
TYPES IN FUNCTIONAL UNIFICATION GRAMMARS

Michael Elhadad
Department of Computer Science

Columbia University
New York, NY 10027

Internet: Elhadad@cs.columbia.edu

ABSTRACT

Functional Unification Grammars (FUGs) are
popular for natural language applications because the
formalism uses very few primitives and is uniform and
expressive. In our work on text generation, we have
found that it also has annoying limitations: it is not
suited for the expression of simple, yet very common,
taxonomic relations and it does not allow the
specification of completeness conditions. We have
implemented an extension of traditional functional
unification. This extension addresses these limitations
while preserving the desirable properties of FUGs. It
is based on the notions of typed features and typed
constituents. We show the advantages of this exten-
sion in the context of a grammar used for text genera-
tion.

1 I N T R O D U C T I O N
Unification-based formalisms are increasingly

used in linguistic theories (Shieber, 1986) and com-
putational linguistics. In particular, one type of
unification formalism, functional unification grammar
(FUG) is widely used for text generation (Kay, 1979,
McKeown, 1985, Appelt, 1985, Paris, 1987,
McKeown & Elhadad, 1990) and is beginning to be
used for parsing (Kay, 1985, Kasper, 1987). FUG
enjoys such popularity mainly because it allies expres-
siveness with a simple economical formalism. It uses
very few primitives, has a clean semantics
(Pereira&Shieber, 1984, Kasper & Rounds, 1986, E1-
hadad, 1990), is monotonic, and grants equal status to
function and structure in the descriptions.

We have implemented a functional unifier (EI-
hadad, 1988) covering all the features described in
(Kay, 1979) and (McKeown & Paris, 1987). Having
used this implementation extensively, we have found
all these properties very useful, but we also have met
with limitations. The functional unification (FU) for-
malism is not well suited for the expression of simple,
yet very common, taxonomic relations. The tradi-
tional way to implement such relations in FUG is ver-
bose, inefficient and unreadable. It is also impossible
to express completeness constraints on descriptions.

In this paper, we present several extensions to the
FU formalism that address these limitations. These
extensions are based on the formal semantics
presented in (Elhadad, 1990). They have been im-
plemented and tested on several applications.

157

We first introduce the notion of typed features. R
allows the definition of a structure over the primitive
symbols used in the grammar. The unifier can take
advantage of this structure in a manner similar to (Ait-
Kaci, 1984). We then introduce the notion of typed
constituents and the FSET construct. It allows the dec-
laration of explicit constraints on the set of admissible
paths in functional descriptions. Typing the primitive
elements of the formalism and the constituents allows
a more concise expression of grammars and better
checking of the input descriptions. It also provides
more readable and better documented grammars.

Most work in computational linguistics using a
unification-based formalism (e.g., (Sag & Pollard,
1987, Uszkoreit, 1986, Karttunen, 1986, Kay, 1979,
Kaplan & Bresnan, 1982)) does not make use of ex-
plicit typing. In (Ait-Kaci, 1984), Ait-Kaci introduced
V-terms, which are very similar to feature structures,
and introduced the use of type inheritance in unifica-
tion. W-terms were intended to be general-purpose
programming constructs. We base our extension for
typed features on this work but we also add the notion
of typed constituents and the ability to express com-
pleteness constraints. We also integrate the idea of
typing with the particulars of FUGs (notion of con-
stituent, NONE, ANY and CSET constructs) and show
the relevance of typing for linguistic applications.

2 T R A D I T I O N A L F U N C T I O N A L
U N I F I C A T I O N A L G O R I T H M

The Functional Unifier takes as input two descrip-
tions, called functional descriptions or FDs and
produces a new FD if unification succeeds and failure
otherwise.

An FD describes a set of objects (most often lin-
guistic entities) that satisfy certain properties. It is
represented by a set of pairs [a : v] , called features,
where a is an attribute (the name of the property) and
v is a value, either an atomic s3anbol or recursively an
FD. An attribute a is allowed to appear at most once
in a given FD F, so that the phrase "the a of F" is
always non ambiguous (Kay, 1979).

