
H o w t o c o v e r a g r a m m a r

Ren6 Leermakers

Phi l ips Research Labora tor ies , P.O. Box 80.000

5600 J A Eindhoven, The Nether lands

A B S T R A C T

A novel formalism is presented for Earley-like parsers.
I t accommodates the simulation of non-deterministic
pushdown automata. In particular, the theory is applied
to non-deterministlc LRoparsers for RTN grammars.

1 I n t r o d u c t i o n

A major problem of computational linguistics is the
inefficiency of parsing natural language. The most
popular parsing method for context-free natural lan-
guage grammars, is the genera/ context-free parsing
method of Earley [1]. I t was noted by Lang [2], that
Earley-like methods can be used for simulating a class
of non-determlnistic pushdown antomata(NPDA). Re-
cently, Tondta [3] presented an algorithm that simulates
non-determlnistic LRoparsers, and claimed it to be a fast
Mgorithm for practical natural language processing sys-
tems. The purpose of the present paper is threefold:

1 A novel formalism is presented for Earley-like parsers.
A key rSle herein is played by the concept of bi-
linear grammaxs. These are defined as context-free
grammars, that satisfy the constraint that the right
hand side of each grammar rule have at most two
non-terminals. The construction of parse matrices

• for bilinear grammars can be accomplished in cubic
time, by an algorithm called C-paxser. I t includes
an elegant way to represent the (possibly infinite)
set of parse trees. A case in point is the use of
predict functions, which impose restrictions on the
parse matrix, if part of it is known. The exact form
and effectiveness of predict functions depend on the
bilineax grammar at hand. In order to parse a gen-
era] context-free grammar G, a possible strategy
is to define a cover for G that satisfies the bilin-
ear grammar constraint, and subsequently parse it
with C-parser using appropriate predict functions.
The resulting parsers axe named Earley-like, and
differ only in the precise description for deriving
covers, and predict functions.

2 We present the Lang algorithm by giving a bilin-
ear grammar corresponding to an NPDA. Em-
ploying the correct predict functions, the parser
for this grammar is equivalent to Lang's algo-
rithm, although it works for a slightly different
class of NPDA's. We show that simulation of non-
deterministic LR-parsers can be performed in our

version of the Lang framework. It follows that
Earley-like Tomita parsers can handle all context-
free grammars, including cyclic ones, although
Tomita suggested differently[3].

3 The formalism is illustrated by applying it to Recur-
sire Transition Networka(RTN)[S]: Applying the
techniques of deterministic LR-parsing to gram-
mars written as RTN's has been the subject of re-
cent studies [9,10]. Using this research, we show
how to construct efficient non-deterministic LR-
parsers for RTN's.

2 C - P a r s e r

The simplest parser that is applicable to all context-free
languages, is the well-known Cocke-Younger-Kasa~i
(CYK) parser. It requires the grammar to be cast in
Chomsky normal form. The CYK parser constructs,
for the sentence zl ..zn, a parse matrix T. To each part
zi+1 ..zj of the input corresponds the matrix element T.j,
the value of which is a set of non-terminals from which
one can derive zi+1..zj . The algorithm can easily be
generalized to work for any grammar, but its complexity
then increases with the number of non-terminals at the
right hand side of grammar rules. Bilinear grammars
have the lowest complexity, disregarding linear gram-
mars which do not have the generative power of general
context-free grammars. Below we list the recursion re-
lation T must satisfy for general bilinear grammars. We
write the grammar as as a four-tuple (N, E, P, S), where
N is the set of non-terminals, E the set of terminals, P
the set of production rules, and S 6 N the start sym-
bol. We use variables I , J , K , L E N , ~1,~2,~z E E*,
and i , j , kl..k4 as indices of the matr ix T 1 .

I E ~ij -~ 3J, KEN,i<kt<k2~ks~ka<j(J ~ Tktk~^

K E Tkak4 A I "* 81JI~2KI~ A ~a = zi+l ..zkt

AB2 = Zk3÷1..Zk3 A B3 ~-" 2~k4-~1..Zj)

^Bt = zi+t..zk~ a ~2 = Zk~..zi)

The relation can be solved for the diagonal elements T , ,
independently of the input sentence. They are equal to
the set of non-terminals that derive e in one or more

1 Throughout the paper we identify a gr~ummar rule [--*
with the boolean expression ' l directly derives ~'.

135

steps. Algorithms that construct T for given input, will
be referred to as C-paxsers. The time needed for con-
structing T is at most a cubic function of the input
length ~, while it takes an amount of space that is a
quadratic function of n. The sentence is successfully
parsed, if S E Ton. From T, one can simply deduce an
output grammar O, which represents the set of parse
trees. Its non-termlnals axe triples < I , i , j >, where I
is a non-termlnal of the original bilineax grammar, and
i , j are integers between 0 and n.

