
A L G O R I T H M S F O R G E N E R A T I O N I N L A M B E K
T H E O R E M P R O V I N G

Erik-Jan van der Linden *
Guido Minnen

Institute for Language Technology and Artificial Intelligence
Tilburg University

PO Box 90153, 5000 LE Tilburg, The Netherlands
E-maih vdlindenOkub.nl

ABSTRACT

We discuss algorithms for generation within the
Lambek Theorem Proving Framework. Efficient
algorithms for generation in this framework take
a semantics-driven strategy. This strategy can
be modeled by means of rules in the calculus that
are geared to generation, or by means of an al-
gorithm for the Theorem Prover. The latter pos-
sibility enables processing of a bidirectional cal-
culus. Therefore Lambek Theorem Proving is a
natural candidate for a 'uniform' architecture for
natural language parsing and generation.

Keywords: generation algorithm; natural lan-
guage generation; theorem proving; bidirection-
ality; categorial grammar.

1 I N T R O D U C T I O N

Algorithms for tactical generation are becoming
an increasingly important subject of research in
computational linguistics (Shieber, 1988; Shieber
et al., 1989; Calder et al., 1989). In this pa-
per, we will discuss generation algorithms within
the Lambek Theorem Proving (LTP) framework
(Moortgat, 1988; Lambek, 1958; van Benthem,
1988). In section (2) we give an introduction to a
categorial calculus that is extended towards bidi-
rectionality. The naive top-down control strategy
in this section does not suit the needs of efficient
generation. Next, we discuss two ways to imple-
ment a semantics-driven strategy. Firstly, we add
inference rules and cut rules geared to generation
to the calculus (3). Secondly, since these changes
in the calculus do not support bidirectionality, we

*We would llke to thank Gosse Bouma, Wietske
Si~tsma and Marianne Sanders for their comments on an
earlier draft of the paper.

220

introduce a second implementation: a bottom-up
algorithm for the theorem prover (4).

2 E X T E N D I N G T H E CAL-
C U L U S

Natu ra l Language Process ing as deduc t ion
The architectures in this paper resemble the uni-
form architecture in Shieber (1988) because lan-
guage processing is viewed as logical deduction, in
analysis and generation:

"The generation of strings matching some crite-
ria can equally well be thought of as a deductive
process, namely a process of constructive proof of
the existence of a string that matches the crite-
ria." (Shieber, 1988, p. 614).

In the LTP framework a categorial reduction sys-
tem is viewed as a logical calculus where parsing
a syntagm is an attempt to show that it follows
from a set of axioms and inference rules. These
inference rules describe what the processor does in
assembling a semantic representation (representa-
tional non-autonomy: Crain and Steedman, 1982;
Ades and Steedman, 1982). Derivation trees rep-
resent a particular parse process (Bouma, 1989).
These rules thus seem to be nondeclarative, and
this raises the question whether they can be used
for generation. The answer to this question will
emerge throughout this paper.

Lexical in fo rmat ion As in any categorial
grammar, linguistic information in LTP is for the
larger part represented with the signs in the lex-
icon and not with the rules of the calculus (signs
are denoted by prosody:syntax:semant lcs) . A

generator using a categorial g r ammar needs lex-
ical information about the syntactic form of a
functor tha t is connected to some semantic func-
tot in order to syntactically correctly generate the
semantic arguments of this functor. For a parser,
the reverse is true. In order to fulfil both needs,
lexical information is made available to the the-
orem prover in the form of in~t6aces of o~ionu. I
Axioms then truely represent what should be ax-
iomatic in a lexicalist description of a language:
the]exical items, the connections between form
and meaning. 2

I* s l i a i n a t i o n r u l e s */
(U,[Pros_Fu:X/Y:Functor],[TIR],V)=>[Z] <-

[Pros_Fu:X/Y:Functor] =>
[Pros_Fu:X/Y:Functor] k

[TIR] => [Pros Arg:Y:Ar~ k
(U,[(Pros_Fu*l~os_Arg):X:Functor@Arg],V) =>

[z].

(U,[T[R],[Pros_Fu:Y\X:Functor],V) => [Z] <-
[Pros_Fu:Y\X:Functor] =>

[Pros_Fu:Y\X:Functor] k
[TIR] => [Pros_arg:Y:krg] k
(U,[(Pros_krg*Pros_Fu):X:FunctorQArg],V) =>

[z] .

R u l e s Whenever inference rules are applied, an
a t t empt is made to axiomatize the functor that
participates in the inference by the first subse-
quent of the elimination rules. This way, lexical
information is retrieved from the lexicon.

