
have an intermediate priority and standard rules the lowest
priority. Rules become scheduled processes whenever a
process descriptor for them is created and inserted in a
priority queue by the process scheduler. The priority queue
is divided into three stacks, one for each kind of rule, and
they form one of the structures of the processor state.

Definition 4.2. A process descriptor is a triple PD=[r,h,C]
where: m R is the rule involved; he N r u N s u {NIL} is either
the right corner node from which the marcher starts or NIL;
C is a set of adjacent nodes or the empty set. A process
descriptor of the form [r,NiL,[nl ,nc] is built for an
activated rule r and pushed in the stack s r A process
descriptor of the form [r,h, [}] is built for all the other rules
and is pushed either in the stack s 2 if r is an e-reduction rule
or in the stack s 3 if a standard rule. Process descriptors of
these latter forms are handled by the process scheduler,
whereas process descriptors for activated rules are only
created and queued by the function RA.

State of Computation. The PG processor operates by
means of an operation Op on some internal structures that
define the processor state ProcState, and on the parsing
structures accessible by the process environment ProcEnv.
The whole state of computation is therefore given by:

[Op,ProcState,ProcEnv] = [Op,pt,[s~,svs3],PD,pn,RSet]
where pt¢ N r is the input pointer to the last terminal node
scanned; pn~ N~ is the pointer to the last non-terminal node
added to the PGS. For a sentence s=a r . . a . the computation
starts from the initial state [begin,0,[NIL,NIL,NIL],
NIL,n+I,{}], and terminates when the state becomes
[end,n,[NIL,NIL,NIL],NIL,pn,[}]. The aim of this section
is not to give a complete description of the processor cycle
in a parsing process, but an analysis of the activation
mechanism of the processes by means of two main cases of
rule scheduling and processing.

Scheduling and Processing of Standard Rules.
Whenever the state of computation becomes as [scan, pt,
[NIL,NILMIL]MIL,pn,{ }] the processor scans the next
terminal node, performing the following operations:

sc an: scl if pt = n then Op <--- end
sc2 else pt*-- pt + 1;
sc3 schedule 0"I(cat(pt),lcl(pt)));
sc4 Op <--- activate.

Step sc4 allows the processor to enter in the state where it
determines the first non-empty higher priority stack where
the process descriptor for the next process to be activated
must be popped off. Let suppose that cat(pt)=zp, and
l'I(z,lcl(p0)={r } where r is a standard rule such that
red(~)=(A<--zr..z ~. At this point the state is [activate,
pt,[NILMIL,[r,pt, [}]] MIL,pn,[}] and the processor has to
try reduction for the process in the stack s v thus
Op<--reduce performing the following statements:

reduce: rl PD<---pop (%);
[reduce,pt,[NIL,NIL,NIL],[r,pt, { }],pn,{ }]

r2 C0--match (red(r), pt);
C = {nl,...,n vpt}

r3 PD<-Lir, pt, C];

303

[reduce,pt,[Nfl.,MiL,NIL],[r,pt,C],pn,{ }]
r4 V rset~ C:
r5 RSet ~rset;

[reduce,pt,[NiL,NILMIL],[r,pt, { }],pn~RSet]
r6 if t(r) then pn<--pn + 1;
r7 add subtree(pn ,red (r) ,R S e0;
r8 a(r);
r9 schedule (H(cat(pn),lcl(pn));

[reduce,pt,[NIL,sv%],[r,pt, { }],pn,RSet]
rl00p<--activate.

Step r9, where the process scheduler produces process
descriptors for all the rules in H(AJcl(pn)), implies
immediate analysis of the new constituent added to the PGS.

