DEFAULTS IN UNIFICATION GRAMMAR

Gosse Bouma
Research Institute for Knowicd'l%: Systems

Postbus 463, 6200 AL Maastricht,

e Netherlands

e-mail : gosse@riksnl.uucp

ABSTRACT

Incorporation of defaults in grammar
formalisms is important for reasons of
Hnguistlc adequacy and grammar
organization. In this paper we present an
algorithm for handling default information in
unification grammar. The algorithm specifies
a logical operation on feature structures,
merging with the non-default structure only
those parts of the default feature structure
which are not constrained by the non-default
structure. We present various linguistic
applications of default unification.

L INTRODUCTION

MomivaTion. There a two, not quite unrelated,
reasons for fncorporating defaults
mechanisms into a linguistic formalism. First,
Itnguists have often argued that certain
phenomena are described most naturally with
the use of niles or other formal devices that
make use of a notlon of default (see, for
instance, Gazdar 1987). The second reason is
that the use of defaults simplifies the
development of large and complex grammars,
in particular, the development of lexicons for
such grammars (Evans & Gazdar 1988). The
latter suggests that the use of defaults is of
particular relevance for those brands of
Unification Grammar (UG) that are lexicalist,
that is, in which the lexicon is the main source
of grammatical information (such as
Categorial Unification Grammar (Uskoreit
1986, Calder et al. 1988) and Head-driven
Phras]c Structure Grammar (Pollard & Sag
1987)).

We propose a methed for incorporating
defaults into UG, in such a way that it both
extends the linguistic adequacy of UG and
supports the formulation of rules, templates
and lexical entries for many unification-based
theories. In the next section, we define default
unlification, a logical operation on feature
structures, It is defined for a language, FML*,
which is in many respects identical to the
language FML as defined in Kasper & Rounds
(1988}. Next, we come to lnguistic
applications of default unification. A Iinguistic
notation is Infroduced, which can be used to
describe a number of linguistically interesting

165

phenomena, such as feature percolation,
coordination, and many aspects of inflectional
morphology. Furthermore, it can be used in the
sense of Flickinger et al. (1985) to define
exceptions to rules, non-monotenic
specialization of templates or Iiregular lexical
entries.

BackGgrRouUnD. There are several proposals
which hint at the possibility of adding defauit
mechanisms to the lingnistic formalisms and
theories fust mentioned. The fact that GPSG
(Gazdar et al.. 1985) makes heavy use of
defaults, has led to some research concerning
the compatibility of GPSG with a formallsm
such PATR-II (Shieber 1986a) and concerning
the logical nature of the mechanisms used in
GPSG (Evans 1987). Shicber (1986a) proposes
an operation add conservatively, which adds
information of a feature structure A to a
feature structure B, In as far as this
information is not in conflict with information
in B. Suggestions for simllar operations can be
found in Shieber (1986bL:59-61) (the cverwrite
option of PATR-1I) and Kaplan (1987) (priority
union}. Flickinger et al. (1985) argue for the
incorporation of default inheritance
mechanisms in UG as an alternative for the
template system of PATR-IL

A major problem with attempts to define an
operation such as default unification for
complex feature structures, is that there are at
least two ways to think about this operation. It
can be defined as an operation which is like
ordinary unification, with the exception that in
case of a unification fallure, the value of the
non-default feature structure takes
precedence (Kaplan 1987, Shieber 19886a).
Another option is not to rely on unification
fallure, but to remove default information
about a feature f already if the non-default
feature structure constrains the contents of |
in some way, This view underlies most of the

default mechanisms used in GPSGl. The

1 Actually, in GPSG both notions of
default unification are used. in Shieber's
(1986a) formulation of the of the Foot Feature
Principle, for example, the operation add
conservatively {which normally relies on
unification fallure) iIs restricted to features
that are free (1.e. uninstantiated and not
covarying with some other feature).

distinetion between the fwo approaches is
especially relevant for reentrant feature
values.