It is possible to define a natural partial order over
the set of FDs. An FD Xis more specific than the FD
Y if X contains at least all the features of Y (that is
X _c Y). Two FDs are compatible if they are not con-
tradictory on the value of an attribute. Let X and Y be
two compatible FDs. The unification of X and Y is by

definition the most general FD that is more specific
than both X and Y. For example, the unification of
{year:88, time: {hour:5} } and
{time:{mns:22}, month:10} is {year:88,
month: i0, time: {hour: 5, mns:22 } }.
When properties are simple (all the values are atomic),
unification is therefore very similar to the union of
two sets: X u Y is the smallest set containing both X
and Y. There are two problems that make unification
different from set union: first, in general, the union of
two FDs is not a consistent FD (it can contain two
different values for the same label); second, values of
features can be complex FDs. The mechanism of
unification is therefore a little more complex than sug-
gested, but the FU mechanism is abstractly best under-
stood as a union operation over FDs (cf (Kay,
1979) for a full description of the algorithm).

Note that contrary to structural unification (SU, as
used in Prolog for example), FU is not based on order
and length. Therefore, { a : 1, b : 2 } a n d { b : 2,
a : 1] are equivalent in FU but not in SU, and { a : 1 }
and { b : 2 , a : l } are compatible in FU but not in
SU (FDs have no fixed arity) (cf. (Knight, 1989,
p.105) for a comparison SU vs. FU).

TERMINOLOGY: We introduce here terms that
constitute a convenient vocabulary to describe our ex-
tensions. In the rest of the paper, we consider the
unification of two FDs that we call input and gram-
mar. We define L as a set of labels or attribute names
and C as a set of constants, or simple atomic values. A
string of labels (that is an element of L*) is called a
path, and is noted <11...11,>. A grammar defines a

domain of admissible paths, A c L*. A defines the
skeleton of well-formed FDs.

• An FD can be an atom (element of 6') or a
set of features. One of the most attractive
characteristics of FU is that non-atomic
FDs can be abstractly viewed in two
ways: either as a fiat list of equations or
as a structure equivalent to a directed
graph with labeled arcs (Karttunen,
1984). The possibility of using a non-
structured representation removes the em-
phasis that has traditionally been placed
on structure and constituency in language.

• The meta-FDs NONE and ANY are
provided to refer to the status of a feature
in a description rather than to its value.
[label:NONE] indicates that label

cannot have a ground value in the FD
resulting from the unification.
[label:ANY] indicates that label

~- must have a ground value in the resulting
FD. Note that NONE is best viewed as
imposing constraints on the definition of
A: an equation <II...ln>=NONE means that

<ll...ln > ~ A.
158

• A constituent of a complex FD is a distin-
guished subset of features. The special
label CSET (Constituent Set) is used to
identify constituents. The value of CSET
is a list of paths leading to all the con-
stitueuts of the FD. Constituents trigger
recursion in the FU algorithm. Note that
CSET is part of the formalism, and that its
value is not a valid FD. A related con-
struct of the formalism, PATTERN, imple-
ments ordering constraints on the strings
denoted by the FDs.

Among the many unification-based formalisms,
the constructs NONE, ANY, PATrEKN, CSET and the no-
tion of constituent are specific to FUGs. A formal
semantics of FUGs covering all these special con-
structs is presented in (Elhadad, 1990).

3 T Y P E D F E A T U R E S
A LIMITATION OF FUGS: NO STRUCTURE OVER

THE SET OF VALUES: In FU, the set of constants C has
no structure. It is a fiat collection of symbols with no
relations between each other. All constraints among
symbols must be expressed in the grammar. In lin-
guistics, however, grammars assume a rich structure
between properties: some groups of features are
mutually exclusive; some features are only defined in
the context of other features.

Noun

I Question
I Personal

Pronoun --I
I Demonstrative
[Quantified

Proper
I Count

Common ---I
I Mass

Figure l : A systemforNPs

Let's consider a fragment of grammar describing
noun-phrases (NPs) (cf Figure 1) using the systemic
notation given in (Winograd, 1983). Systemic net-
works, such as this one, encode the choices that need
to be made to produce a complex linguistic entity.
They indicate how features can be combined or
whether features are inconsistent with other combina-
tions. The configuration illustrated by this fragment is
typical, and occurs very often in grammars. 1 The
schema indicates that a noun can be either a pronoun,
a proper noun or a common noun. Note that these

1We have implemented a grammar similar to OVinograd, 1983,
appendix B) containing 111 systems. In this grammar, more than
40% of the systems are similar to the one described here.

