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ABSTRACT 

We argue for the usefulness of an active chart as the 
basis of a system that searches for the globally most 
plausible explanation of failure to syntactically parse 
a given input. We suggest semantics-free, grammar- 
independent techniques for parsing inputs displaying 
simple kinds of ill-formedness and discuss the search 
issues involved. 

THE PROBLEM 

Although the ultimate solution to the problem 
of processing ill-formed input must take into account 
semantic and pragmatic factors, nevertheless it is 
important to understand the limits of recovery stra- 
tegies that age based entirely on syntax and which are 
independent of any particular grammar. The aim of 
Otis work is therefore to explore purely syntactic and 
granmmr-independent techniques to enable a 
to recover from simple kinds of iil-formedness in rex. 
tual inputs. Accordingly, we present a generalised 
parsing strategy based on an active chart which is 
capable of diagnosing simple ¢nvrs 
(unknown/mi.uq~elled words, omitted words, extra 
noise words) in sentences (from languages described 
by context free phrase slructur¢ grammars without e- 
productions). This strategy has the advantage that 
the recovery process can run after a standard (active 
chart) parser has terminated unsuccessfully, without 
causing existing work to be reputed or the original 
parser to be slowed down in any way, and that, 
unlike previous systems, it allows the full syntactic 
context to be exploited in the determination of a 
"best" parse for an ill-formed sentence. 

EXPLOITING SYNTACTIC CONTEXT 

Weischedel and Sondheimer (1983) present an 
approach to processing ill-formed input based on a 
modified ATN parser. The basic idea is, when an ini- 
tial p~s@ fails, to select the incomplete parsing path 
that consumes the longest initial portion of the input, 
apply a special rule to allow the blocked parse to 
continue, and then to iterate this process until a 

successful parse is generated. The result is a "hillo 
climbing" search for the "best" parse, relying at each 
point on the "longest path" heuristic. Unfortunately, 
sometimes this heuristic will yield several possible 
parses, for instance with the sentence: 

The snow blocks I" te road 

(no partial parse getting past the point shown) where 
the parser can fail expecting either a verb or a deter- 
miner. Moreover, sometimes the heuristic will cause 
the most "obvious" error to be missed: 

He said that the snow the road T 
The paper will T the best news is the Times 

where we might suspect that there is a missing verb 
and a misspelled "with" respectively. In all these 
cases, the "longest path" heuristic fails to indicate 
unambiguously the minimal change that would be 
necessary to make the whole input acceptable as a 
sentence. This is not surprising, as the left-fight bias 
of an ATN parser allows the system to take no 
account of the right context of a possible problem 
element. 

Weischedel and Sondheimer's use of the 
"longest path" heuristic is similar to the use of locally 
least-cost error recovery in Anderson and 
Backhouse's (1981) scheme for compilers. It seems 
to be generally accepted that any form of globally 
"minimum-distance" error correction will be too 
costly to implement (Aho and Ullman, 1977). Such 
work has, however, not considered heuristic 
approaches, such as the one we are developing. 

Another feature of Weischedel and 
Sondheimer's system is the use of grammar-slx~ific 
recovery rules ("meta-rules" in their terminology). 
The same is true of many other systems for dealing 
with ill-formed input (e.g. Carhonell and Hayes 
(1983), Jensen et al. (1983)). Although grammar- 
specific recovery rules are likely in the end always to 
be more powerful than grammar-independent rules, it 
does seem to be worth investigating how far one can 
get with rules that only depend on the grammar for- 
ma//sm used. 
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IOT tbe T gardener T c°llects T manure T ff T the T antumn 7 T J ,  1 2 3 4 5 6 , 

<Need S from 0 to 7> 
<Need NP+VP from 0 to 7> 
<Need VP from 2 to 7> 
<Need VP+PP from 2 to 7> 
<Need PP from 4 to 7> 
<Need P+NP from 4 to 7> 
<Need P from4 to 5> 

(hypoth~s) 
(by top-down rule) 
(by fundamental rule with NP found bottom-up) 
(by top-down rule) 
(by fundamental rule with VP found bottom-up) 
(by top-down rule) 
(by fundamental rule with NP found bottom-up) 

Figure 1: Focusing on an emx. 