The definition presented in the next section Is
deflned as an operation on arbitrary feature
structures, and thus it is more general than the
operations add conservatively or overwrite, In
which only one sentence at a time (say, <Xp
head> = <Xj head> or <subject case> =
nominative) is added to a feature description.
An obvious advantage of our approach is that
overwriting a structure F with F* is equivalent
to adding F as default information to ¥. Default
unification, as defined below. follows the
approach in which default information is
removed if it Is constrained in the non-default
structure. This decislon is to a certain extent
Iinguistically motivated (see section 3), but
perhaps more important is the fact that we
wanted to avoid the following problem. For
arbitrary feature structures, there js not
always a unique way to resolve a unification
conflict, nor is it necessarily the case that one
solution subsumes other solutions. Consider
for instance the exampies in (1).

1) default non-default
a <b=a <> = <g>
<g>=b
b < =<g> d>=a
<g>=b

To resolve the conflict, in (a}, either one of the
equations could be removed. In (b), either the
fact that <g> = b or the reentrancy could be
removed (in both cases, this would remove the
inplicit fact that <f> = B). An approach which
only tries to remove the sources of a
uniflcation conflict, will thus be forced to make
arbitrary decisions about the cutcome of the
default unification procedure. At least for the
purposes of grammar development, this seems

to be an undesirable situationl.

2., DESCRIPTION OF THE ALGORITHM

THE LANGUAGE FML®*. Default unification is

defined in terms of a formal language for
feature structures, based on Kasper & Rounds'
(1986) language FML. FML* does not contain
disjunction, however, and furthermore,

equations of the form L f{where ¢1is an
arbitrary formula) are replaced by equations

1 However, in Evans' (1987) version of
Feature Specification Defaults, it is simply
allowed that a category description has more
than one 'stable expansion',

166

of the form <p> : a (where o is atomic or NIL or
TOP). :

(2) Synrax or FML*

NIL

TOP

a a ¢ A (the set of atoms)
<p>io p € L* (L the set of Jabels)

and oc € A v {TOP,NIL}
[<p1>...<pp>] each pje L*
b AV oy € FML*

We assume that feature structures are
represented as directed acyclic graphs (dags).
The denotation D{§) of a formula ¢ is the
minimal element w.r.t. subsumpticm2 in the
sct of dags that satisfy it. The conditions under
which a dag D satisfies a formula of FML*
(where D/<p> is the dag that 1s found 1if we
follow the path p through the dag D) are as
follows ;

(3) Semaxtics or FML*

a D NIL always

b. D ETOP never

¢ DEa fD=a

d DE<p»a ifD/<p>isde_ﬂned3 and
D/<p> & @

¢ DlEoay D E¢and DE g

f D El<p1>..<pp>] if the values of all

pi (1 <1< n) are equivalent.

NorMaL FoORM REQUIREMENTS, Default
unification shouid be a semantically well-
behaved operation, that is, the result of this
operation should depend only on the
denotation of the formula's involved. Since
default unification is a non-monotonic
operation, however, in which paris of the
default information may disappear, and since
there are in general many formulae denoiing
the same dag, establishing this is not
completely trivial. In particular, we must make
sure that the formula which provides the
default information is in the following normal
form:

2 A dag D subsiumes a dag D’ If the set of
formulae satisfying D' contains the set of
formulae satisfying D (Eisele & Dérre, 1988:
287).

3 D/ <> is defined iff 1 € Dom(D).
D/<lp> is defined f D/<l> and D'/<p> are
defined, where D'= D/<l>, '

(4) FML* Normal Form
A formula ¢1is in FML* NF iff:

a VEin$ <pipe>:a ing:

<p]>€ E P Vp3eE :<p3py>:ain ¢
b. VE].Eain¢:

<p1p2> € E2, <p1> € E]

Vp3 € El: <pgpa> € Eg
c. VEin¢, thereisno <p> € E,

such that <pb> Is realized in ¢.

d VEin¢, there is no <p> € E such that
<pr:afac Aisiné.

(5) REALEZED
A path <pl> 1s realized In ¢ iff <pl'> 1s

defined in D(¢) (.} € L} (cf. Eisele & Dorre,
1988 : 288).