((cat noun)
(alt (((noun pronoun)

(pronoun
((alt (question personal demonstrative quantified)))))

((noun proper))
((noun common)
(common ((alt (count mass))))))))

Figure 2: A faulty FUG for the NP system

((alt (((noun pronoun)
(common NONE)
(pronoun
((alt (question personal demonstrative quantified)))))

((noun proper) (pronoun NONE) (common NONE))
((noun common)
(pronoun NONE)
(common ((alt (count mass))))))))

The input FD describing a personal pronoun is then:
((cat noun)
(noun pronoun)
(pronoun personal))

Figure 3: A correct FUG for the NP system

three features are mutually exclusive. Note also that
the choice between the features { q u e s t i o n , p e r -
s o n a l , demonstrative, quantified} is
relevant only when the feature pronoun is selected.
This system therefore forbids combinations of the type
{ pronoun, proper } and { common,
personal }.

The traditional technique for expressing these con-
straints in a FUG is to define a label for each non
terminal symbol in the ~stem. The resulting gram-

2 mar is shown in Figure 2. This grammar is, however,
incorrect, as it allows combinations of the type
((noun proper) (pronoun question)) or
even worse ((noun proper) (pronoun
zouzou)). Because unification is similar to union
of features sets, a feature (p r o n o u n q u e s t i o n)
in the input would simply get added to the output. In
order to enforce the correct constraints, it is therefore
necessary to use the meta-FD NONE (which prevents
the addition of unwanted features) as shown in Figure
3.

There are two problems with this corrected FUG
implementation. First, both the input FD describing a
pronoun and the grammar are redundant and longer
than needed. Second, the branches of the alternations
in the grammar are interdependent: you need to know
in the branch for pronouns that common nouns can be
sub-categorized and what the other classes of nouns
are. This interdependence prevents any modularity: if
a branch is added to an alternation, all other branches

2ALT indicates that the lists that follow are alternative noun types. 159

need to be modified. It is also an inefficient
mechanism as the number of pairs processed during
unification is O (n ~) for a taxonomy of depth d with an
average ofn branches at each level.

TYPED FEATURES: The problem thus is that FUGs
do not gracefiilly implement mutual exclusion and
hierarchical relations. The system of nouns is a typi-
cal taxonomic relation. The deeper the taxonomy, the
more problems we have expressing it using traditional
FUGs.

We propose extracting hierarchical information
from the FUG and expressing it as a constraint over
the symbols used. The solution is to define a sub-
sumption relation over the set of constants C. One
way to define this order is to define types of symbols,
as illustrated in Figure 4. This is similar to V-terms
defined in (Ait-Kaci, 1984).

Once types and a subsumption relation are defined,
the unification algorithm must be modified. The
atoms X and Y can be unified ff they are equal OR if
one subsumes the other. The resuR is the most
specific of X and Y. The formal semantics of this
extension is detailed in (Elhadad, 1990).

With this new definition of unification, taking ad-
vantage of the structure over constants, the grammar
and the input become much smaller and more readable
as shown in Figure 4. There is no need to introduce
artificial labels. The input FD describing a pronoun is
a simple ((cat personal-pronoun)) instead
of the redundant chain down the hierarchy ((c a t
noun) (noun pronoun) (pronoun

(define-type noun (pronoun proper common))
(define-type pronoun

(personal-pronoun question-pronoun
demonstrative-pronoun quantified-pronoun))

(define-type common (count-noun mass-noun))

The ~amm~becomes:
((cat noun)
(alt (((cat pronoun)

(cat ((alt (question-pronoun personal-pronoun
demonstrative-pronoun quantified-pronoun)))))

((cat proper))
((cat common)
(cat ((alt (count-noun mass-noun))))))))

Andthemput: ((cat personal-pronoun))

Figure 4: Using typed ~atures

Typedeelarat~ns:
(define-constituent determiner

(definite distance demonstrative possessive))

InputFDd~cr~ingadeterminer:
(determiner ((definite yes)

(distance far)
(demonstrative no)
(possessive no)))

F~ure 5: A typed constitue~

personal)). Because values can now share the
same label CAT, mutual exclusion is enforced without
adding any pair [1 : NONE] .3 Note that it is now pos-
sible to have several pairs [a :v i] in an FD F, but
that the phrase "the a of F" is still non-ambiguous: it
refers to the most specific of the v i. Finally, the fact
that there is a taxonomy is explicitly stated in the type
definition section whereas it used to be buried in the
code of the FUG. This taxonomy is used to document
the grammar and to check the validity of input FDs.

