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ABSTRACT 
We have analyzed definitions from Webster's 

Seventh New Collegiate Dictionary using Sager's 
Linguistic String Parser and again using basic UNIX 
text processing utilities such as grep and awk. Tiffs 
paper evaluates both procedures, compares their 
results, and discusses possible future lines of research 
exploiting and combining their respective strengths. 

Introduction 
As natural language systems grow more 

sophisticated, they need larger and more d ~ l e d  
lexicons. Efforts to automate the process of 
generating lexicons have been going on for years, 
and have often been combined with the analysis of 
machine-readable dictionaries. 

Since 1979, a group at HT under the 
leadership of Manha Evens has been using the 
machine-readable version of Webster' s Seventh New 
Collegiate Dictionary (W7) in text generation, 
information retrieval, and the theory of lexical- 
semantic relations. This paper describes some of our 
recent work in extracting semantic information from 
WT, primarily in the form of word pairs linked by 
lexical-semantic relations. We have used two 
methods: parsing definitions with Sager's Linguistic 
String Parser (LSP) and text processing with a 
combination of UNIX utilities and interactive editing. 

We will use the terms "parsing" and "text 
processing" here primarily with reference to our own 
use of the LSP and UNIX utilities respectively, but 
will also use them more broadly. "Parsing" in this 
more general sense will mean a computational 
technique of text analysis drawing on an extensive 
database of linguistic knowledge, e.g., the lexicon, 
syntax and/or semantics of English; "text processing" 
will refer to any computational technique that 
involves little or no such knowledge. 

This research is supported by National Science 
Foundation grant IST 87-03580. Our thanks also to 
the G & C Merriam Company for permission to use 
the dictionary tapes. 

Our model of the lexicon emphasizes lexical 
and semantic relations between words. Some of 
these relationships axe fan~iliar. Anyone who has 
used a dictionary or thesaurus has encountered 
synonymy, and perhaps also antonymy. W7 abounds 
in synonyms (the capitalized words in the examples 
below): 

(1) funny 1 la aj affording light mirth and 
laughter : AMUSING 

(2) funny 1 lb aj seeking or intended to amuse 
: FACETIOUS 

Our notation for dictionary definitions consists of: (1) 
the entry (word or phrase being defined); (2) the 
homograph number (multiple homographs are given 
sepmaw entries in W7); (3) the sense number, which 
may include a subsense letter and even a sub- 
subseuse number (e.g. 263); (4) the text of the 
definition. 

We commonly express a relation between 
words through a triple consisting of Wordl, Relation, 
Word2: 

(3) funny SYN amusing 
(4) funny SYN facetious 

A third relation, particularly important in W7 
and in dictionaries generally, is taxonomy, the 
species-genus relation or (in artificial intelligence) 
the IS-A relation. Consider the entries: 

(5) dodecahedron 0 0 n a solid having 12 plane 
faces 

(6) build 1 1 vt to form by ordering and uniting 
materials...  

These definitions yield the taxonomy Iriples 

(7) dodecahedron TAX solid 
(8) build TAX form 

Taxonomy is not explicit in definitions, as is 
synonymy, but is implied in their very structure. 
Some other relations have been frequently observed, 
e.g.: 

(9) driveshaft PART engine 
(10) wood COMES-FROM tree 

217 



The usefulness of relations in information 
retrieval is demonstrated in Wang et al. [1985] as 
well as in Fox [1980]. Relations are also important in 
giving coherence to text, as shown by Halliday and 
Hasan [1977]. They are abundant in a typical 
English language dictionary, us we will see later. 

We have recognized, however, that word- 
relation-word triples are not adequate, or at least not 
optimal, for expressing all the useful information 
associated with words. Some information is best 
expressed us unary attributes or feauLres. We have 
also recognized that phrases and even larger 
structures may on one hand be in some ways 
equivalent to single words, as pointed out by Becker 
[1975], or may on the other hand express complex 
facts that cannot be reduced to any combination of 
word-to- word links. 