For every formula ¢ in FML*, there is a formula

¢' in FML* NF. which is equivalent to it w.r.t
unification, that is, for which the following
holds:

(6) Vx € FML* 6Ay #TOP ¢ ¢ Ay = TOP

Note that this does not imply that ¢ and &'
have the same denotation. The two formulae
below, for example, are equivalent w.r.t.
unification, yet denote different dags :

(7)) a «b:an [<b<g]
b. <>:an <gr:a

For conditions (4a,b), it is easy to see that (6)
holds (it follows, for instance, from the
equivalence laws (21) and (22) in Kasper &
Rounds, 1986: 261). Condition {4¢c) can be met
by replacing every occurence of an
equivalence class {<p1>,...<pp>lin a fermula ¢
by a conjunction of equivalences

[<pil>....<prt>] for every <pi> {1 $ 1< n) realized

in Dig). For example, If L = {f,g}, (8b) is the NF of
{8a). .

(8) a [«f»<g>]a <fB:NIL
b, [«ff>,<gf>} A [<fg>, <gg>] A «ff>: NIL

Condition (4d) can be met by eliminating
equivalence classes of paths leading to an
atomic value. Thus, (7b) is the NF of (7a). Note
that the effect of (4¢,d) is that the value of
every path which i1s member of some
equivalence class is NIL.

A default formula has to be in FML* NF for two
reasons. First, all information which is
implicit in a formula, should be represented
explicitly, so we can check easily which parts
of a formula need to be removed to avoid
potential unification conflicts with the non-
default formula. . This is guaranteed by (4a.b).
Second, all reentrant paths should have NIL as
value. This is guaranteed by {4c.d) and makes
it possible to replace an equivalence class by
a weaker set of equations, in which arbitrary
long extensions of the old pathnames may
occur (if some path would have a value other
than NIL, certain extensjons could lead to
Inconststent resulis).

LAaws FOR DEFAULT UNIFICATION. Defanlt
unification is an operation which takes two
formulas as arguments, representing default
and non-default information respectively. The
dag denoted by the resunitant formula is
subsumed by that of the non-default
argument, but not necessarily by that of the
default argument.

The laws for default unification (defined as

Default & Non-default = Result. where Default
is in FML*-NF) are listed below.

{9} DerFAULT UNIFICATION :

a o9 NIL =¢
¢ dTOP = TOP

NIL & o =¢
TOP®o =¢
b. a®¢ =¢
o Da =a

c <pma®d =¢, FD@)=<p>:a,
p aprefixofp. ac A,
=60, D)= <pp>:a,
=¢, if 3p'e E: D{$) |- Eand p’

is a prefix of p,
=<p>aAd, otherwise.
d E ©&¢ =E-E//z7,

where E'is {<p>e E | DY EE and p'e E}
Ul <pre E | Di®} =<p'>: a} (p’a prefix of
p.ae A)land Zis {<p’> | D($) |= <pp”™> ',
and p e E}.

e (WARDO=10, If y A x = TOP,
= (v ® ¢) A (1 © ¢}, otherwise.

This definition of default unification removes
all default information which might lead to a
unification conflict. Furthermore, 1t is
designed in such a way that the order in which
information is removed is frrelevant (note that
otherwise the second case in (9¢) would be
invalid). The first two cases of (9¢c) arc needed

to remove all sentences <p> ; «, which refer to
a path which is blocked or which cannot

recefve an atomic value in ¢. The third case in
(Sc} is needed for situations such as (10).