/* in t roduc t ion r u l s s */
[T[R]=>[Pros:Y\X:Var_Y'Tsra_X] <-

nogsnvar(Y\X) k
([id:Y:Var_Y],[T[R]) =>

[(id*Pros):X:Tarm_X].

A prosodic operator connects prosodic ele-
ments. A prosodic identity element, id, is neces-
sary because introduction rules are prosodical]y
vacuous. In order to avoid unwanted matching
between axioms and id-elements, one special ax-
iota is added for id-elements. Meta-logical checks
are included in the rules in order to avoid vsri-
ables occuring in the final derivation, nogenv,2r
reeursively checks whether any par t of an expres-
sion is a variable.

A sequent in the calculus is denoted with
P = > T, where P, called the antecedent, and T,
the succedent, are finite sequences of signs. The
calculus is presented in (1) . In what follows, X
and ¥ are categories; T and Z, are signs; R, U
and V are possibly empty sequences of signs; @
denotes functional application, a caret denotes ~-
abstraction, s

(i)

/* axioms */
[Pros:X:¥] => [Pros:X:Y] <-

[Pros: l :Y] =i> [Pros:X:Y] k
t rue .

[Pros:X:Y] => [Pros:X:Y] <-
(nossnvar(X), nonvar(Y)) k
1;rue.

[TIR] => [Pros:X/Y:Var_Y'Tsrm_X] <-
nogsnvar(X/Y) k
([T[R],Cid:Y:Var_Y]) ->

[(Pros*id):l:Term_X].

/* axiom for prosodic id-element */
[id:X:Y] =i> [id:X:Y] <-

isvs.r(Y).

/* lex icon , lexioms */
[john:np:john] =1> [john:np: john] .
[mary:np:mexy] =1> [maxy:np:maxy].
[l o v e s : (n p \ s) / n p : l o v n] =1>

[l o v e s : (n p \ s) / n p : l o w s] .

In order to initiate analysis, the theorem prover is
presented with sequents like (2). Inference rules
are applied recursively to the antecedent of the
sequent until axioms are found. This regime can
be called top-down from the point of view ofprob-
]em solving and bottom-up from a "parsing" point
of view. For generation, a sequent like (3) is pre-
sented to the theorem prover. Both analysis and
generation result in a derivation like (4). Note
that generation not only results in a sequence of
lexical signs, but also in a peosodic pl~rasing that
could be helpful for speech generation.

(2)

lVem der Linden and Minnen (submitted) contains a
more elaborate comparison of the extended cedcu]tm with
the origins] calculus as proposed in Moortgat (1988).

2A suggestion similar to this proposal was made by
K~nig (1989) who stated that lexicsI items are to be seen
as axioms, but did not include them as such in her de-
scription of the L-calculus.

SThroughout this paper we will use a Prolog notation
because the architectures presented here depend partly on
the Prolog un[i~cstlon mechanism.

221

[john:A:B,lovss:C:D,msxy:E:F] => [Pros:s:Ssm]

(3)

U => [Pros:s:loves@maryQjohn]

Although both (2) and (3) result (4), in the
case of generation, (4) does not represent the

(4)

j o h n : n p : j o h n 1 o r * s : (n p \ s) / n p : l o v e s ma~ry:np:mary => j o h n * (l o v e s * m a r y) : s : l o v e s Q a a r y @ j o h n <-
l o v e s : (n p \ s) / n p : l o v e s => l o v e s : (n p \ s) / n p : 1 o v e s <-

l o v e s : (n p \ s) / n p : l o v e s =I> l o v e s : (n p \ s) / n p : 1 o v e s <- t r u e
a a r y : n p : a a r y => a a r y : n p : a a r y <-

ms.ry:np:aa~ry =I> a a r y : n p : a a r y <- t r u e
j o h n : np : J olm l o v e s * m a r y : n p \ s : l o v e a @ a a r y => j ohn* (l o v e s * m a r y) : s : loves@aary@j olm <-

l o v e s * a a r y : n p \ s : loves@mary => l o v e s * a a r y : n p \ s : loves@mary <- t r u e
j o h n : n p : j o h n => j o h n : n p : j o h n <-

j o h n : n p : j o h n -1> j o h n : n p : j o h n <- t r u e
j o h n * (l o v e s * a a r y) : s : l o v s s @ a a r y Q j ohn => j o h n * (l o v e s * m a r y) : s : loves@aary@j ohn : <- t r u e

exact proceedings of the theorem prover. It
starts applying rules, matching them with the an-
tecedent, without making use of the original se-
mantic information, and thus resulting in an in-
efficient and nondeterministic generation process:
all possible derivations including all hxical items
are generated until some derivation is found that
results in the succedent. 4 We conclude that the
algorithm normally used for parsing in LTP is in-
efficient with respect to generation.