< l , i , # >--. #~ < 3,h,I~2 > fl~ < K , h , / ~ , > #s =
I E T,i A I --. #13[~Kfl3 ^ J G Th~h2 ^ K G Tk~k,
Afll = z ~ + l . . z ~ ^fl~ ---- z ~ + ~ . . z ~ Afls = z ~ + ~ . . z #

< I, i, j >- - fl~ < 3, h , k~ > ~ - I ~ T~j ̂ I - - fl~ 3#2
^ J E Tk~ka A fll ---- zi+~..zk~ A/@2 ---- :gk3.1.1 ..Z i

< I, i , j >--* fla _= I ~ T~# A I --* fl~ ^ & = zi+~..zj

The grammar rules of O axe such that they generate only
the sentence that was parsed. The parse trees according
to the output grammar are isomorphic to the parse trees
generated by the original grammar. The latter parse
trees can be obtained from the former by replacing the
triple non-terminals by their first element.

Matrix elements of T are such that their members
cover part of the input. This does not imply that all
members axe useful for constructing a possible parse of
the input as a whole. In fact, many are useless for this
purpose. Depending on the grammar, knowledge of part
of T may give restrictions on the possibly useful contents
of the rest of T. Making use of these restrictions, one
may get more efficient parsers, with the same function-
ality. As an example, one has the generalized E~rley
prediction. It involves functions predlct~ : 2 ~ --* 2N(N
is the set of non-terminais), such that one can prove
that the useful contents of the Tj~ axe contained in the
elements of a matrix @ related to T by

Soo = S ~ ,

O,~ ffi p r e d i c t j _ , (~ . o O~,) m T,~, if j > O,
where O c, called the initial prediction, in some constant
set of non-termln~ls that derive (. It follows that T~$
can be calculated from the matrix elements O~t with i <
k, l ~ j , i.e. the occurrences of T at the right hand side
of the recurrence relation may be replaced by O. Hence
0~j, j > 0, can be calculated from the matrix elements
O~t, with ! < j :

O~j = predict~_~(~ Os~)~
{II~J, xe~t,,<~<~<~<~o<_~(3 ~ 0 ~ ^

K ~. O~s, , A I -- fl~Jfl~Kfls Afl~ = z,+~..z~

Afl~ = z ~ + z . . z ~ Aria = z~,+z..z~)
V3aeN, i<k~<_k~<j(3 ~ Okxk~ A I "-~ fll 3 ~

Aflx = z ~ + ~ . . z k ~ A fl~ ---- Z k ~ . . z ~)
V(! - - ~ ^ ~ = ~,+~..z,))

The algorithm that creates the matrix @ in this way,
scanning the input from left to right, is called a re-
stricted C-paxser. The above relation does not deter-
mine the diagonal elements of ~ uniquely, and a re-
stricted C-paxser is to find the smal]est solution. Con-
cerning the gain of efficiency, it should be noted that

this is very grammax-dependent. For some grammars,
restriction of the paxser reduces its complexity, while for
others predict functions may even be counter-productive
[4].

3 B i l i n e a r c o v e r s

A grammar G is said to be covered by a grammar C(G),
if the language generated by both grammars is identical,
and if for each sentence the set of parse trees generated
by G can be recovered from the set of parse trees gen-
erated by C(G). The grammar C(G) is called a cover
for G, and we will be interested in covers that axe hi-
linear, and can thus be parsed by C-paxser. It is rather
surprising that at the heart of most parsing algorithms
for context-free languages lies a method for deriving a
bilineax cover.

3 . 1 E a r l e y ' s m e t h o d

Eaxley's construction of items is a clear example of a con-
struction of a biHneax cover CE(G) for each context-free
grammar G. The terminals of CE(G) and G axe iden-
ticai, the non-terminals of Cz(G) axe the items (dotted
rnies[1]) I~, defined as follows. Let the non-terminal de-
fined by rule i of grammar G be given by N~, then I~ is
N~ - - a . fl, with lilt + 1 = k (~, # axe used for sequences
of terminals and non-terminais). We assume that only
one rule, rule O, of G rewrites the start symbol S. The
length of the right-hand side of rule i is given by M~ - 1.
The rules of C~(G) are derived as follows.

• Let I~ be an item of the form A --* ~ • B~, and
hence I~ - l be A --, a B . ~. Then if B is a terminal,
I~ - I ...* I~B, and if B is non-terminal then I~ - I - -
I ~ , for all j such that Nj = B.

• Initial items of the form N~ --- .or rewrite to e:

• For each i one has the final ru le /~ - - I~.

In [4] a similar construction was given, leading to a
grammar in canonical two-form for each context-free
grammar. Among other things it differs from the above
in the appearance of the final rules, which axe indeed
superfluous. We have introduced them to make the ex-
tension to RTN's, in section 4, more immediate.

The description just given, yields a set of production
rules consisting of sections P~, that have the following
structure:

Pi --- ~-,iI211M' ,'fI#-li - - I~ z'~/} t . , l { I ~ (- - f l u {I ° -* I!},

where z~/ E U, {/~i) u E. Note that the start symbol of

the cover is/~0. The construction of parse matrices T by
C-paxser yields the Eaxley algorithm, without its pre-
diction part. By restricting the parser by the predicto
function satisfying

v , e d i c t o (W) - (X, - ^ x, t) ,

the initial prediction 0¢ being the smallest solution of

s ° = v, dicto(S u },

136

one obtains a conventional Earley parser (pred ic t~ -~
U~. {I~ } for k > 0). The cover is such that usually the

J
predict action speeds up the parser considerably.