(10} (dgr:aA<hgs:b)®D [<b, <hs]

In (9d). we first remove from an equivalence
class all paths which have a prefix that is
already in an equivalence class or which has
an atomic value, The result of this step is E-E'.
Next, we modify the equivalence class, so that
it allows exceptions (i.¢. the possibility of non-
unifiable values} for all paths which are
extensions of paths in E-E' and are defined in

¢. We can think of modified equivalence
classes as abbreviations for a set of
(unmodified) equivalence classes:

(11} [<pi1>....<pn>l//Z = ¢, where ¢ is the
conjunction of ali equivalence classes

[<p1pl>....<pppl>]. such that pl is not
defined in Z, but pl' is in Z, for some 1.I' €
L

An example should make this clearer:

(12) [<f>.<gr<h>] @ (<g>:aA<fgs:b)=

[<f<h>)/ fego} A (ra A fg>: bl

The result of default unification in this case is
that one element (<g>) is removed from the
default equivalence class since 1t is
constrained in by the non-default information.
Furthermore, the equivalence is modified, so
that it allows for exceptions for the paths <fg>
and <h g> Applying the rule in (11). and
assuming that L = {f,g,h}, we conclude that

(13) I<b.<h>] f/icgs) =
[ff> <hf]A [<Th> <hhs]

Note that the replacement of modifled
equivalence classes by ordinary equivalence
classes Is always possible, and thus the result
of (8d) is equivalent to a formnula in FML*.

Finally. (9e) says that, glven a consistent
default formula, the order in which default
information is added to the non-default

168

formula is 1.1:'1lmportant.l (This does not hold
for inconsistent default formulae, however,
since default unification with the individual
conjuncts might flter out enough information
to make the resultant formula a consistent
extension of the non-default formula, whereas

TOP® ¢ = .

The monotonicity properties of default

unification are listed below (where <is
subsumption):

(14) a DSy AD
butnot % <xad)
b. AEX =2 (X A0 S AY)

butnot ¢ £¢' = (X Ad) £ (xad'))

(14a} says that default unification is montonic
addition of information to the non-default
information. {14b) says that the function as a
whole 1s monotonic only w.r.t. the default
argument: adding more default information
leads to extensions of the result. Adding non-
default information is non-monotonic,
however, as this might cause more of the
default information to get removed or
overwritten.

The laws in (9) prove that formulae containing

the @-operator can always be reduced to
standard formuilae of FML*. This implies that
formulae using the @-operator can still be
interpreted as denoting dags. Furthermore, it
follows that addition of default unification to a
unification-based formalism should be seen
only as a way to Increase the expressive
power of tools used in deflning the grammar
(and thus, according to Démre et al. {1990)
default unification would be an 'off line'
extension of the formalism, that is, its effects
can be computed at compile time}.

A NotE ov IMPLEMENTATION. We¢ have
Implemented default unification in Prolog.
Feature structures are represented by open
ended lists [containing elements of the form
label=Value }, atoms and variables to
represent complex feature structures, atomic
values and reentrancies respectively (see
Gazdar & Mellish, 1989}, This implementation
has the advantage that it is corresponds to
FML* NF.

1 This should not be confused with the

(invalid) statement that y ® (x ® ¢) =1 ® (v
® o).

(15) a =X, g=XI_Y]
b. [f=a,g=al_Y]
c f=lh=alX1].g=[h=a!X1]l_ Y]
d [i=lh=aiXl.g=lh=_ZI1X1]|_Y]

If we unify {15a) with [f=al_Y1}, we get (15b), In
which the value of g has been updated as well
Thus, the requirements of (4a,b) are always
met, and furthermore, the reentrancy as such
between fand g is no longer visible (condition
4c). If we unify (15a) with [f=/h=al_X2}|_Y3},
we get (15c}, in which the variable X has been
replaced by X1, which can be interpreted as
ranging over all paths that are realized but not
defined under f(condition (4d})). Note also that
this representation has the advantage that we
can deflne a reentrancy for all realized
features, without having to specify the set of
possible features or expanding the value of f
into a list containing all these features. If we
default unify (15a) with [f=fh=al_X2]|_X3| as
non-default information, for instance, the
result is representable as (15d). The
reentrancy for all undefined features under fis
represented by X1. The constant NIL of FML*
Is represented as a Prolog variable (_2in this
case). Thus, the seemingly space consuming
procedure of bringing a formula into FML* NF
and transforming the output of (9d) into FML*
1s avoided completety. The actual default
unification procedure is a modified version of
I.he m}erge operation deflned in Dérre & Eisele
1986).