3 C A L C U L I D E S I G N E D
F O R G E N E R A T I O N

A solution to the ei~ciency problem raised in
the previous section is to start from the origi-
hal semantics. In this section we discuss calculi
that make explicit use of the original semantics.
Firstly, we present Lambek-like rules especially
designed for generation. Secondly, we introduce
a Cut-rule for generation with sets of categorial
reduction rules. Both entail a variant of the cru-
cial starting-point of the semantic-he~d-driven al-
gorithms described in Calder et al. (1989) and
Shieber et al. (1989): if the functor of a semantic
representation can be identified, and can be re-
fated to a lexical representation containing syn-
tactic information, it is possible to generate the
arguments syntactically. The efficiency of this
strategy stems from the fact that it is guided by
the known semantic and syntactic information,
and lexical information is retrieved as soon as pos-
sible.

In contrast to the semantic-head-driven al>-
proach, our semantic representations do not al-
low for immediate recognition of semantic heads:
these can only be identified after all arguments

4ef. Shleber et el. (1989) on top-down generation
algorithms. 2 2 2

have been stripped of the functor recursively
(loves@mary@john =:> loves@mary => loves).

Calder et al. conjecture that their algorithm

"(...) extends naturally to the rules of compo-
sition, division and permutation of Combinatory
Categorial Grammar (Steedman, 1987) and the
Lambek Calculus (1958)" (Calder et al., 1989, p.
23).

This conjecture should be handled with care. As
we have stated before, inference rules in LTP de-
scribe ho~ a processor operates. An important
difference with the categorial reduction rules of
Calder et al. is that inference.rules in LTP implic-
itly initiate the recursion of the parsing and gen-
eration process. Technically speaking, Lambek
rules cannot be arguments of the rule-predicate
of Calder et al. (1989, p. 237). The gist of our
strategy is similar to theirs, but the algorithms
dilTer.

Lambek-l lke genera t ion Rules are presented
in (5) that explicitly start from the known infor-
mation during generation: the syntax and seman-
tics of the succedent. Literally, the inference rule
states that a sequent consisting of an antecedent
that unifies with two sequences of signs U and
Y, and a succedent that unifies with a sign with
semantics Sem_FuQSem_Arg is a theorem of
the calculus if Y reduces to a syntactic functor
looking for an argument on its left side with the
functor-meaning of the original semantics, and U
reduces to its argument. This rule is an equiva-
lent of the second elimination rule in (I).

(5)

/* e l ~ i n a t i o n r u l e */
~ , v] =>

[(Pros_krg*Pros_Fu):X:Sem_Fu@Sea_krg] <-
V =>[Pros_Fu:Y\X:Sen_Fu] t
U =>[Pros_Arg:Y:Sen_krg].

/* in t roduct ion-ru le */
[T[R] => [Pros:Y\l:Var_Y'Tera_X] <-

nogenvsr(Y\X) k
(CCid:Y:Vnur_Y]],CTIR]) =>

[(id*Pros):X:Tora_l].

4 A C O M B I N E D B O T -
T O M - U P / T O P - D O W N
R E G I M E

In this section, we describe an algorithm for
the theorem prover that proceeds in a combined
bottom-up/top-down fashion from the problem
solving point of view. It maintains the same
semantics-driven strategy, and enables efficient
generation with the bidirectional calculus in (I).
The algorithm results in derivations like (4), in
the same theorem prover architecture, be it along
another path.

A C u t - r u l e for g e n e r a t i o n A Cut-rule is a
structural rule that can be used within the L-
calculus to include partial proofs derived with
categorial reduction rules into other proofs. In
(6) a generation Cut-rule is presented together
with the AB-system.

(6)

/* Cut-rule for generation */
[U.V] => [Pros_Z:Z:Su_Z] <-

[Pros_X:X:Sem_X, Pros_Y:Y:Sem_Y] =*>
[Pros_g:z:sem_Z]

U => [Pros_Z:X:Sem_Z]
V ffi> [Proe_Y:Y:Sem_Y].

/* reduct ion ru les , system AB */
[Pros_Fu:X/Y:Functor. lhcos_Arg:Y:lrg] =*>

(Pros_FU*Pros_Arg):X:Functor@Arg].

[Pros_Arg:Y:Arg, Pros_Fu:Y\l:Functor] =*>
(Pros.Arg*Pros_Fu):X:Functor@ArS].