In _~.~_pting an ATN parser to compare partial 
parses, Weischedel and Sondheimer have already 
introduced machinery to represent several alternative 
partial parses simultaneously. From this, it is a rela- 
tively small step to introduce a well-formed substring 
table, or even an active chart, which allows for a glo- 
hal assessment of the state of the parser. If the gram- 
mar form~fi~m is also changed to a declarative for- 
malism (e.g. CF-PSGs, DCGs (Pereira and Warren 
1980), patr-ll (Shieber 1984)), then there is a possi- 
bility of constructing other partial parses that do not 
start at the beginning of the input. In this way, right 
context can play a role in the determination of the 
~est" parse. 

WHAT A CHART PARSER LEAVES BEHIND 

The information that an active chart parser 
leaves behind for consideration by a "post mortem" 
obviously depends on the parsing sWategy used (Kay 
1980, Gazdar and Mellish 1989). Act/re edges are 
particularly important fx~n the point of view of diag- 
nosing errors, as an unsatisfied active edge suggests a 
place where an input error may have occurred. So 
we might expect to combine violated expectations 
with found constituents to hypothesise complete 
parses. For simplicity, we assume here that the 
grammar is a simple CF-PSG, although there are 
obvious generalisations. 

(Left-right) top-down pars/ng is guaranteed to 
create active edges for each kind of phrase that could 
continue a partial parse starling at the beginning of 
the input. On the other hand, bottom-up parsing (by 
which we mean left corner parsing without top-down 
filtering) is guaranteed to find all complete consti- 
merits of every possible parse. In addition, whenever 
a non-empty initial segment of a rule RHS has been 
found, the parser will create active edges for the kind 
of phrase predicted to occur after this segment. Top- 
down parsing will always create an edge for a phrase 
that is needed for a parse, and so it will always 

indicate by the presence of an unsatisfied active edge 
the first ester point, if there is one. If a subsequent 
error is present, top-down parsing will not always 
create an active edge corresponding to it, because the 
second may occur within a constituent that will not 
be predicted until the first error is corrected. Simi- 
larly, fight-to-left top-down parsing will always indi- 
cate the last error point, and a combination of the two 
will find the first and last, but not necessarily any 
error points in between. On the other hand, bottom- 
up parsing will only create an active edge for each 
error point that comes immediately after a sequence 
of phrases corresponding to an initial segment of the 
RI-IS of a grammar rule. Moreover, it will not neces- 
sarily refine its predictions to the most detailed level 
(e.g. having found an NP, it may predict the 
existence of a following VP, but not the existence of 
types of phrases that can start a VP). Weisobedel and 
Sondheimer's approach can be seen as an incremen- 
tal top-down parsing, where at each stage the right- 
most tin.riffled active edge is artificially allowed to 
be safistied in some way. As we have seen, there is 
no guarantee that this sort of hill-climbing will find 
the "best" solution for multiple errors, or even for 
single errors. How can we combine bottom-up and 
top-down parsing for a more effective solution? 

FOCUSING ON AN ERROR 

Our basic stramgy is to run a bottom-up parser 
over the input and then, if this fails to find a complete 
parse, to run a modified top-down parser over the 
resulting chart to hypothesise possible complete 
parses. The modified top-down parser attempts to 
find the minimal errors that, when taken account of, 
enable a complete parse to be constructed. Imagine 
that a bottom-up parser has already run over the input 
"the gardener collects manure if the autumn". Then 
Figure 1 shows (informally) how a top-down parser 
might focus on a possible error. To implement this 
kind of reasoning, we need a top-down parsing rule 
that knows how to refine a set of global needs and a 
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fundamental rule that is able m incorporate found 
constituents from either directim. When we may 
encounter multiple rotors, however, we need to 
express multiple needs (e.g. <Need N from 3 to 4 and 
PP from 8 to I0>). We also need to have a fimda- 
mental rule that can absorb found phrases firom any- 
where in a relevant portion of the chart (e.g. given a 
rule "NP --+ Det Adj N" and a sequence "as marvel- 
lous sihgt", we need to be able to hypothesi~ that 
"as" should be a Det and "sihgt" a N). To save 
repealing work, we need a version of the top-down 
rule that stops when it reaches an appropriate 
category that has already been found bottom-up. 
Finally, we need to handle both "anchored" and 
"unanchored" needs. In an anchored need (e.g. 
<Need NP from 0 to 4>) we know the beginning and 
end of the portion of the chart within which the 
search is to take place. In looking for a NP VP 
sequence in "the happy blageon su'mpled the bait", 
however, we can't initially find a complete (initial) 
NP or (final) VP and hence don't know where in the 
chart these phrases meeL We express this by <Need 
NP from 0 to *, VP f~om * to 6>, the symbol "*" 
denoting a position in the chart that remains to be 
determined. 