Scheduling and Processing of Rules Activated by ~-
Reduction Rules. Let consider the case when an ~-
reduction rule r activates an inactive rule r' such that:
red(r)f-(eat--zr..zp), a(r)=[RA (r')], red(r')=(A~zr..Zh),
l~,_<.h<p, and st(r')=inactive. When the operation activate
has checked that an g-reduction rule has to be activated then
Olx--~-reduce, thus the state of computation becomes:
[e.reduce,pt,[NIL,[r,m,{}],NIL],NIL,pn,{}], and the
following statements are performed:

e-reduce: 0-I PD<---pop (sz);
[e-red uce,pt,[NIL,NIL.NIL] ,[r,m, { }] ,pn, { }]

~2 C<---match (red(r), m);
C = (n I ,n I, m}

0-3 f~b.[r,m,C];
[e.red uce,pt,[NIL,NIL.NIL] ,[r,m,C] ,pn, { }]

0-4 V rsemC:
0"5 RSet.--rset;

[e-red uce,pt. [NIL,NIL,NIL],[r,m, { }],pn,RSet]
0-6 if t(r) then a(r)=[RA (r')];

[¢.reduce,pt,[[r',NIL,{n k ,nh}],NIL,NIL],
[r,m,{}],pn,RSet]

0"70lx--activate.

In this case, unlike that which the process scheduler does,
the function RA performs at step 0-6 the scheduling of a
process descriptor in the stack s, where a subset of
ProcEnv(r) is passed as the ProcEnv(r'). Therefore, when an
e-reduction rule r activates another rule r' the step er2 does
the work also for r', and RA just has to identify the ProcEnv
of the activated rule inserting it in the process descriptor.
Afterwards, the operation activate checks the highest
priority stack s, is not empty, therefore it pops the process
descriptor [r',NIL,{ n k n u}] and OIx--h-reduce that skips
the match process applying immediately the rule r':

h-reduce: hrl RSet<--C;
[h-reduce,pt,[NiL,NIL,NlL],[r',NIL,{ }],pn,RSet]

hr2 through hr6 as r6 through rl0.

From the above descriptions it turns out that the
operation activate plays a central role for deciding what
operation must run next depending on the state of the three
stacks. The operation activate just has to check whether
some process descriptor is in the first non-empty higher
priority stack, and afterwards to set the proper operation.
The following statements describe such a work and Figure
5 depicts graphically the connections among the operations
defined in this Section.

activate: al if sI=NIL
a2 then if %=NIL
a3 then if s,=NIL
a4 then Op ~ scan
a5 else Op <-- reduce
a6 else Op <--- c-reduce
a7 else PD ~ pop (%);

PD = [r,NIL,C]
a8 Op <-- h-reduce.

s l = s 2 = s 3 = N I ~

Figure 5. Operations Transition Diagram

5. EXAMPLE
It is well known that bottom-up parsers have problems

in managing rules with common right-hand sides like X --->
ABCD, X ---> BCD, X ---> CD, X ---> D, since some or all of
these rules can be fired and build unwanted nodes. A strategy
called top-down filtering in order to circumvent such a
problem has been stated, and it is adopted within bottom-up
parsers (Kay, 1982; Pratt, 1975; Slocum, 1981; Wir6n,
1987) where it simulates a top-down parser together with the
bottom-up parser. The PG Processor must face this problem
as well, and the example we give is a Process Grammar
subset of rules that tries to resolve it. The kind of solution
proposed can be put in the family of top-down filters as well,
taking advantage firstly of using e-reduction rules.
Unfortunately, the means described so far are still
insufficient to solve our problem, thus the following
definitions introduce some functions that extend the Process
Grammar and the control over the PGS and the PG
Processor.
Definition 5.1. Let r be a rule of R with red(r)=(~--z v. .z) ,
and RSet={n,...np} be a reduction set for red(r). Taken two
nodes %,nje RSet where n,e N N such that we have cat(n)--z,,
cat(nj)=zj, and T(n~), T(n) are adjacent, i.e., either j=i+ 1 or