4 TYPED CONSTITUENTS: THE FSET
CONSTRUCT

A natural extension of the notion of typed features
is to type constituents: typing a feature restricts its
possible values; typing a constituent restricts the pos-
sible features it can have.

Figure 5 illustrates the idea. The define
constituent statement allows only the four given
features to appear under the constituent
d e t e r m i n e r . This statement declares what the

3In this example, the grammar could be a simple flat alternation
((cat ((alt (noun pronoun personal-pronoun .., common mass-noun
count-noun))))), but this expression would hide the structure of the
gIan~n~. 16 0

grammar knows about determiners. Define
constituent is a completeness constraint as
defined in LFGs (Kaplan & Bresnan, 1982); it says
what the grammar needs in order to consider a con-
stituent complete. Without this construct, FDs can
only express partial information.

Note that expressing such a constraint (a limit on
the arity of a constituent) is impossible in the tradi-
tional FU formalism. It would be the equivalent of
putting a NONE in the attribute field of a pair as in
NONE:NONE.

In general, the set of features that are allowed un-
der a certain constituent depends on the value of
another feature. Figure 6 illustrates the problem. The
fragment of grammar shown defines what inherent
roles are defined for different types of processes (it
follows the classification provided in (Halliday,
1985)). We also want to enforce the constraint that
the set of inherent roles is "closed": for an action, the
inherent roles are agent, medium and benef and noth-
ing else. This constraint cannot be expressed by the
standard FUG formalism. A d e f i n e
c o n s t i t u e n t makes it possible, but nonetheless
not very efficient: the set of possible features under
the constituent i n h e r e n t - r o l e s depends on the
value of the feature p r o c e s s - t y p e . The first part
of Figure 6 shows how the correct constraint can be
implemented with d e f i n e c o n s t i t u e n t only:
we need to exclude all the roles that are not defined

WithoutFSET:
(define-constituent inherent-roles

(agent medium benef carrier attribute processor phenomenon))

((cat clause)
(alt (((process-type action)

(inherent-roles ((carrler NONE)
(attribute NONE)
(processor NONE)
(phenomenon NONE))))

((process-type attributive)
(inherent-roles ((agent NONE)

(medium NONE)
(benef NONE)
(processor NONE)
(phenomenon NONE))))

((process-type mental)
(inherent-roles ((agent NONE)

(medium NONE)
(benef NONE)
(carrier NONE)
(attribute NONE)))))))

With FSET:
((cat clause)
(alt (((process-type action)

(inherent-roles ((FEET (agent medium benef)))))
((process-type attributive)
(inherent-roles ((FEET (carrier attribute)))))

((process-type mental)
(inherent-roles ((FEET (processor phenomenon))))))))

Figure 6: The FSET Construct

for the process-type. Note that the problems are very
similar to those encountered on the pronoun system:
explosion of NONE branches, interdependent branches,
long and inefficient grammar.

To solve this problem, we introduce the construct
FEET (feature set). FEET specifies the complete set of
legal features at a given level of an FD. FEET adds
constraints on the definition of the domain of admis-
sible paths A. The syntax is the same as CSET. Note
that all the features specified in FEET do not need to
appear in an FD: only a subset of those can appear.
For example, to define the class of middle verbs (e.g.,
"to shine" which accepts only a medium as inherent
role and no agent), the following statement can be
unified with the fragment of grammar given in Figure
6:
((verb ((lex "shine")))
(process-type action)
(voice-class middle)
(inherent-roles ((FSET (medium)))))

The feature (FEET (medium)) can be unified
vAth (FSET (agent medium benef)) and the
result is (FSET (medium)).

Typing constituents is necessary to implement the
theoretical claim of LFG that the number of syntactic
functions is limited. It also has practical advantages. 161

The first advantage is good documentation of the
grammar. Typing also allows checking the validity of
inputs as defined by the type declarations.