The generator regimes presented in this section
are semantics-driven: they start from a seman-
tic representation, assume that it is part of the
uppermost sequent within a derivation, and work
towards the lexical items, axioms, with the recur-
sive application of inference rules. From the point
of view of theorem proving, this process should
be described as a top-down problem solving strat-
egy. The rules in this section are, however, geared
towards generation. Use of these rules for pars-
ing would result in massive non-determinism. El-
ficient parsing and generation require different
rules: the calculus is not bidirectioaal. 223

B i d i r e c t i o n a l i t y There are two reasons to
avoid duplication of grammars for generation and
interpretation. Firstly, it is theoretically more el-
egant and simple to make use of one grammar.
Secondly, for any language processing system, hu-
man or machine, it is more economic (Bunt, 1987,
p. 333). Scholars in the area of language gen-
eration have therefore pleaded in favour of the
bidirectionalit~ of linguistic descriptions (Appelt,
1987).

Bidirectionality might in the first place be im-
plemented by using one grammar and two sepa-
rate algorithms for analysis and generation (Ja-
cobs, 1985; Calder et el., 1989). However, apart
from the desirability to make use of one and the
same grammar for generation and analysis, it
would be attractive to have one and the same
processiag architecture for both analysis and gen-
eration. Although attempts to find such architec-
tures (Shieber, 1988) have been termed "looking
for the fountain of youth ' , s it is a stimulating
question to what extent it is possible to use the
same architecture for both tasks.

E x a m p l e An example will illustrate how our
algorithm proceeds. In order to generate from
a sign, the theorem prover assumes that it is
the succedent of one of the subsequeats of one
of the inference rules (7-1/2). (In case of an
introduction rule the sign is matched with the
succedent of the headseq~en~; this implies a top-
down step.) If unification with one of these subse-
quents can be established, the other subsequents
and the headsequent can be partly instantiated.
These sequents can then serve as starting points
for further bottom-up processing. Firstly, the
headsequent is subjected to bottom-up process-

SRon Kaplan during discussion of the $hieber presen-
tation at Coling 1988.

Generat ion o f nounphrase ~he ~abie. Star t with sequent

P => [Pros :np: the@table]

l- Assume suecedent is par t o f an axiom:

[Pros : np: the0 t able] => [Pros :np: the@table]

2- Match axiom with last subsequent of an inference rule:

(U, [Pros_Fu:X/Y:Functor] , [T[I~,V) => [Z] <-
[Pros_Fu:X/Y:Functor] => [Pros_Fu:X/Y:Functor] &
[T [R] => [Pros_krg : Y : Arg] &
(U, [(Pros_Fu*Pros_Arg) : X: Functor@~g] , V) => [Z].

Z = Pros:np: the@table; Functor : the; Arg = table; X = np; U = []; V = [].

3- Derive instant ia ted head sequent:

[Pros_Fu: np/Y: t h e] , [T [R] => [Pros :rip: t he0 tab le]

4- No more applications in head sequent: Prove (bo t tom-up) first instant iated subsequent:

[Pros_Fu: np/Y: the] ,,> [Pros_Fu :np/Y : the]

Unifies with the axiom for " the": Pros_Fu = the; Y = n.

5- Prove (bo t tom-up) second instant ia ted subsequent:

[T[R] => [Pros_Arg: n: "~ able]

Unifies with axiom for "table": Pros_Arg = table; T = table:n:table; R = []

6- Prove (bo t tum-up) last subsequent: is a nonlexical ax/om.

[(the* t able) :np : the@table] => [(the* tab le) : np: theQtab le] .

7- Final derivation:

t h e : n p / n : t h e t a b l e : n : t a b l e => the* tab le :np . the@tab le <-
t h e : n p / n : t h e => t h e : n p / n : t h e <-

t h e : n p / n : t h e =1> t h e : n p / n : t h e <- t r u e
t a b l e : n : t a b l e => t a b l e : n : t a b l e <-

t a b l e : n : t a b l e =i> tabls:n:table <- t r u e
the*table :np:the@table => the*table :np:the@table <- true

224

ing (7-3), in order to axiomatize the head functor
as soon as possible. Bottom-up processing stops
when no more application operators can be elim-
insted from the head sequent (7-4). Secondly,
working top-down, the other subsequents (7-4/5)
are made subject to bottom-up processing, and at
last the last subsequent (7-6). (7) presents gen-
eration of a nounphrsse, the ~able.

N o n - d e t e r m i n i s m A source for non-determin-
ism in the semantics-driven strategy is the fact
that the theorem prover forms hypotheses about
the direction a functor seeks its arguments, and
then checks these against the lexicon. A possibil-
ity here would be to use a calculus where dora-
inance and precedence are taken apart. We will
pursue rids suggestion in future research.