GENERALISED TOP-DOWN PARSING 

If we adopt a chart parsing suategy with only 
edges that carry informafim about global needs, 
thee  will be considerable dupficated effort. For 
instance, the further refinement of the two edges: 

<Need NP hem 0 to 3 and V from 9 to 10> 
<Need NP from 0 to 3 and Adj from 10 to 11> 

can lead to any analysis of possible NPs between 0 
and 3 being done twice. Restricting the possible for- 
mat of edges in this way would be similar to allowing 
the "functional composition rule" (Steedman 1987) in 
standard chart parsing, and in general this is not done 
for efficiency reasons. Instead, we need to produce a 
single edge that is "in charge" of the computation 
looking for NPs between 0 and 3. When poss£ole NPs 
are then found, these then need to be combined with 
the original edges by an appropriate form of the fun- 
damental rule. We are thus led to the following form 
for a generalised edge in our chart parser:. 

<C from S to E needs 
C$1 fi'om $1 toe l ,  
cs2 from s2 to e2. 
. o .  

C$, from $. to e,> 

where C is a category, the c$~ are lists of categories 

(which we will show inside square brackets),. S, E, 
the si and the e~ ate positions in the chart (or the spe- 
cial symbol "*~). The presence of an edge of this 
kind in the chart indicates that the parser is attempt- 
ing to find a phrase of category C covering the por- 
tion of the chart from S to E, but that in order to 
succeed it must still satisfy all the needs listed. Each 
need specifies a sequence of categories csl that must 
be found contiguously to occupy the portion of the 
chart extending from st to ei. 

Now that the format of the edges is defined, we 
can be precise about the parsing rules used. Our 
modified chart parsing rules are shown in Figure 2. 
The modified top-down ru/e allows us to refine a 
need into a more precise one, using a rule of the 
grammar (the extra conditions on the rule prevent 
further refinement where a phrase of a given category 
has already been found within the precise part of the 
chart being considezed). The modified fundamental 
ru/e allows a need to be satisfied by an edge that is 
completely ~ti~fied (i.e. an inactive edge, in the stan- 
dard terminology). A new rule, the simplification 
ru/~, is now required to do the relevant housekeeping 
when one of an edge's needs has been completely 
satisfied. One way that these rules could run would 
be as follows. The chart starts off with the inactive 
edges left by bottom-up parsing, together with a sin- 
gle "seed" edge for the top-down phase <GOAL from 
0 to n needs [S] from 0 to n>, where n is the final 
position in the chart. At any point the fundamental 
rule is run as much as possible. When we can 
proceed no further, the first need is refined by the 
top-down rule (hopefully search now being 
anchored). The fundamental rule may well again 
apply, taking account of smaller phrases that have 
already been found. When this has run, the top-down 
rule may then further refine the system's expectations 
about the parts of the phrase that cannot be found. 
And so on. This is just the kind of "focusing" that we 
discussed in the last section.. If an edge expresses 
needs in several separate places, the first will eventu- 
ally get resolved, the simplification rule will then 
apply and the rest of the needs will then be worked 
on. 

For this all to make sense, we must assume that 
all hypothesised needs can eventually be resolved 
(otherwise the rules do not suffice for more than one 
error to be narrowed down). We can ensure this by 
introducing special rules for recoguising the most 
primitive kinds of errors. The results of these rules 
must obviously be scored in some way, so that errors 
are not wildly hypothesised in all sorts of places. 
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Top-down rule: 
<C from S t o e  needs [cl. . .csl] from s l  to e : ,  cs2 fzom s2 to e2 . . . .  cs .  from s .  t o e . >  
c I ~ RHS (in the grammar) 

<cl from sl  toe  needs RHS from sx t o e >  
where e = ff csl  is not empty or e 1 ffi * then * else e x 
(el = * or CSl is non-empty or there is no category cl from sl to e:)  

Fundamental rule: 
<C from S m E  needs [...cs n c l ...cs n] from s l to e x, cs 2 ...> 
<c ~ from S ~ to El  needs <nothing>> 