Parsing 
Recognizing the vastness of the task of 

parsing a whole dictionary, most computational 
lexicologists have preferred approaches less 
comp,,t~tionally intensive and more specifically 
suited to their immediate goals. A partial exception 
is Amsler [1980], who proposed a simple ATN 
grammar for some definitions in the Merriam. 
Webster Pocket D/ctionary. More recently, Jensen 
and her coworkers at IBM have also parsed 
definitions. But the record shows that dictionary 
researchers have avoided parsing. One of our 
questions was, how justified is this avoidance? How 
much harder is parsing, and what rewards, ff any, 
will the effort yield7 

We used Sager's Linguistic String Parser, as 
we have clone for several years. It has been 
continuously developed since the 1970s and by now 
has a very extensive and powerful user interface us 
well as a large English grammar and a vocabulary 
(the LSP Dictionary) of over 10,000 words. It is not 
exceptionally fast - -  a fact which should be taken 
into account in evaluating the performance of parsers 
generally in dictionary analysis. 

Our efforts to parse W7 definitions began 
with simple LSP grammars for small sets of adjective 
[Ahlswede, 1985] and adverb [Klick, 1981] 
definitions. These led evenm, lly to a large grammar 
of noun, verb and adjective definitions [Ahlswede, 
1988], based on the Linguistic Siring Project's full 
English grammar [Sager, 1981], and using the LSP's 
full set of resources, including restrictions, 
transformations, and special output generation 
routines. All of these grammars have been used not 
only to create parse trees but also (and primarily) to 
generate relational triples linking defined words to 

the major words used in their definitions. 
The large definition grammar is described 

more fully in Ahlswede [1988]. We are concerned 
here with its performance: its success in parsing 
definitions with a minimum of incorrect or 
improbable parses, its success in identifying 
relational triples, and its speed. 

Input to the parser was a set of 8,832 
definition texts from the machine-readable WT, 
chosen because their vocabulary permitted them to be 
parsed without enlarging the LSP's vocab-I~ry. 

For parsing, the 8,832-definition subset was 
sorted by part of speech and broken into 100- 
definition blocks of nouns, transitive verbs, 
imransitive verbs, and adjectives. Limiting the 
selection to nouns, verbs and adjectives reduced the 
subset to 8,211, including 2,949 nouns, 1,451 
adjectives, 1,272 intransitive verbs, and 2,549 
transitive verbs. 

We were able to speed up the parsing process 
considerably by automatically extracting 
subvocabularies from the LSP vocabulary, so that 
for a IO0-definition input sample, for inslance, the 
parser would only have to search tln'ough about 300 
words instead of I0,000. 

Parsing the subset eventually required a little 
under 180 hours of CPU time on two machines, a 
Vax 8300 and a Vax 750. Total clock time required " 
was very little more than this, however, since almost 
all the parsing was done at night when the systems 
were otherwise idle. Table 1 compares the LSP's 
performance in the four part of speech categories. 

Part of 
speech of 
defd. word 

nouns 
adjectives 
inL verbs 
~'. verbs 
average 

Table 

Pet. of  Avg. no. Time (see.) Triples 
clefs, of parses per parse generated 
parsed per success per success 

77.63 1.70 11.05 11.46 
68.15 1.85 10.59 5.45 
64.62 1.59 11.96 6.62 
60.29 1.50 43.33 9.15 
68.65 1.66 18.89 9.06 

I. Performance time and parsing 
efficiency of LSP by part of speech of words defined 
(adapted from Fox et ul., 1988) 

In most cases, there is little variation among 
the parts of speech. The most obvious discrepancy is 
the slow parsing time for wansifive verbs. We are not 
yet sure why this is, but we suspect it has to do with 
W7"s practice of representing the defined verb's 
direct object by an empty slot in the definition: 

(11) madden 0 2 vt to make intensely angry 
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(12) magnetize 0 2 vt to communicate magnetic 
properties to 

The total number of triples generated was 
51,115 and the number of unique triples was 25,178. 
The most common triples were 5,086 taxonomles and 
7,971 modification relations. (Modification involved 
any word or phrase in the definition that modified the 
headword; thus a definition such as "cube: a regular 
solid . . . "  would yield the modification triple (cube 
MOD regular)). 