There are many ways to define covers with dotted
rules as non-terminals. For example, from recent work
by Kruseman Aretz [6], we learn a prescription for a
bilinear cover for G, which is smaller in size compared to
C ~ (G) , at the cost of rules with longer right hand sides.
The prescription is as follows (c~, ~, 7, s are sequences
of terminals and non-termlnaJs, ~ stands for sequences
of terminals only, and A, B, C are non-terminals):

• Let I be an item of the form A --* or. B s , and K is
an item B --* */-, then J .--, I K ~ , where either

J is item A --* c~B~. C~ and ~: = ~C~, or

J is item A --* ~B~. and s --- 6.

• Let I be an item of the form A ---, 6 .Bc~ or A -* 6.,
then I --* 6.

3.2 L a n g g r a m m a r

In a similar fashion the items used by Lang [2] in
his algorithm for non-deterministic pushdown automata
(NPDA) may be interpreted as non-terminals of a hi-
linear grammar, which we will call the Lang grammar.
We adopt restrictions on NPDA's similarly to [2], the
main one being that one or two symbols be pushed on
the stack in a singie move, and each stark symbol is re-
moved when it is read. If two symbols &re pushed on
the sta~k, the bottom one must be identical to the sym-
bol that is removed in the same transition. Formally we
write an NPDA as & 7-tuple (Q, E, r , 6, q0, Co, F), where
Q is the set of state symbols, E the input alphabet, r
the pnshdown symbols, 6 : Q x (I" tJ {e}) × (E U {¢})
--* 2 Qx((~}uru(rxr)) the transition function, qo E Q the
initial state, ¢0 E 1 ̀the start symbol, and F C_ Q is the
set of final states. If the automaton is in state p, and ¢~
is the top of the stack, and the current symbol on the
input tape is It, then it may make the following eight
types of moves:

if (r, e) E 6(p, e, e): gO to state r

if (r, e) E 6(p, or, e): pop ~, go to state r

if (r, 3") ~ 6(p, a, e): pop ~, push 3', go to state r

if (r, e) ~ 6(p, e, It): shift input tape, go to state r

if (r, 3') E 6(p, e, It): push 7, shift tape, go to r

if (r, e) ~ 6(p, c~, It): pop ~, shift tape, go to r

if (r, 3") ~ 6(p, ¢~, It): pop c~, push % shift tape, go to r

if (r, 3"or) ~ 6(p, ~, y): push % shift tape, go to r

We do not allow transitions such that (r, ~r) ~ 6(p, e, e),
or (r, "yo~) ~ 6(p, ~, e), and assume that the initial state
can not be reached from other states.

The non-terminals of the Lang grammar are the start
symbol 3 and four-tuple entities (Lang's 'items') of the
form < q, c~,p, ~ >, where p and q axe states, and cr and

stack symbols. The idea is that i f f there exists a com-
putation that consumes input symbols zi. .zj, starting
at state p with a stack ~ 0 (the leftmost symbol is the

top), and ending in state q with stack ~ 0 , and if the
stack fl(o does not re-occur in intermediate configura~
tions, t hen < q , a , p , ~ >---" z~..zj. The rewrite rules
of the La~g grammar are defined as follows (universal
quantification over p, q, r, s E Q; ~, ~, 7 E 1`; z E ~, t.J e,
It E E is understood):

S -*< p,a, qo,¢0 > - p E F (final rules)

< r , ~ , s , 7 >-- ,< q , ~ , s , 7 > < p,c~,q, /3 > z ----

(,', ~) ~ 6(p, ~, ~)

< r, 7, q, ~ >--"< P, ct, q, ~ > z

((,', ~) ~ 6(,,,,, ~, z))V ((,', '0 E 5(p, e, ,~) ^ (~ = 7))

< r, 7 , P , a >---, It

((,, ~) ~ 6(p, ~, It))v ((,, ~) ~ ~(p, ~, It))
< q0, ~0, g0, ¢0 >--* e (initial rule)

From each NPDA one may deduce context-free gram-
mars that generate the same language [5]. The above
construction yields such a grammar in bilinear form.
It only works for automata, that have transitions like
we use above. Lang grammars are rather big, in the
rough form given above. Many of the non-terminals do
not occur, however, in the derivation of any sentence.
They can be removed by a standard procedure [5]. In
addition, during parsing, predict functions can be used
to limit the number of possible contents of parse ma-
trix elements. The following initial prediction and pre-
dict functions render the restricted C-parser functionally
equivalent to Lang's original algorithm, albeit that Lang
considered & class of NPDA's which is slightly different
from the class we alluded to above:

s ° = {< q0,¢0,q0,¢0 >}
p r e d i c t k (L) = ~ i f k = 0 else

p r e d i c ~ h (L) - - {< s , ~ , q , ~ > 13,,~ < ¢ , ~ , r , 3" > ~ L}
u{Slk ffi n} (n is sentence length).

The Tomita parser [3] simulates an NPDA, con-
structed from a context-free grammar via LR-parsing tw
hies. Within our formalism we can implement this idea,
and arrive at an Earley-like version of the Tomita parser,
which is able to handle general context-free grammars,
including cyclic ones.