The second advantage is that it can be used to
define more efficient data-structures to represent FDs.
As suggested by the definition of FDs, two types of
data-structures can be used to internally represent
FDs: a fiat list of equations (which is more appropriate
for a language like Prolog) and a structured represen-
tation (which is more natural for a language like Lisp).
When all constituents are typed, it becomes possible
to use arrays or hash-tables to store FDs in Lisp,
which is much more efficient We are currently inves-
tigating alternative internal representations for FDs
(cf. (Pereira, 1985, Karttunen, 1985, Boyer, 1988,
Hirsh, 1988) for discussions of data-structures and
compilation of FUGs).

5 CONCLUSION
Functional Descriptions are built from two com-

ponents: a set C of primitives and a set L of labels.
Traditionally, all structuring of FDs is done using
strings of labels. We have shown in this paper that
there is much to be gained by delegating some of the
structuring to a set of primitives. The set C is no
longer a fiat set of symbols, but is viewed as a richly

structured world. The idea of typed-unification is not
new (Ait-Kaci, 1984), but we have integrated it for the
first time in the context of FUGs and have shown its
linguistic relevance. We have also introduced the
FSET construct, not previously used in unification, en-
dowing FUGs with the capacity to represent and
reason about complete information in certain situa-
tions.

The structure of C can be used as a meta-
description of the grammar: the type declarations
specify what the grammar knows, and are used to
check input FDs. It allows the writing of much more
concise grammars, which perform more efficiently. It
is a great resource for documenting the grammar.

The extended formalism described in this paper is
implemented in Common Lisp using the Union-Find
algorithm (Elhadad, 1988), as suggested in (Huet,
1976, Ait-Kaci, 1984, Escalada-Imaz & Ghallab,
1988) and is used in several research projects (Smadja
& McKeown, 1990, Elhadad et al, 1989, McKeown &
Elhadad, 1990, McKeown et al, 1991). The source
code for the unifier is available to other researchers.
Please contact the author for further details.

We are investigating other extensions to the FU
formalism, and particularly, ways to modify control
over grammars: we have developed indexing schemes
for more efficient search through the grammar and
have extended the formalism to allow the expression
of complex constraints (set union and intersection).
We are now exploring ways to integrate these later
extensions more tightly to the FUG formalism.

ACKNOWLEDGMENTS
This work was supported by DARPA under con-

tract #N00039-84-C-0165 and NSF grant
IRT-84-51438. I would like to thank Kathy
McKeown for her guidance on my work and precious
comments on earlier drafts of this paper. Thanks to
Tony Weida, Frank Smadja and Jacques Robin for
their help in shaping this paper. I also want to thank
Bob Kasper for originally suggesting using types in
FUGs.

162

R E F E R E N C E S

Ait-Kaci, Hassan. (1984). A Lattice-theoretic Ap-
proach to Computation Based on a Calculus of
Partially Ordered Type Structures. Doctoral
dissertation, University of Pennsylvania. UMI
#8505030.

Appelt, Douglass E. (1985). Planning English
Sentences. Studies in Natural Language
Processing. Cambridge, England: Cambridge
University Press.

Boyer, Michel. (1988). Towards Functional Logic
Grammars. In Dahl, V. and Saint-Dizier
P. (Ed.), Natural Language Programming and
Logic Programming, II. Amsterdam: North
Holland.

Elhadad, Michael. (1988). The FUF Functional
Unifier: User's manual. Technical Report
CUCS-408-88, Columbia University.

Elhadad, Michael. (1990). A Set-theoretic Semantics
for Extended FUGs. Technical Report
CUCS-020-90, Columbia University.

Elhadad, Michael, Seligmann, Doree D., Feiner, Steve
and McKeown, Kathleen R. (1989). A Com-
mon Intention Description Language for Inter-
active Multi-media Systems. Presented at the
Workshop on Intelligent Interfaces, IJCAI 89.
Detroit, MI.

Esealada-Imaz, G. and M. Ghallab. (1988). A Prac-
tically Efficient and Almost Linear Unification
Algorithm. Artificial Intelligence, 36, 249-263.

Halliday, Michael A.K. (1985). An Introduction to
Functional Grammar. London: Edward Ar-
nold.

Hirsh, Susan. (1988). P-PATR: A Compiler for
Unification-based Grammars. In Dahl, V. and
Saint-Dizier, P. fed.), Natural Language Un-
derstanding and Logic Programming, II.
Amsterdam: North Holland.

Huet, George. (1976). Resolution d'Equations dans
des langages d'ordre 1,2,...,co. Doctoral disser-
tation, Universite de Paris VII, France.