We also identified 125 other relations, in three 
categories: (1) "traditional" relmions, identified by 
previous researchers, which we hope to associate 
with axioms for making inferences; (2) syntactic 
relations between the defined word and various 
defining words, such as (in a verb definition) the 
direct object of the head verb, which we will 
investigate for possible consistent semantic 
significance; and (3) syntactic relations within the 
body of the definition, such as modifier-head, verb- 
object, etc, The relations in this last category were 
built into our grammar;, we were simply collecting 
s_t~_ti$~ics on their occurrence, which we hope 
even.rally to test for the existence of dictionary- 
specific selectional categories above and beyond the 
general English selectional categories already present 
in the LSP grammar. 

Figure 1 shows a sample definition and the 
triples the parser found in it. 

ABDOMEN 0 1 N THE PART OF THE BODY 
BETWEEN THE THORAX AND THE 
PELVIS 

(THE) pmod (PART) 
(ABDOMEN 0 1 N) lm (THE) 
(ABDOMEN 0 1 N) t (PART) 
(ABDOMEN 0 1 N) rm (OF THE BODY BETWEEN 

THE THORAX AND THE PELVIS) 
(THE) pmod (BODY) 
(THE) pmod (PELVIS) 
(THE) pmod (THORAX) 
(BETWEEN) pobj (THORAX) 
(BETWEEN) pobj (PELVIS) 
(ABDOMEN 0 1 N) part (BODY) 

Figure 1. A definition and its relational triples 

In this definition, "part" is a typical category 
1 relation, recognized by virtually all students of 
relations, though they may disagree about its exact 
nature. "Ira" and "rm" are left and right 
modification. As can be seen, "rm" does not involve 
analysis of the long posmominal modifier phrase. 
"pmod" and "pobj" are permissible modifier and 
permissible object, respectively; these are among the 
most common category 3 relations. 

We began with a list of about fifty relations, 
intending to generate plain parse trees and then 
examine them for relational triples in a separate step. 
It soon became clear, however, that the LSP itself 
was the best tool available for extracting information 
from parse trees, especially its own parse trees. 
Therefore we added a section to the grammar 
consisting of routines for identifying relations and 
printing out triples. The LSP's Restriction Language 
permitted us to keep this section physically separate 
from the rest of the grammar and thus to treat it as an 
independent piece of code. Having done this, we 
were able to add new relations in the com~e of 
developing the grammar. 

Approximately a third of the definitions in the 
sample could not be parsed with this grammar. 
During development of the grammar, we uncovered a 
great many reasons why definitions failed to parse; 
there remains no one fix which will add more than a 
few definitions to the success list. However, some 
general problem areas can be identified. 

One common cause of failure is the inability 
of the grammar to deal with all the nuances of 
adjective comparison: 

(13) accelerate 0 1 vt to bring about at an earlier 
point of time 

Idiomatic , ~ e s  of common words are a frequent 
source of failure: 

(14) accommodnto. 0 3c vt to make room for 

There are some errors in the input, for example an 
inlransitive verb definition labeled as transitive: 

(15) ache 1 2 vt to become fi l l~ with painful 
yearning 

As column 3 of Table 1 indicates, many 
definitions yielded multiple parses. Multiple parses 
were responsible for most of the duplicate relational 
triples. 

Finding relational triples by text processing 
As the performance statistics above show, 

parsing is painfully slow. For the simple business of 
finding and writing relational triples, it turns out to be 
much less efficient than a combination of text 
processing with interactive editing. 

We first used straight text processing to 
identify synonym references in definitions and reduce 
them to triples. Our next essay in the text 
processing/editing method began as a casual 
experiment. We extracted the set of intransitive verb 
definitions, suspecting that these would be the easiest 
to work with. This is the smallest of the four major 
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W7 part of speech categories (the others being nouns, 
adjectives, and Iransitive verbs) with 8,883 texts. 

Virtually all verb definition texts begin with 
to followed by a head verb, or a set of conjoined head 
verbs. The most common words in the second 
position in inwansitive verb definitions, along with 
their typical complements, were: 

become + noun or adj. phrase 
(774 occurrences in 8,482 definitions) 
mate + noun phrase [+ adj. phrase] 
(526 occurrences) 
be + various 
(408 occurrences) 
mow + adverbial phrase 
(388 occurrences) 

Definitions in become, make and move had 
such consistent forms that the core word or words in 
the object or complement phrase were easy to 
identify. Occasional prepositional phrases or other 
posmominal constructions were easy to edit out by 
hand. From these, and from some definitions in serve 
as, we were able to generate triples representing five 
relations. 