4 E x t e n s i o n t o R T N ' s

In the preceding section we discussed various ways of
deriving bilinear covers. Reversely, one may try to dis-
cover what kinds of grammars are covered by certain
bllinear grammars.

A billnear grammar C~(G), generated from a context-
free grammar by the Earley prescription, has peculiar
properties. In general, the sections P~ defined above con-
stitute regular subgrammars, with the ~ as terminals.
Alternatively, P~ may be seen as a finite state automa-
ton with states I~. Each rule I~ - l --.//Jz~ corresponds
to a transition from I~ to I~ - l labeled by z~. This cot-
respondence between regular grammars and finite state

137

automata is in fact a special instance of the correspon-
dence between Lang bilinear grammars and NPDA's.

The Pi of the above kind are very restricted finite
state automata, generating only one string. It is a natu-
ral step to remove this restriction and study covers that
are the union of general regular subgrammars. Such a
grammar will cover a grammar, consisting of rules of
the form N~ - . ~, where ~ is a regular expression of
terminals and non-terminals. Such grammars go under
the names of RTN grammars [8], or extended context-
free grammars [9], or regular right part grammars [10].
Without loss of generality we may restrict the format
of the fufite state automata, and stipulate that it have
one initial •tale I ~ ' and one final s ta te /~ , and only the
following type of rules:

• final rules P, - . I~
• rules I I - - .[~z, where z ~ Um{J°m} U ~, k < > 0

and j < > M~.

• the initial rule I/M~ - - (.

For future reference we define define the set I of non-
terminals as I = U,${I~}, and its subse t /o = U,{/~i }.

A covering prescription that turns an RTN into a set
of such subgrammars, reduces to C~ if applied to normal
context-free grammars, and will be referred to by the
same name, although in general the above format does
not determine the cover uniquely. For some e x a m p l e
definitions of items for RTN's (i.e. the I~), see [1,9].

5 T h e C N L R C o v e r

A different cover for RTN grammars may be derived
from the one discussed in the previous section. So
our starting point is that we have a biline&r grammar
C£(G), consisting of regular subgrammars. We (approx-
imately) follow the idea of Tomita, and construct an
NPDA from an LR(O)-antomaton, whose states are sets
of items. In our case, the items are the non-terminals
of C~(G). The full specification of the automaton is ex-
tracted from [9] in a straightforward way. Subsequently,
the general prescription of chapter 3 yields a bilinear
grammar. In this way we arrive at what we would like to
call the canonical non-deterministic LR-parser (CNLR
parser, for short).

5 . 1 L R (0) s t a t e s

In order to derive the set Q of LR(0) states, which are
subset• of I, we first need a few definitions. Let • be an
element of 2 I, then closure(s) is the smMlest element of
2 x, such that

s c closure(s)^ ((~! ~ ~osure(s)^ (xp - x l ~))

x= ~ - ~ aos.re(s))
Similar ly, the sets gotot(s, z), and goto.j(s, z), where z E
/o U E, are defined as

goto~(s, ffi) = closu,e({~'l
II ~ s ^ (I,* --. I !~) ^ j < > M , })

goto~(s, ~) = closure({I?lI, ~ ' ~ • ^ (Ip - I~'ffi)})

The set Q then is the smallest one that satisfies

aosnre({&~°}) ~ q ^ (~ ~ q *

(gaot(s, =) = O V gotot(s, z) ~ q) ^

Oao2(,, z) = O v go,o2(s, ~) ~ q))

The automaton we look for can be constructed in terms
of the LR(0) states. In addition to the goto function•,
we will need the predicate reduce, defined by

, ' edna (s , _ :) -- 3 , , ((~ -- X~') ̂ Xl' ~ s).

A point of interest is the possible existence of •tacking
conflicts[9]. These arise if for some s, z both gotol (s, z)
and goto2(a, x) are not empty. Stacking conflict• cause
an increase of non-determinism that can always be
avoided by removing the conflicts. One method for do-
ing this has been detailed in [9], and consist• of the split-
ting in parts of the right hand side of grammar rule• that
cause conflicts. Here we need not and will not assume
anything about the occurrence of stacking conflict•.

Grammars, of which Earley cover• do not give rise
to stacking conflicts, form a proper subset of the set
of extended context-free grammars. It could very well
be that natural language grammar•, written as RTN's in
order to produce 'natural ' syntax trees, generally belong
to this subset. For an example, see section 6.

5 . 2 T h e a u t o m a t o n

To determine the automaton we specify, in addition to
the set of states Q, the set of stack symbols F ---- Q U I ° u
{Co}, the initial state q0 = closure({IoM°}), the final
states F ffi {slrednce(s, ~)}~ and the transition function
&

6(s, -f, y) = {(t, q'f)l "f ~ / ° A
(0 = goto~(s, y) ^ q ffi s) v(~ = gotol(s, y) ^ q = +))}

6(8,-r, ¢) -- {(t, q)l~ E / ° h
((t = gotot (s, "f) Aq = ¢)V ((t = goto2 (s, 7) A q = s))}

u{(~, ~) l ' f ~ q ^ reduce(s, ~)}

5 . 3 T h e g r a m m a r

From the automaton, which is of the type discussed in
section 3.2, we deduce the bilinear grammar