3. LINGUISTIC APPLICATIONS

Default unification can be used to extend the
standard PATR-II {Shicber et al., 1983)
methods for defining feature structures. In the
examples, we freely combine default and non-
default information (prefixed by ") in template
definitions.

(16) a. DET:(!<cat arg>
1<cat val>»
<cat dir>
«<cat arg>
<cat val num>
<cat val case>

gR48%"
:

Hannwn

S
by

b. NP: [<cat»

<bar>

= noun
=2)
c. N :{ <cat>
<bar>

= oLUn
=})

(16} describes a fragment of Categorial
Unification Grammar (Uszkoreit, 1986, Calder
et al. 1988, Boumna, 1988). The corresponding
feature structure for a definition such as {16a)

1e9

is determined as follows: first, all default
information and all non-default information is
unified separately, which results in two
feature-structures (17a,b}. The resulting two
feature structures are merged by means of
default unification (17c).

a7}
num = sg
N val = 4:1:»[case = nom
dir = right
—arg = <1>
-
| cat = n
V&' = | bar 2
b. | cat =
cat = n
" arg = [bar = 1]
C
u B “cat = n 7 17
bar = 2
val = {1} hum = sg
Lease = nom-
cat =} dir = right
[cat = n]
bar = 1
arg = (M| num = sg
- - Lcase = nomJ e

In (17c) the equivalence <cat val> = <cat arg>
had to be replaced by a weaker set of
equivalences, which holds for all features
under val or arg, except cat and bar. We
represent this by using {}-bracketed indices,
Instead of <> and by marking the atiributes
which are exceptions in bold italic. .

Two things are worth noticing. First of all, the
unification of non-default information prior to
merging it with the non-default information,
guarantees that all default information must
be unifiable, and thus it eliminates the
possibility of inheritance conflicts Inside
template definitions. Second, the distinction
between defauli and non-default information
is relevant only in definitions, not in the
corresponding feature structures. This makes
the use of the "'-operator completely locai: if a
definition contains a template, we can replace
this template by the corresponding feature
structure and we do not need to worry about
the fact that this template might contain the

1'-operator, .

The notation just Intreduced increases the

expressive power of standard methods for the

description of feature structures and can be -
used for an elegant treatment of several

linguistic phenomena.

NON-MONGTONIC INHERITANCE OF INFORMATION IN
TEMPLATES. The use of default unification
enables us to use templates even in those
cases where not all the information in the
template is compatible with the information
already present in the definition.

German transitive verbs normally take an
accusative NP as argument, but there are some
verbs which take a dative or genilttve NP as
argument. This is casily accounted for by
deflning the case of the argument of these
verbs and inheriting all other information
from the template TV.

{18) a. IV: (<catval>=VP
<cat arg> = NP
<cat arg case> = ace).

b. helfen fto help)
(TV

| <cat arg case> =dat }.
gedenken ({to commemorate)
{ TV

! <cat arg case> =gen).

SPECIALIZATION OF REENTRANCIES. An Important
function of default unification is that it allows
us to define exceptions to the fact that two
reentrant feature structures always have to
denote exactly the same feature structures,
There 1s a wide class of linguistic
constructions which seems to require such
mechanisms.

Specifiers in CUG can be defined as functors
which take a constituent of category C as
argument, and return a constituent of category
C, with the exception that one or more specific
feature values are changed (see Bach, 1983,
Bouma, 1988), Examples of such categories
are determiners (see (16a)), complementizers
and auxiliaries.

(19)

l<cat arg comp:> = none
l<cat val comp> = that).
b.will: (<catval> = <cat arg>
<cat arg> = VP
<cat val> = VP
l«cat arg viorm> = bee
«cat val viform> = fin).

Note that the equation <cat val> = <cat arg>
will cause all additional features on the
argument which are not explicitly mentioned
in the non-default part of the definition to
percolate up to the value.

170

Next, consider coordination of NPs.