<C fxom S t o e  needs c s n  from sx to S t, csx2 fxom E t to e l ,  cs2 ...> 

(sl < S x ,  e l  = * or El  < e : )  

Simplification rule: 
<C fxom S t o E  needs ~ from s to s, c$2 from s2 to e2, ... cs .  from s .  me, ,> 

<C from S t o e  needs cs2 from s2 to e2, ... cs .  fxom s .  t o e . >  

Garbage rule: 
<C fronts  t oE  needs I] from sl to e l ,  c$2 from s2 to e2, ... cs .  f r o m s ,  t o e . >  

<C f ron t s  t o E  needs cs2 from s2 to e2, ... cs .  from s .  m e . >  
(s, ~el) 

Empty category rule: 
<C from S t o E  needs [cl.. .csl] from s to s, cs2 from s2 to e2 . . . .  ca. from s .  t o e . >  

<C fxom S t o E  needs cs2 from s2 to e2. ... cs .  f~om s ,  t o e , >  

Unknown word rule: 
<C from S t o e  needs [cl.. .csl] from s l  to ex, cs2 from s2 to e2 . . . .  cs .  fzom s .  t o e . >  

<C from S t o E  needs cs~ from s t+ l  to ex, cs2 from s2 to e2, ... cs .  from s .  t o e . >  
(cl a lexical category, s l  < the end of the chart and 
the word at  s i not of  category c ~). 

Figure 2: Generalised Top-down Parsing Rules 

SEARCH CONTROL AND EVALUATION 
FUNCTIONS 

Even without the extra rules for recognising 
primitive errors, we have now introduced a large 
parsing search space. For instance, the new funda- 
mental rule means that top-down processing can take 
place in many different parts of the chart. Chart 
parsers already use the notion of an agenda, in  which 
possible additions to the chart are given priority, and 
so we have sought to make use of  this in organising a 
heuristic search for the "best" poss~le parse. We 
have considered a number of parameters for deciding 
which edges should have priority: 

MDE (mode of formation)We prefer edges 
that arise from the fundamental rule to those that 
arise from the rap-down rule; we disprefer edges that 
arise from unanchored applications of the top-down 
nile. 

PSF (penalty so far) Edges resulting from the 
garbage, empty category and unknown word rules are 
given penalty scores. PSF counts the penalties that 
have been accumulated so far in an edge. 

PB (best penalty) This is an estimate of the 
best possible penalty that this edge, when complete. 
could have. This score can use the PSF, together with 
information about the parts of  the chart covered - for 
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instance, the number of words in these parts which 
do not have lexical entries. 

GU$ (the m a ~ u m  number of words that have 
been used so far in a partial parse using this edge) 
We prefer edges that lead to parses accounting for 
more words of the input. 

PBG (the best possible penalty for any com- 
plete hypothesis involving this edge). This is a short- 
fall score in the sense of Woeds (1982). 

UBG (the best possible number of words that 
could be used in any complete hypothesis containing 
this edge). 

In our implementation, each rule calculates 
each of these scores for the new edge from those of 
the contributing edges. We have experimented with a 
number of ways of using these scores in comparing 
two possible edges to be added to the chart. At 
present, the most promising approach seems to be to 
compare in mm the scores for PBG, MDE, UBG, 
GUS, PSF and PB. As soon as a difference in scores 
is encountered, the edge that wins on this account is 
chosen as the preferred one. Putting PBG first in this 
sequence ensures that the first solution found will be 
a solution with a minimal penalty score. 

The rules for computing scores need to make 
estimates about the possible penalty scores that might 
arise from attempting to find given types of phrases 
in given parts of the chart. We use a number of 
heuristics to compute these. For instance, the pres. 
ence of  a word not appearing in the lexicon means 
that every parse covering that word must have a 
non-zero penalty score. In general, an attempt to find 
an instance of a given category in a given portion o f  
the chart must produce a penalty score if the boltom- 
up parsing phase has not yielded an inactive edge of 
the correct kind within that portion. Finally, the fact 
that the grammar is assumed to have no e- 
productions means that an attempt to find a long 
sequence of categories in a short piece of chart is 
doomed to produce a penalty score; similarly a 
sequence of lexical categories cannot be found 
without penalty in a pordon of chart that is too long. 