Kaplan, R.M. and J. Bresnan. (1982). Lexical-
functional grammar: A formal system for gram-
matical representation. In The Mental
Representation of Grammatical Relations.
Cambridge, MA: MIT Press.

Karttunen, Lauri. (July 1984). Features and Values.
Coling84. Stanford, California: COLING,
28-33.

Karttunen, Lauri. (1985). Structure Sharing with Bi-
163

nary Trees. Proceedings of the 2Zrd annual
meeting of the ACL. ACL, 133-137.

Karttunen, Lauri. (1986). Radical Lexicalism. Tech-
nical Report CSLI-86-66, CSLI - Stanford
University.

Kasper, Robert. (1987). Systemic Grammar and
Functional Unification Grammar. In Benson &
Greaves (Ed.), Systemic Functional Perspec-
tives on discourse: selected papers from the
12th International Systemic Workshop. Nor-
wood, N J: Ablex.

Kasper, Robert and William Rounds. (June 1986). A
Logical Semantics for Feature Structures.
Proceedings of the 24th meeting of the ACL.
Columbia University, New York, NY: ACL,
257-266.

Kay, M. (1979). Functional Grammar. Proceedings
of the 5th meeting of the Berkeley Linguistics
Society. Berkeley Linguistics Society.

Kay, M. (1985). Parsing in Unification grammar. In
Dowty, Karttunen & Zwicky fed.), Natural
Language Parsing. Cambridge, England:
Cambridge University Press.

Knight, Kevin. (March 1989). Unification: a Mul-
tidisciplinary Survey. Computing Surveys,
21(1), 93-124.

McKeown, Kathleen R. (1985). Text Generation:
Using Discourse Strategies and Focus Con-
straints to Generate Natural Language Text.
Studies in Natural Language Processing.
Cambridge, England: Cambridge University
Press.

McKeown, Kathleen and Michael Ethadad. (1990). A
Contrastive Evaluation of Functional Unifica-
tion Grammar for Surface Language
Generators: A Case Study in Choice of Connec-
tives. In Cecile L. Paris, William R. Swartout
and William C. Mann (Eds.), Natural Language
Generation in Artificial Intelligence and Com-
putational Linguistics. Kluwer Academic
Publishers. (to appear, also available as Tech-
nical Report CUCS-407-88, Columbia Univer-
sity).

McKeown, Kathleen R. and Paris, Cecile L. (July
1987). Functional Unification Grammar
Revisited. Proceedings of the ACL conference.
ACL, 97-103.

McKeown, K., Elhadad, M., Fukumoto, Y., Lira, J.,
Lombardi, C., Robin, J. and Smadja, F. (1991).
Natural Language Generation in COMET. In
Dale, R., Mellish, C. and Zock, M. (Ed.),
Proceedings of the second European Workshop

on Natural Language Generation. To appear.

Paris, Cecile L. (1987). The Use of Explicit User
models in Text Generation: Tailoring to a
User's level of expertise. Doctoral dissertation,
Columbia University.

Pereira, Fernando. (1985). A Structure Sharing For-
realism for Unification-based Formalisms.
Proceedings of the 23rd annual meeting of the
ACL. ACL, 137-144.

Pereira, Fernando and Stuart Shieber. (July 1984).
The Semantics of Grammar Formalisms Seen as
Computer Languages. Proceedings of the Tenth
International Conference on Computational
Linguistics. Stanford University, Stanford, Ca:
ACL, 123-129.

Sag, I.A. and Pollard, C. (1987). Head-driven phrase

structure grammar: an informal synopsis. Tech-
nical Report CSLI-87-79, Center for the Study
of Language and Information.

Shieber, Stuart. (1986). CSLILecture Notes. Vol. 4:
An introduction to Unification-Based Ap-
proaches to Grammar. Chicago, Ih University
of Chicago Press.

Smadja, Frank A. and McKeown, Kathleen R. (1990).
Automatically Extracting and Representing Col-
locations for Language Generation.
Proceedings of the 28th annual meeting of the
ACL. Pittsburgh: ACL.

Uszkoreit, Hanz. (1986). Categorial Unification
Grammars.

Winograd, Terry. (1983). Language as a Cognitive
Process. Reading, Ma.: Addison-Wesley.

164