Xo > X) X2 X3

(<X2cat>=conj
X = X)>
Ao = Ka>
«Xp cat> =np
<Xo wiorm> = and
1<Xp num> = plu
1«X) num> =NIL
! <X num = NIL).

(20}

{20) could be used as a rule for conjunction of
NPs in UG. It requires identity between the
mother and the twoe coordinated elements.
However, requiring that the three nodes be
unifiable would be to strict. The number of a
conjoined NP is always plural and does not
depend on the number of the coordinated NPs,
Furthermore, the number of two coordinated
elements need not be identical. The non-
default information in {20} takes care of this.
The effect of this statement is that adding the
default information <Xp> = <Xj>and <Xg> =
<X3> will result in a feature structure in which
Xo. X1 and Xg are uniflied, except for their
values for <rium>. We are not interested In the
rum-values of the conjuncts, so they are set to
NIL (which should be interpreted as in section
2) . The num -value of the result is always phs

INFLECTIONAL MORPHOLOGY. When seen from a
CUG perspective, the categories of inflectional
affixes are comparable to those of specifiers.
The plural suffix -s for forming plural nouns
can, for instance, be encoded as a function
from [regular) singular nouns into identical,
but plural, nouns. Thus, we get the following
categorization:
21) -s:f <cat val> = <cat arg>
«<cat arg cat> = noun
«<cat arg class> = regular
l«cat arg num> = sg
le<cat val nun> = plu).

Again, all additional information present on
the argument which is not mentioned in the
non-default part of the definition, is
percolated up to the value automatically.

LexicaL DerauLTs. The lexical feature
specification defaults of GPSG can also be
incorporated. Certain information holds for
most lexical items of a certain category, but
not for phrases of this category. A
unificlation-based grammar that includes a
morphological component (see, for instance,
Calder, 1989 and Evans & Gazdar, 1989). would
probably list only (regular) root forms as
lexical items. For regular nouns, for instance,

only the singular form would be listed in the
lexicon. Such information can be added to
lexicon definitions by means of a lexical
default rule:

{22} a N==» (35G <class> = regular)

b. cow = N.
sheep=(N
<num> =NIL
<class> = irregular).

The interpretation of A ==> B Is as follows: If
the definition D of a lexical item is unifiable
with A, than extend D to B @ D. Thus, the
lexical entry cow would be extended with all
the information in the default rule above,
whereas the lexical entry for sheep would only
be extiended with the information that
<person> = 3. Note that adding the default
information to the template for N directly, and
then overwriting it in the irregular cases is not
a feasible alternative, as this would force us to
distinguish between the template N if used to
describe nouns and the template N if used in
complex categories such as NP/N or N/N {l.e.
for determiners or adjectives it Is not typically
the case that they combine only with regular
and singular nouns).

4. CONCLUSIONS

We have presented a general definition for
default unification. The fact that it does not
focus one the resolution of feature conflicts
alone, makes it possible to define default
unification as an operation on feature
structures, rather than as an operation adding
one equation at a time to a given feature
description, This genecralization makes it
possible to give a uniform treatment of such
things as adding default information to a
template, overwriting of feature values and
lexical default rules. We believe that the
examples in section 3 demonstrate that this is
a useful extension of UG, as it supports the
definition of exceptions, the formulation more
adequate theories of feature percolation, and
the extension of UG with a morphological
componerit.

i71

REFERENCES

Bach., Emmon 1983 Generalized Categorial
Grammars and the English Auxiliary. In
F.Heny and B.Richards (eds.) Linguistic
Categories, Vol 11, Dordrecht, Reidel.

Bouma, Gosse 1988 Modifiers and Specifiers
in Categorial Unification Grammar,
Linguistics, vol 26, 21-46.,

Calder, Jonathan 1989 Paradigmatic
Morphology. Proceedings of the fourth
Conference of the European Chapter of
the ACL, University of Manchester,
Institute of Sclence and Technology, 58-
65.