Some of the above scoring parameters score an 
edge according what sorts of parses it could contri- 
bute to, not just according to bow internally plausible 
it seems. This is desirable, as we wish the construc- 
tion of globally most plausible solutions to drive the 
parsing. On the other hand, it introduces a number of 
problems for chart organisation. As the same edge 
(apart from its score) may be generated in different 
ways, we may end up with multiple possible scores 

for it. It would make sense at each point to consider 
the best of the possible scores associated with an 
edge to be the current score. In this way we would 
not have to repeat work for every differently scored 
version of an edge. But consider the following 
scenario: 

Edge A is added to the chart. Later edge B 
is spawned using A and is placed in the 
agenda. Subsequently A's scc~e increases 
because it is derived in a new and better 
way. This should affect B's score (and 
hence B's position on the agenda). 

If the score of an edge increases then the scores of 
edges on the agenda which were spawned from it 
should also increase. To cope with this sort of prob- 
lem, we need some sort of dependency analysis, a 
mechanism for the propagation of changes and an 
easily resorted agenda. We have not addressed these 
problems so far - our cterent implementation treats 
the score as an integral part of an edge and suffers 
fiom the resulting duplication problem. 

PRELIMINARY EXPERIMENTS 

To see whether the ideas of this paper make 
sense in practice, we have performed some very prel- 
iminaw experiments, with an inefficient implementa- 
tion of the chart parser and a small CF-PSG (84 rules 
and 34 word lexicon, 18 of whose entries indicate 
category ambiguity) for a fragment of English. We 
generated random sentences (30 of each length con- 
sidered) from the grammar and then introduced ran- 
dom ocxunences of specific types of errors into these 
sentences. The errors considered were none (i.e. leav- 
ing the correct sentence as it was), deleting a word, 
adding a word (either a completely unknown word or 
a word with an entry in the lexicon) and substituting 
a completely unknown word for one word of the sen- 
tence. For each length of original sentence, the 
re ,~ts  were averaged over the 30 sentences ran- 
domly generated. We collected the following statis- 
tics (see Table 1 for the results): 

BU cyc/e$ - the number of cycles taken (see 
below) to exhaust the chart in the initial (standard) 
bottom-up parsing phase. 

#$olns - the number of different "solutions" 
found. A "solution" was deemed to be a description 
of a possible set of errors which has a minimal 
penalty score and if corrected would enable a com- 
plete parse to be constructed. Possible errors were 
adding an extra word, deleting a word and substitut- 
ing a word for an instance of a given lexical category. 
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Table 1: Preliminary experimental results 

Error 

None 

Delete one word 

Add unknown word 

Add known word 

Subst unknown word 

Length of original 

3 

6 

9 

12 

3 

6 
9 

12 

BU cycles, , #Solns 

31 i 

69 1 
135 1 

198 1 

17 5 

50 5 
105 6 

155 7 

'3 29 1 
6 60 2 
9 105 2 

12 156 3 

3 

6 

9 
12 

3 
6 

9 
12 

37 3 

72 3 
137 3 

170 5 
17 2 

49 2 

96 2 

150 3 

First Last TD cycles 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

14 39 50 

18 73 114 

27 137 350 

33 315 1002 

9 17 65 
24 36 135 

39 83 526 

132 289 1922 

29 51 88 
. d  

43 88 216 

58 124 568 

99 325 1775 
17 28 46 

23 35 105 

38 56 300 
42 109 1162 

The penalty associated with a given set of errors was 
the number of em3~ in the set. 

First - the number of cycles of generalised 
top-down parsing required to find the first solution. 

Last - the number of cycles of generalised top- 
down parsing required to find the last solution. 

TD cyc/es - the number of cycles of generalised 
top-down parsing required to exhaust all possibilities 
of sets of errors with the same penalty as the first 
solution found. 

It was important to have an implementation- 
independent measure of the amount of work done by 
the parser, and for this we used the concept of a 
"cycle" of the chart parser. A "cycle" in this context 
represents the activity of the parser in removing one 
item from the agenda, adding the relevant edge to the 
chart and adding to the agenda any new edges that 
are suggested by the rules as a result of the new addi- 
tion. For instance, in conventional top-down chart 
parsing a cycle might consist of removing the edge 
<S from 0 to 6 needs [NP VI'] from 0 to 6> from the 
front of the agenda, adding this to the chart and then 
adding new edges to the agenda, as follows. Ftrst of 
all, for each edge of the form <NP from 0 to a needs 

0> in the chart the fundamental rule determines that 
<S from 0 to 6 needs [VP] from ct to 6> should be 
added. Secondly, for each rule NP -.., 7 in the gram- 
mar the top-down rule determines that <NP from 0 to 
* needs y from 0 to *> should be added. With gen- 
eralised top-down parsing, there are more rules to be 
considered, but the idea is the same. Actually, for the 
top-down rule our implementation schedules a whole 
collection of single additions ("apply the top down 
rule to edge a") as a single item on the agenda. When 
such a request reaches the front of the queue, the 
actual new edges are then computed and themselves 
added to the agenda. The result of this strategy is to 
make the agenda smaller but more structured, at the 
cost of some extra cycles. 