304

j=i- 1, then the function Add_Son_Rel of Fx= when called in
a(r) as Add_Son_Rel (zi~z) has the effect of creating a new
parent-son relation between %, the parent, and n, the son,
altering the sets sons(n), and either 1cI(%) or rcl(n) as
follows:
a) sons(n) ~- sons(n) u {nj}
b) lcl(n) ~ lcl(nj) ifj=i-1
c) rcl(n) 6-- rcl(n) if j=i+l
Such a function has the power of making an alteration in the
structure of a subtree in the PGS extending its coverage to
one of its adjacent subtrees.
Definition 5.2. The function RE of Fr~, standing for Rule
Enable, when called in the augmentations of some rule r as
RE (r'), where r, r' are in R, sets the state of r' as active,
masking the original state set in the definition of r'.
Without entering into greater detail, the function RE can
have the side effect of scheduling the just enabled rule r'
whenever the call to RE follows the call Add Son Rel
(X,Y) for some category Xe V,,,Ye V,wVr, and the right
corner of red(r') is X.
Definition 5.3. The function RD of Fx, ,, standing for Rule
Disable, when called in the augmentations of some rule r as
RD (r'), where r, r' are in R, sets the state of r ' as inactive,
masking the original state set in the definition of r'.

We axe now ready to put the problem as follows: given,
for instance, the following set P1 of productions:

PI = {X --> ABCD, X ---> BCD, X --> CD, X ---> D}
we want to define a set of PG rules having the same coverage
of the productions in PI with the feature of building in any
case just one node X in the PGS.
Such a set of rules is shown in Figure 6 and its aim is to create
links among the node X and the other constituents just when
the case occurs and is detected. All the possible cases are
depicted in Figure 7 in chronological order of building.
The only active rule is r0 that is fired whenever a D is inserted
in the PGS, thus a new node X is created by r0 (case (a)).
Since the next possible case is to have a node C adjacent to
the node X, the only action of r0 enables the rule rl whose
work is to find such an adjacency in the PGS by means of the
e-reduction rule red(rl)=(e,~ C X'). If such a C exists rl is
scheduled and applied, thus the actions of rl create a new
link between X and C (case Co)), and the rule r2 is enabled in
preparation of the third possible case where a node B is
adjacent to the node X. The actions of rl disable rl itself
before ending their work. Because of the side effect of RE
cited above the rule r2 is always scheduled, and whenever a
node B exists then it is applied. At this point it is clear how
the mechanism works and cases (c) and (d) are handled in the
same way by the rules r2 and r3, respectively.

As the example.shows, whenever the rules rl ¢2¢3 are
scheduled their task is realized in two phases. The first phase
is the match process of the e-reduction rules. At this stage it
is like when a top-down parser searches lower-level
constituents for expanding the higher level constituent. If
this search succeeds the second phase is when the

red(r0) = (X ~-- D)
st(r0) = active
a(r0) = iRE (rl)]

red(rl) = (el<--- C X)
st(rl) = inactive
a(rl) = [Add Son_Rel (X,C); RE (r2); RD (rl)]

red(a) = B XO
st(r2) = inactive
a(r2) = [Add_Son Rel (X,B); RE (r3); RD (r2)]

red(r3) -- (el ¢--- A X)
st(r3) = inactive
a(r3) = [Add Son_Rel (X,A); RD (r3)]

Figure 6. The Process Grammar of the example

X

D

A
(a)

X
rl/'N

C D

A A
Co)

X

B C D

/x/ A
(c)

X

A B C D

A A A A
(d)

Figure 7. All the possible cases of the example

appropriate links are created by means of the actions, and the
advantage of this solution is that the search process
terminates in a natural way without searching and proposing
useless relations between constituents.
We terminate this Section pointing out that this same
approach can be used in the dual case of this example, with
a set P2 of productions like:

P2= {X --~ A, X ---> AB, X ---> ABC, X ---> ABCD}
The exercise of finding a corresponding setofPG rules is left
to the reader.