5 C O N C L U D I N G
R E M A R K S

I m p l e m e n t a t i o n The algorithms and calculi
presented here have been implemented with the
use of modified versions of the categorial calculi
interpreter described in Moortgat (1988).

Conc lus ion Efl]cient, bidirectional use of cat-
egorial calculi is possible if extensions are made
with respect to the calculus, and if s combined
bottom-up/top-down algorithm is used for gener-
ation. Analysis and generation take place within
the same processing architecture, with the same
linguistics descriptions, be it with the use of dif-
ferent algorithms. LTP thus serves as a natural
candidate for a uniform architecture of parsing
and generation.

Semant ic non -mono ton ie i t y A constraint on
grammar formalisms that can be dealt with in
current generation systems is semantic mono-
tonicity (Shieber, 1988; but cf. Shieber et al.,
1989). The algorithm in Calder et al. (1989) re-
quires an even stricter constaint. Firstly, in van
der Linden and Minnen (submitted) we describe
how the addition of a unification-based semantics
to the calculus described here enables process-
ing of non-monotonic phenomena such as non-
compositional verb particles and idioms. Identity
semantics (cf. Calder et al. p. 235) should be
no problem in this respect. Secondly, unary rules
and type-raising (ibid.) are part of the L-calculus,
and are neither fundamental problems.

Inverse E- reduc t ion A problem that exists for
all generation systems that include some form of
~-semantics is that generation necessitates the in-
verse operation of~-reduction. Although we have
implemented algorithms for inverse E-reduction,
these are not computationally tractable, e A way
out could be the inclusion of a unification based
semantics. 7

SBunt (1987) s t a t e s t h a t an express ion wi th n c o n s t a n t s
r e su l t s in 2 n - 1 poss ib le inverse ~ - r educ t lons .

7As p roposed in van der L i nden a n d M i n n e n (submi t -

t ed) for the ca lcu lus in (2). 2 2 5

6 R E F E R E N C E S

Ades, A., and Steedman, M., 1982 On the order
of words. Linguistics and Pkilosoph~/, 4, pp. 517-
558.

Appelt, D.E., 1987 Bidirectional Grammars and
the Design of Natural Language Systems. In
Wilks, Y. (Ed.), Theoretical Issues in Natural
Language Processing. Las Cruces, New Mexico:
New Mexico State University, January 7-9, pp.
185-191.

Van Benthem, J., 1988 Categorial Grammar.
Chapter 7 in Van Benthem, J., Essays in Logi-
cal Semantics. Reidel, Dordrecht.

Boums, G., 1989 Emcient Processing of Flexi-
ble Categorial Grammar. In Proceedings of the
EACL 1989, Manchester. pp. 19-26.

Bunt, H., 1987 Utterance generation from seman-
tic representations augmented with pragmatic in-
formation. In Kempen 1987.

Calder, J., Reape M., and Zeevat, H., 1989 An
algorithm for generation in Unification Catego-
rial Grammar. In Proceedings of the EACL 1989,
Manchester. pp. 233-240.

Crain, S., and Steedman, M., 1982 On not being
led up the garden path. In Dowry, Karttunen and
Zwicky (Eds.) Natu~l language pQrsing. Cam-
bridge: Cambridge University Press.

Jacobs, P., 1985 PHRED, A generator for Natural
Language Interfaces. Computational Linguistics
11, 4, pp. 219-242.

Kempen , G., (Ed.) 1987 Natural language gen-
eration: new results in artificial intelligence, pay.
cttology and linouiatics. Dordrecht: Nijhoff.

K6nig, E., 1989 Parsing as natured deduction. In
Proceedings of the ACL 1989, Vancouver.

Lsmbek, J., 1958 The mathematics of sentence
structure. Am. Math Monthly, 85, 154-169.

Linden, E. van der, and Minnen, G., (submit-
ted) An account of Non-monotonous phenomena
in bidirectional Lambek Theorem Proving.

Moortgat, M., 1988 Categorial Inueatigetions.
Logical and Hnguistic ¢apects of the Lambek cal-
culus. Disseration, University of Amsterdam.

Shieber, S., 1988 A uniform architecture for Pars-
ing and Generation. In Proceedings of Coling
1988, Budapest, pp. 614-619.

Shieber, S., van Noord, G., Moore, R., and
Pereira, P., 1989 A semantic-Head-Driven Gen-
eration Algorithm for Unification-Based For-
mallsms. In Proceedings of ACL 1989 Vancouver.

Steedman, M., 1987 Combinatory Grammars and
Parasitic Gaps Natural Language and Linguistic
Theory, 5, pp. 403-439.

226