S - - < s,~,q0,¢0 > = reduce(s,~)

< t , r ,q ,~ >---~< s,r,q,/~ > y = t = gotoz(s,y)

< t, s, s, r >--. y -- t = goto2(•, y)

< t , # , p , ~ > - . < q ,~ ,p ,~ > < s,/°, ,q ,~ >

- t = g o t o l (s , l °)

< t , s , q , ~ > - . < s, I 2 , q , ~ >=- t = goto~(•,l'~,)

< p , l~ ,q ,~ >--*< s ,p ,q ,# > - - reduce(s,I °)

< qo, Co, qo,¢o >"* ~,

where $,t ,q,p E Q, r E QU{C0}, ~,/~ E r , y E E.
A• was mentioned in section 3.2, this grammar can be
reduced by a standard algorithm to contain only useful
non-terminals.

138

5.3 .1 A r e d u c e d f o r m

If the reduction algorithm of [5] is performed, it turns
out that the structure of the above grammar is such that
useful non-terminals < p, ¢~, q, ~ > satisfy

a ~ Q = ~ . o t f q

~ f ~ Q = ~ p = q

Furthermore, two non-terminals that differ only in their
fourth tuple-element always derive the same strings of
terminals. Hence, the fourth element can safely be dis-
carded, as can the second if it is in Q and the first if
the second is not in Q. The non-termlnals then become
pairs < ~, s >, with ~ ~ I' and s ~ Q. For such non-
terminals, the predict functions, mentioned in section 2,
must be changed:

0 ° = {< ~o,~o > }

pcedia~(L) = 0 if k = 0 else

predicts(L) = {< ~, ~ > 13~ < s, q > E L} U {S i t = n}

The grammar gets the general form

S --*< s, qo >---- reduce(s , /~o)

< t ,q > - - * < ~ , q > / / = t = gotot(s, 9)

< t, s >--* y ---- t = gotoa(s, y)

< ~,0 > - < , ,~ > < P , , , > - ~ = ~oto:(,,~)
< ~, , > - < ~ , s > = ~ = ~o~o~(,, ~)

< ~ , q > - < . , ~ > __. reau~(s , ~)
Note that the terminal < q0, q0 > does not appear in
this grammar, but will appear in the parse matrix be-
cause of the initial prediction 0 c. Of course, when the
automaton is fully specified for a particular language,
the corresponding CNLR grammar can be reduced still
further, see section 6.4.

5 .3 .2 F i n a l form

Even the grammar in reduced form contains many non-
terminals that derive the same set of strings. In partic-
ular, all non-terminals that only differ in their second
component generate the same language. Thus, the sec-
ond component only encodes information for the predict
functions. The redundancy can be removed by the fol-
lowing means. Define the function ¢ : I' - . 2 Q, such
that

~(~r) ---- {s{ < or, s > is a useful non-terminal of the
above grammar}.

Then we may simply parse with the 'bare' grammar, the
non-terminals of which are the automaton stack symbols
F:

S --* S ~ reduce(s, ~0)

t --. sy - - t =.gotoz(s,y)

* - - P, - ~,(~ = goto20, ~,))
I~, -. ~ - reduce(s, I°),

using the predict functions

0 ° = {qo}

predicth(L) = ~ if k = 0 else

p r e a i a h (Z ,) = {~1~,(" ~ L ^ , ~ ~(~))} u {Slk = .}.
The function ¢ can also be deduced directly from the
bare grammar, see section 7.

5 . 4 P a r s e t r e e s

Each parse tree r according to the original grammar can
be obtained from a corresponding parse tree t according
to the cover. Each subset of the set of nodes of t is par-
tially ordered by the relation 'is descendant of'. Now
consider the set of nodes of t that correspond to non-
terminals /~. The 'is descendant of' ordering defines a
projected tree that contains, apart from the terminals,
only these nodes. The desired parse tree r is now ob-
tained by replacing in the projected tree, each node 1 °
by a node labeled by N~, the left hand side of grammar
rule i of the original grammar.

6 E x a m p l e

The foregoing was rather technical and we will try to re-
pair this by showing, very explicitly, how the formalism
works for a small example grammar. In particular, we
will for a small RTN grammar, derive the Earley cover
of section 4, and the two covers of sections 5.3.1 and
5.3.2.

6 . 1 T h e g r a m m a r

The following is a simple grammar for finite subordinate
clauses in Dutch.

$ -* conj N P V P

V P --* [NP] {PP} verb [S]

P P --* prep N P

N P --* det noun {PP}

So we have four regular expressions defining No = S,
N1 ffi V P, N2 = P P, N3 -- N P.

6 . 2 T h e E a r l e y c o v e r

The above grammar is covered by four regular subgrarn-
m aA's"

~0 - z~; I~ - I0~z,°; Zo ~ - I ~ ; Ig - Io`co. j ; Io' -

- x~;g - I~;II - I~Ig;x ~, - I~erb;X~ -

x?~;x~ - I , * ~ ; P , - ~?, ,erb;¢? - z~z°;z~ -

x~ &; P, - Xb, erb; x~ -

z** . o . ; ~ - It ae*; xt -

Note that the Mi in this case turn out as M0 = 4, Mz =
5, M~ = 3, M3 = 4.