6. R E L A T E D W O R K S
Some comparisons can be made with related works on

three main levels: the data structure PGS; the Process
Grammar; the PG Processor.

ThePGS can be compared with the chart (Kaplan, 1973;
Kay, 1982). The PGS embodies much of the information the
chart has. As a matter of fact, our PGS can be seen as a
denotational variant of the chart, and it is managed in a
different way by the PG Processor since in the PGS we
mainly use classical relations between the nodes of the
parse-trees: the dominance relation between a parent and a
son node, encoded in the non-terminal nodes; the left-
adjacency relation between subtrees, encoded in the
terminal nodes. Note that if we add the fight-adjacency
relation to the PGS we obtain a structure fully comparable to
the chart.

The Process Grammar can embody many kinds of
information. Its structure comes from the general structure
stated for the APSG, being very close to the ATN Grammars
structure. On the other hand, our approach proposes that
grammar rules contain directives relative to the control of
the parsing process. This is a feature not in line with the
current trend of keeping separate control and linguistic
restrictions expressed in a declarative way, and it can be

305

found in parsing systems making use of grammars based on
situation-action rules 0Vinograd, 1983); furthermore, our
way of managing grammar rules, i.e., operations on the
states, activation and scheduling mechanisms, is very
similar to that realized in Marcus (1980).

7. D I S C U S S I O N A N D C O N C L U S I O N S
The PG Processor is bottom-up based, and it has to try

to take advantage from all the available sources of
information which are just the input sentence and the
grammar structure. A slrong improvement in the parsing
process is determined by how the rules of a Process
Grammar are organized. Take, for instance, a grammar
where the only active rules are e-reduction rules. Within the
activation model they merely have to activate inactive rules
to be needed next, after having determined a proper context
for them. This can be extended to chains of activations at
different levels of context in a sentence, thus limiting both
calls to the matcher and nodes proliferation in the PGS. This
case can be represented writing (ea~offl3) ~ (A~--T),
reading it as if the e-reduction in the lhs applies then activate
the rule with the reduction in the rhs, thus realizing a
mechanism that works as a context-sensitive reduction of the
form (otA[3~---¢c#), easily extendable also to the general case

= ,

This is not the only reason for the presence of the e-reduction
rules in the Process Grammar. It also becomes apparent from
the example that the e-reduction rules are a powerful tool
that, extending the context-freeness of the reduction rules,
allow the realization of a wide alternative of techniques,
especially when its use is combined together with Kernel
Functions such as RA getting a powerful mean for the
control of the parsing process. From that, a parser driven by
the input - for the main scheduling - and both by the PGS and
the rules - for more complex phenomena - can be a valid

framework for solving, as much as possible, classical
problems of efficiency such as minimal activation of rules,
and minimal node generation. Our description is
implementation-independent, it is responsive to
improvements and extensions, and a first advantage is that it
can be a valid approach for realizing efficient
implementations of the PG Processor.

Extending the Process Grammar. In this paper we
have described a Process Grammar where rules are
augmented with simple tests and actions. An extension of
this structure that we have not described here and that can
offer further performance to the parsing process is if we
introduce in the PG some recovery actions that are applied
whenever the detection of one of the two possible cases of
process failure happens in either the match process or the
tests. Consider, for instance, the reduction rule. Its f'mal aim
is to find a process environment for the rule when scheduled.
This leads to say that whenever some failure conditions
happen and a process environment cannot be provided, the
recovery actions would have to manage just the control of
what to do next to undertake some recovery task. It is easy
to add such an extension to the PG, consequently modifying
properly the reduction operations of the PG processor.
Other extensions concern the set F~, by adding further
control and process management functions. Functions such
as RE and RD can be defined for changing the state of the
rules during a parsing process, thus a Process Grammar can
be partitioned in clusters of rules that can be enabled or
disabled under proper circumstances detected by qow-
level'(e-reduction) rules. Finally, there can be also some
cutting functions that stop local partial parses, or even halt
the PG processor accepting or rejecting the input, e.g., when
a fatal condition has been detected making the input
unparsable, the PG processor might be halted, thus avoiding
the complete parse of the sentence and even starting a
recovery process. The reader can refer to Marino (1988) and
Marino (1989) for an informal description regarding the
implementation of such extensions.