Calder, Jo; Klein, Ewan & Zeevat, Henk 1988
Unification Categorial Grammar: a
concise, extendable grammar for natural
language processing. Proceedings of
Coling 1988, Hungarian Academy of
Sciences, Budapest, 83-86.

Ddarre, Jochen; Eisele, Andreas; Wedekind,
Jtrgen; Calder, Jo; Reape, Mike 1990 A
Survey of Lingustically Motivated
extensions to Unification-Based
Formalisms. ESPRIT Basic Research
Action 3175, Deliverable R3.1.A.

Eisele, Andreas & Doérre, Jochenl986 A
Lexical-Functional Grammar System in
Prolog. Proceedings of COLING 86,
Institut fiir angewandte Kommunikations-
und Sprachforschung, Bonn, 551-553.

Eisele, Andreas & Dorre, Jochen 1988
Unification of Disjunctive Feature
Descriptions. Proceedings of the 26th
Annual Meeting of the Assoclation for
Computational Lingulstics, State
University of New York, Buffalo, NY, 286-
204,

Evans, Roger 1987 Towards a Formal
spectfication of Defaults in GPSG. In E.
Klein & J. van Benthem (eds.), Categories,
Polymorphism and Unification. University
of Edinburgh, Edinburgh/ University of
Amsterdam, Amsterdam, 73-93.

Evans, Roger & Gazdar, Gerald 1989 Inference
in DATR. Proceedings of the jfourth
Conference of the European Chpater of
the ACL, University of Manchester,
Institute of Sclence and Technology, 66-
71

Flickinger, Daniel; Pollard, Carl & Wasow,
Thomas 1885 Structure-Sharing in Lexical
Representation. Proceedings of the 23rd
Annual Meeting of the Association for

Computational Linguistics, University of
Chicago, Chicago, Illinois, 262-267,

Gazdar, Gerald 1987 Linguistic Applications of
Default Inhertance Mechanisms. In P.
Whitelock, H. Somers. P. Bennett, R,
Johnson, and M. McGee Wood (eds.}),
Linguistic Theory and Compuier
Applications, Academic Press, Londoen,
37-68,

Gazdar, Gerald: Klein, Ewan: Pullumn, Geoffry:
Sag, Ivan 1985 Generalized Phrase
Structure Grammar. Blackwell, London.

Gazdar, Gerald & Mellish, Chris 1989 Natural
Language Processing in Prolog. An
tniroduction to Computational
Linguistics. Addison-Wesley, Reading, MA.

Kaplan, Ronald 1987 Three seductions of
Computational Psycholinguistics. In P.
Whitelock, H. Somers, P, Bennett, R,
Johnson, and M. McGee Wood [eds.),
Linguistic theory and Compuier
Applications. Academic Press, London,
149-188,

Kasper, Robert & Rounds, William1986 A
Legical Semanties for Feature Structures,
Proceedings of the 26th Annual Meeting of
the Association for Computational
Lingutstics, Columbia University, New
York, NY, 257-266.

Pollard, Carl & Sag, Ivan 1987 Information-
Based Syntax and Sernantics, vol 1 :
Fundamentals, CSLI Lecture Notes 13,
University of Chicago Press, Chicago.

Shieber, Stuart; Uszkoreit, Hans; Pereira,
Fernando: Robinson, Jane; & Tyson,
Mabry 19883 The Formalism and
Implementation of PATR-IL. In B. Grosz &
M. Stickel (eds.) Research on Interactive
Acquisttion and Use of Knowledge, SRI
International, Menlo Park, Ca.

Shieber, Stuart 1986a A Simple
Recenstruction of GPSG. Proceedings of
COLING 1986, Institut fir angewandte
Kommunikations- und Sprachforschung,
Bonn, 211-215.

Shieber, Stuart 1986b An Introduction to
Uniftication-based Approaches to
Grammar. CSLI Lecture Notes 4,
University of Chicago Press, Chicago.

Uszkoreit, Hans 1986 Categorial Unification
Grammars., Proceedings of COLING 1986.
Institut far angewandte
Kommunikations- und Sprachforschung,
Bonn, 187-194.

172