139

6 . 3 T h e a u t o m a t o n

The construction of section 5.1 yields the following set
of states:

qo = {I~}; ql = {I~,I~}; q2 = { ~ , I [, I ~ , ~ } ;

qa = {I~}; q, -- {IoI }; qs ffi {I~,I$}; q* = {I~,I~};

q, = {Xo~, x,=}; qs = {P,,xD;qo = {zL xD;

qlO = { R } ; q - = {R}; ¢12 = { x L R }

The transitions axe grouped into two parts. First we list
the function goto~:

goto2(¢0, ~o,=~) = ~ ; goto=(¢l, det) ffi ¢~;

go=o.(q~, P.) ffi qs; OO=O~(q2, ~) ffi ~s;

goto2(,2, verb) ffi q.; goto~(~2, prep) = ~ ;

go¢o2(q2, de0 = q~; g o t ~ (~ , prep) = qs;

goto~(qs,prep) = qs; goto~(qr, conj) - - ql;

goto~(qs, det) = qa; goto~(qs,prep) = qs;

goto2(ql=, prep) "J-- qs

Likewise, we have the gotot function, which gives the
non-stacking transitions for our grammar:

gotol (ql , ~) = q'a; gotol (q,, I~) = q,;

gotol (q~, noun) = q~; gotol (qs, g) ---- qs;

gotol(qs, verb) = ~,; goto~(qs, ~=) = qs;

goto, (~, , Po) = elo; goto, (es, ~) = q . ;

go,o, (e., ~) = el=; go,o, (q,=, g) = e, ,

The predicate reduce holds for six pairs of states and
non-terminals:

redu~O, , Po); redu=O,o, ~) ; redffi~(q,, ~) ;

reduce(q,l ,]~=); reduce(q, , g) ; reduce(ql=, l~a)

6 . 4 C N L R p a r s e r

Given the automaton, the CNLR grammar follows ac-
cording to section 5.3. After removal of the useless non-
terminals we arrive at the following grammar, which is
of the format of section 5.3.1.

S ..--,< q4,qo >

< q~,q > - . < q~,q > noun, where q E [ql,q~,qs]

< qT, q~ >--*< qs,q~ > verb

< q~,q >-* conj , where q E [qo, qT]

< q~,q >--* det, where q E [qt,q~,qs]

< q?, q2 >--* verb

< qs,q >"* prep, where q E [q~,q~,qs,qe,q~]

< q~,q > - * < ql ,q > </~,q~ >, where q ~ [qo,qT]

< qt ,q >--*< q~,q > </~t,q~ >, where q E [qo, qT]

< qs, q2 >'-*< qs,q~ > < I~, qs >

< qs, q~ >'-'*< qs,q~ > < / ~ , q s >

< qlo, q2 >"'*< ql', q2 > < ~0, q? >

< q ~ , q >-'*< qs,q > < /~ ,qs >, where q E
[q~, ~s, qs, w , q~2]

< ql2, q >-"*< qs, q > < ~ , q 9 >, where q E [ql,q2,qs]

< q12, q >"*< ql2, q > < /~2,q12 >, where q E

[~,,q2,qd

< qs ,~ > - * < ~ , q 2 >, < qs,q2 > - . < ~ ,q2 >

< I~o,qv >-- .< q4,q7 >, < I~l,q2 > - . < qlo,q2 >

"</~x,q2 >- '*< qT, q2 >

<]~2,q >"~< ql l ,q >, where q E [q2,qs,qe,qo, q12]

< I ° , q > - * < qs, q >, where q E [qx,q2,qs]

</~3,q >'-'~< q12,q >, where q E [ql,q2,qs]

From this grammar, the function ¢ can be deduced. It
is given by

~(¢1) ffi ~(q2 ffi ~(q.) = [¢0, q,]

~r(q3) -- ~(qg) --- a(q12) ---- ~(I °) = [ql, q2, qs]

.(q~) = ~(¢s) = #(q,) = ~(q~0) = ~ (:) = [q2]

~ 0 s) = ~ (q -) = ~ (~) = [q2, q~, q~, q~, q12]

~ (g) = [q,l
Either by stripping the above cover, or by directly de-
ducing it ~om the automaton, the bare cover can be
obtained. We list it here for completeness.

S -* q4, q9 -* q3noun, q? "* qsverb

ql -* conj , q3 --* det, q7 "* verb

qs "* prep, q2 "* qlI~3, q4 "* q2]~z

qn "* qs~ , g12 "-* qs~ , q12 --* q12~

- qlo, ~ - q,, ~ - qll

~ - q,, ~ - q,2,
Together with the predict functions defined in section
5.3.2, this grammar should provide an efficient parser
for our example grammar.

7 T a d p o l e G r a m m a r s

The function ~ has been defined, in section 5, via a
grammar reduction algorithm. In this section we wish to
show that an alternative method exists, and, moreover,
that it can be applied to the class of bilinear tadpole
grammars. This class consists of all bilineax grammars
without epsilon rules, and with no useless symbols, with
non-termlnals (the head) preceding terminals (the tail)
at the right hand side of rules.Thus, rules are of the form

A -* a6,

where we use the symbol 6 as a variable over possibly
empty sequences of terminals, and a denotes a possibly
empty sequence of at most two non-terminals. Capital
r o m u letters are used for non-terminals. Note that a
CNLR cover is a member of this class of grammars, as
are all grammars that are in Chomsky normal form.