Conclusions. We have presented a complete
framework for efficient bottom-up parsing. Efficiency is
gained by means of: a structured representation of the
parsing structure, the Parse Graph Structure, that allows
efficient matching of the reduction rules; the Process
Grammar that extends APSG by means of the process-based
conception of the grammar rules and by the presence of
Kernel Functions; the PG Processor that implements a non-
deterministic parser whose behaviour can be altered by the
Process Grammar increasing the determinism of the whole
system. The mechanism of rule activation that can be
realized in a Process Grammar is context-sensitive-based,
but this does not increase computational effort since
processes involved in the activations receive their process
environments - which are computed only once - from the

activating rules. At present we cannot tell which degree of
determinism can be got, but we infer that the partition of a
Process Grammar in clusters of rules, and the driving role the
e-reductions can have are two basic aspects whose
importance should be highlighted in the future.

A C K N O W L E D G M E N T S
The author is thankful to Giorgio Satta who made

helpful comments and corrections on the preliminary draft
of this paper.

R E F E R E N C E S
Aho, Alfred, V. and Ullman, Jeffrey, D. (1972). The

Theory of Parsing, Translation, and Compiling. Volume 1:
Parsing. Prentice Hall, Englewood Cliffs, NJ.

Aho, Alfred, V., Hopcroft, John, E. and Ullman, Jeffrey,
D. (1974). The Design and Analysis of Computer
Algorithms. Addison-Wesley.

Grishman, Ralph (1976). A Survey of Syntactic
Analysis Procedures for Natural Language. American
Journal of ComputationalLinguistics. Microfiche 47, pp. 2-
96.

Kaplan, Ronald, M. (1973). A General Syntactic
Processor. In Randall Rustin, ed., Natural Language
Processing, Algodthmics Press, New York, pp. 193-241.

Kay, Martin (1982). Algorithm Schemata and Data
Structures in Syntactic Processing. In Barbara J. Grosz,
Karen Sparck Jones and Bonnie Lynn Webber, eds.,
Readings in Natural Language Processing, Morgan
Kaufmann, Los Altos, pp. 35-70. Also CSL-80-12, Xerox
PARC, Palo Alto, California.

Marcus, Mitchell, P. (1980). A Theory of Syntactic
Recognition for NaturaI Language. MIT Press, Cambridge,
MA.

Marino, Massimo (1988). A Process-Activation Based
Parsing Algorithm for the Development of Natural
Language Grammars. Proceedings of 12th International
Conference on Computational Linguistics. Budapest,
Hungary, pp. 390-395.

Marino, Massimo (1989). A Framework for the
Development of Natural Language Grammars. Proceedings
of lnternational Workshop on Parsing Technologies. CMU,
Pittsburgh, PA, August 28-31 1989, pp. 350-360.

Pratt, Vaughan, R. (1975). LINGOL - A Progress
Report. Proceedings of4th IJCAI, Tbilisi, Georgia, USSR,
pp. 422-428.

Slocum, Johnathan (1981). A Practical Comparison of
Parsing Strategies. Proceedings of 19th ACL, Stanford,
California, pp. 1-6.

Winograd, Terry (1983). Language as a Cognitive
Process. Vol. 1: Syntax. Addison-Wesley, Reading, MA.

Wirtn, Mats (1987). A Comparison of Rule-Invocation
Strategies in Context-Free Chart Parsing. Proceedings of
3rd Conference of the European Chapter of the ACL,
Copenhagen, Denmark, pp. 226-233.

306