EVALUATION AND FUTURE WORK 

The preliminary results show that, for small 
sentences and only one error, enumerating all the 
possible minimum-penalty errors takes no worse than 
10 times as long as parsing the correct sentences. 
Finding the first minimal-penalty error can also be 
quite fast. There is, however, a great variability 
between the types of error. Errors involving com- 
pletely unknown words can be diagnosed reasonably 
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quickly because the presence of an unknown word 
allows the estimation of penalty scores to be quite 
accurate (the system still has to work out whether the 
word can be an addition and for what categories it 
can substitute for an instance of, however). We have 
not yet considered multiple errors in a sentence, and 
we can expect the behaviour to worsten dramatically 
as the number of errors increases. Although Table 1 
does not show this, there is also a great deal of varia- 
bility between sentences of the same length with the 
same kind of introduced error. It is noticeable that 
errors towards the end of a sentence are harder to 
diagnose than those at the start. This reflects the leR- 
fight orientation of the parsing rules - an attempt to 
find phrases starting to the right of an error will have 
a PBG score at least one more than the estimated PB, 
whereas an attempt m find phrases in an open-ended 
portion of the chart starting before an error may have 
a PBG score the same as the PB (as the error may 
occur within the phrases to be found). Thus more 
parsing attempts will be relegated to the lower parts 
of the agenda in the first case than in the second. 

One disturbing fact about the statistics is that 
the number of minimal-penalty solutions may be 
quite large. For instance, the ill-formed sentence: 

who has John seen on that had 

was formed by adding the extra word "had" to the 
sentence "who has John seen on that". Our parser 
found three other possible single errors to account for 
the sentence. The word "on" could have been an 
added word, the word "on" could have been a substi- 
tution for a complementiser and there could have 
been a missing NP after "on". This large number of 
solutions could be an artefact of our particular gram- 
ram" and lexicon; certainly it is unclear how one 
should choose between possible solutions in a 
grammar-independent way. In a few cases, the intro- 
duction of a random error actually produced a gram- 
matical sentence - this occurred, for instance, twice 
with sentences of length 5 given one random A__dded 
word. 

At this stage, we cannot claim that our experi- 
ments have done anything more than indicate a cer- 
tain concreteness to the ideas and point to a number 
of unresolved problems. It remains to be seen how 
the performance will scale up for a realistic grammar 
and parser. There are a number of detailed issues to 
resolve before a really practical implementation of 
the above ideas can be produced. The indexing stra- 
tegy of the chart needs to be altered to take into 
account the new parsing rules, and remaining prob- 
lems of duplication of effort need to be addressed. 

For instance, the generalised version of the funda- 
mental rule allows an active edge to combine with a 
set of inactive edges satisfying its needs in any order. 

The scoring of errors is another a r ~  which 
should be better investigated. Where extra words are 
introduced accidentally into a text, in practice they 
are perhaps unlikely to be words that are already in 
the lexicon. Thus when we gave our system sen- 
tences with known words added, this may not have 
been a fair test. Perhaps the scoring system should 
prefer added words to be words outside the lexicon, 
substituted words to substitute for words in open 
categories, deleted words to be non-content words, 
and so on. Perhaps also the confidence of the system 
about possible substitutions could take into account 
whether a standard spelling corrector can rewrite the 
acnmi word to a known word of the hypothesised 
category. A more sophisticated error scoring strategy 
could improve the system's behaviour considerably 
for real examples (it might of course make less 
difference for random examples like the ones in our 
experiments). 

Finally the behaviour of the approach with 
realistic grammars written in more expressive nota- 
tions needs to be established. At present, we are 
investigating whether any of the current ideas can be 
used in conjunction with Allport's (1988) "interest- 
ing corner" parser. 
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