First we change the grammar a little bit by adding
q0 to the set of non-terminals of the grammar, assum-
ing that it was not there yet. Next, we create a new

140

grammar, inspired by the grammar of 5.3.1, with pairs
< A, C > as non=terminals. The rules of the new gram-
mar are such that (with implicit universal quantification
over all variables, as before)

< A, C >-..~ 6 -- A -.~ 6

< A ,C >.--~< B , C > 6 m__A..-~ B6

< A , C > - ~ < B , C > < D , B > 8 =_ A - . BD8

The start symbol of the new grammar, which can be
seen as a parametrized version of the tadpole grammar,
is defined to be < S, qo >. A non-terminal < B, C > is a
useful one, whence C E ~(B) according to the definition
of ~, if it occurs in a derivation of the parametrized
grammar:

< S, qo >---" ~ < B, C > A,

where i¢ is an arbitrary sequence of non-terminals, and
A is a sequence of terminals and non-terminals. Then,
we conclude that

q0 E ~(B) - < S, q0 > - . ' < B, q0 > A

C E ~r(B) ^ C < > q0 --- 3A,~(< A , C > - - ' < B , C >/ ,

^ < S, qo >--* " s < C ,D >< A , C > A)

This definition may be rephrased without reference
to the parametrized grammar. Define, for each non-
terminal A a set f i rs tnonts(A) , such that

f i rs tnonts(A) --.. {BIA --" BA}.

The predict set o(A) then is obtainabh as

• (s) = {C l3 .~ ,v , , (a ~. firstnonts(A)A
D -- CA6)} u {qolS E f i rs tnonts(S)} ,

where S is the start symbol. As in section 5.3.2, the
initial prediction is given by 0= = {q0}.

8 A n LL/LR-automaton
In order to illustrate the amount of freedom that ex-
ists for the construction of automata and associated
parsers, we shall construct a non-deterministic LL/LR-
automaton and the associated cover, along the lines of
section 5.

8 . 1 T h e a u t o m a t o n

We change the goto functions, such that they yield sets
of states rather that just one state, as follows:

go=o,(s, z) ---- {dosure({I,~})l
Zl ~ s ^ (Z~ - - ZI=) A j <> M,}

goto~O, =) = {ao .u re ({ z~ }) lZ , ~ ' e s A (Z, ~ - - Z,~'=)}

The set Q is changed accordingly to be the smallest one
that satisfies

ctos,,re({Xo"°}) E Q^ (s E q =~

(go=o,(s, =) = 0 v goto,(s, =) c q)^
(goto2(s, z) m ~ V g o t o a (s , z) C q))

Every state in this automaton is defined as a set
clos~re({I~ }) and is, as a consequence, completely char-
acterized by the one non-terminal I~. The reason for
calling the above an LL/LR-automaton lies in the fact
that the states of LR(0) automata for LL(1) grammars
have exactly this property. The predicate reduce is de-
fined as in section 5.1.

8.2 The LL/LR-cover

The cover associated with the LL/LR-automaton just
defined, is a simple variant of the cover of section 5.3.2:

S -- s -ffi reduce(s, I °)

t -* 8y =-- t E gotox(s,g)

t - . y - 3 , 0 ~ ao~oz(s, y))

t - sP,, - ~ ~ goto, O , z °)

t -- I ° = 3,(t E goto2(s, I°))

- . s - reduce(s, I°),

As it is of the tadpole type, the predict mechanism works
as explained in section 7.

We just mentioned that each LL/LR-state, and hence
each non-terminal of the LL/LR-cover, is completely
characterized by one non-terminal, or 'item', of the
Earley cover. This correspondence between their non-
terminals leads to a tight connection between the two
covers. Indeed, the cover we obtained from the LL/LR-
automaton can be obtained from the cover of section
4, by eliminating the e-rules-I~ ~ --~ e. Of course, the
predict functions associated to both covers differ consid-
erably, as it axe the non-terminals deriving e, the items
beginning with a dot, that axe the object of prediction
in the Earley algorithm, and they axe no longer present
in the LL/LR-cover.

9 E f f i c i e n c y

We have discussed a number of bilinear covers now, and
we could add many more. In fact, the space of bilinear
covers for each context-free grammar, or RTN grammar,
is huge. The optimal one would be the one that makes
C-parser spend the least time on the average sentence.
In general, the least time will be more or less equivalent
to the smallest content of the parse matrix. Naively,
this content would be proportional to the size of the
cover. Under this assumption, the smallest cover would
be optimal. Note that the number of non-terminals of
the CNLR cover is equal to the number of states of the
LR-antomaton plus the number of non-terminals of the
original grammar. The size of the Earley cover is given
by the number of items. In worst case situations the size
of the CNLR cover is an exponential function of the size
of the original grammar, whereas the size of the Ea~ley
cover dearly grows linearly with the size of the original
grammar. For many grammars, however, the number
of LR(0)-states, may be considerably smaller than the
number of items. This seems to be the case for the nat-
ural language grammaxs considered by Tomita[3]. His

141

da ta even suggest tha t the number of LR(0) states is a
sub-linear function of the original grammar size. Note,
however, that predict functions may influence the re-
lation between grammar size and average parse matr ix
content, as some grammars may allow more restrictive
predict functions then others. Summarizing, i t seems
unlikely, that a single parsing approach would be opti-
mal for all grammars. A viable goal of research would
be to find methods for determining the optimal cover
for a given grammar. Such research should have a solid
experimental back-bone.

The mat ter gets still more complicated when the orig-
inal grammar is an at t r ibute grammar. At t r ibute evalu-
ation may lead to the rejection of certain parse trees that
are correct for the grammar without attributes. Then
the ease and efficiency of on-the-fly at t r ibute evalua-
tion becomes important , in order to stop wrong parses
as soon as possible. In the Rosetta machine transla-
tion system [11,12], we use an at t r ibuted RTN during
the analysis of sentences. The at t r ibute evaluation is
bot tom-up only, and designed in such a way that the
grammar is covered by an a t t r ibuted Earley cover.

Other points concerning efficiency that we would like
to discuss, are issues of precomputation. In the con-
ventional Earley parser, the calculation of the cover is
done dynamically, while parsing a sentence. However, it
could just as well be done statically, i.e. before parsing,
in order to increase parsing performance. For instance,
set operations can be implemented more efficiently if the
set elements are known non-terminals, rather than un-
known items, although this would depend on the choice
of programming language. The procedure of generating
bilinear covers from LR-antomata should always be per-
formed statically, because of the amount of computation
involved. Tomita has reported [3], that for a number of
grammars, his parsing method turns out to be more efli-
cient than the Earley ~gor i thm. It is not clear, whether
his results would still hold if the creation of the cover
for the Earley parser were being done statically.

Onedmight be inclined to think that if use is made
of precomputed sets of items, as in LR-parsers, one is
bound to have a parser that is significantly different from
and probably faster than Earley's algorithm, which com-
putes these sets at parse time. The question is much
more subtle as we showed in this paper. On the one
hand, non-deterministic LR-parsing comes down to the
use of certain covers for the grammar at hand, just like
the Earley algorithm. Reversely, we showed that the
Earley cover can, with minor modifications, be obtained
from the LL/LR-automaton, which also uses precom-
puted sets of items.

10 Conclusions

We studied parsing of general context-free languages, by
splitting the process into two parts. Firstly, the gram-
mar is turned into bilinear grammar format, and sub-
sequently a general parser for bilinear grammars is ap-
plied. Our view on the relation between parsers and
covers is similar to the work on covers of Nijholt [7] for

grammars that are deterministically parsable.
We established that the Lung algorithm for simulat-

ing pushdown automata, hides a prescription for deriv-
ing bilinear covers from automata that satisfy certain
constraints. Reversely, the LR-parser construction tech-
nique has been presented as a way to derive automata
from certain bilinear grammars.

We found that the Earley algorithm is intimately re-
lated to an automaton that simulates non-deterministic
LL-parsing and, furthermore, that non-deterministic
LR-automata provide general parsers for context-free
grammars, with the same complexity as the Earley al-
gorithm. It should be noted, however, that there are as
many parsers with this property, as there are ways to
obtain bilinear covers for a given grammar.

Re fe r e n c e s
1 Earley, J. 1970. An Efficient Context-Free Parsing

Algorithm, Communication8 ACM 13(2):94-102.

2 Lang, B. 1974. Deterministic Techniques for Efficient
Non-deterministic Parsers, Springer Lecture Notes
in Computer Science 14:255-269.

3 Tomita, M. 1986. Efficient Parsing for Natural Lan-
guage, Kluwer Academic Publishers.

4 Graham, S.L., M.A. Harrison and W.L. Ruzzo 1980.
An improved context-free recognizer, ACM trans.
actions on Progr. Languages and Systems 2:415-
462.

5 Aho, A.V. and J.D. Ullman 1972. The theory of pars-
ing, translation, and compiling, Prentice Hall Inc.
Englewood Cliffs N.J.

6 Kruseman Aretz, F.E.J. 1989. A new approach to
Earley's parsing algorithm, Science of Computer
Programming volume 12. .

T Nijholt, A. 1980. Context-free Grammars: Cov-
ers, Normal Forms, and Parsing, Springer Lecture
Notes in Computer Science 93.

8 Woods, W.A. 1970. Transition network grammars for
natural language analysis, Commun. ACM 13:591-
602.

9 Purdom, P.W. and C.A. Brown 1981. Parsing ex-
tended LR(k) grammars, Acta [n]ormatica 15:115-
127.

10 Nagata, I and M. Sama 1986. Generation of Efficient
LALR Parsers for Regular Right Part Grammars,
Acta In]ormatica 23:149-162.

11 Leermakers, R. and J. Rons 1986. The Transla-
tion Method of Rosetta, Computers and Transla-
tion 1:169-183.

12 Appelo L., C Fellinger and J. Landsbergen 1987.
Subgrammars, Rule Classes and Control in the
Rosetta Translation System, Proceedings o/ 3rd
Conference ACL, European Chapter, Copenhagen
118-133.

142