(16) age 2 2b vi to become mellow or mature 
(17) (age 2 2b vi) va-incep (mature) 
(18) (age 2 2b vi) va-incep (mellow) 

(19) add 0 2b vi to make an addition 
(20) (add 0 2b vi) vn-canse (addition) 

(21) accelerate 0 I vi to move faster 
(22) (accelerate 0 1 vi) move (faster) 

(23) add 0 2a vi to serve as an addition 
(24) (add 0 2a vi) vn-be (addition) 

(25) annotate 0 0 vi to make or furnish critical or 
explanatory notes 

(26) (annotate 0 0 vi) va-cause (critical) 
(27) (annotate 0 0 vi) va-cause (explanatory) 

We also al~empted to generate taxonomic 
triples for inwansitive verbs. In verb definitions, we 
identified conjoined headwords, and otherwise 
deleted everything to the right of the last headword. 
This was straightforward and gave us almost 1O,000 
triples. 

These triples are of mixed quality, however. 
Those representing very common headwords such as 
be or become are vacuous; worse, our lexically dumb 
algorithm could not recognize phrasal verbs, so that a 
phrasal head term such as take place appears as as 
take, with misleading results. 

The vacuous triples can easily be removed 
from the total, however, and the incorrect triples 

resulting from broken phrasal head terms are 
relatively few. We therefore felt we had been highly 
successful, and were inspired to proceed with nouns. 
As with verbs, we are primarily interested in relations 
other than taxonomy, and these are most commonly 
found in the often lengthy postoheadword part of the 
definitions. 

The problems we encountered with nouns 
were generally the same as with inlransitive verbs, 
but accentuated by the much larger number (80,022) 
of noun definition texts. Also, as Chodorow et al. 
[1985] .have noted, the boundary between the 
headword and the postnominal part of the definition 
is much harder to identify in noun definitions than in 
verb definitions. Our first algorithm, which had no 
lexical knowledge except of prepositions, was about 
88% correct in finding the boundary. 

In order to get better results, we needed an 
algorithm comparable to Chodorow's Head Finder, 
which uses part of speech information. Our strategy 
is first to tag each word in each definition with all its 
possible parts of s i x , h ,  then to step through the 
definitions, using Chodorow's heuristics (plus any 
others we can find or invent) to mark prenonn-noun 
and nunn-posmoun boundaries. 

The first step in tagging is to generate a 
tagged vocabulary. We nsed an awk program to step 
through the entries and nm-ons, appending to each 
one its part or parts of speech. (A run-on is a 
subentry, giving information about a word or phrase 
derived from the entry word or phrase; for instance, 
the verb run has the run-ons run across, run ~fter, 
and run a temperature among others; the noun rune 
has the run-on adjective runic.) Archaic, obsolete, or 
dialect forms were marked as such by W7 and could 
be excluded. 

Turning to W7's defining vocabulary, the 
words (and/or phrases) actually employed in 
definitions, we used Mayer's morphological analyzer 
[1988] to identify regular noun plurals, adjective 
comparatives and superlatives, and verb tense forms. 
Following suggestions by Peterson [1982], we 
assumed that words ending in -/a and -ae (virt~mlly 
all appearing in scientific names) were nouns. 

We then added to our tagged vocabulary 
those irregular noun plurals and verb tense forms 
expressly given in W7. Unforumately, neither W7 
nor Mayer's program provides for derived 
compounds with irregular plurals; for instance, W7 
indicates men as the plural of man but there are over 
300 nouns ending in -man for which no plural is 
shown. Most of these (e.g., salesman, trencherman) 
take plurals in -men but others (German, shaman) do 
not. These had to be identified by hand. Another 
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group of nouns, whose plurals we found convenient 
rather than absolutely necessary to treat by hand, is 
the 200 or so ending in -ch. (Those with a hard -ch 
(patriarch, loch) take plurals in -chs; the rest take 
plurals in -ches.) We could have exploited W7's 
pronunciation information to distinguish these, but 
the work would have been well out of proportion to 
the scale of the task. 

After some more of this kind of work, we had 
a tagged vocabulary of 46,566 words used in W7 
definitions. For the next step, we chose to generate 
tagged blocks of definitions (rather than perform 
tagging on the fly). We wrote a C program to read a 
text file and replac~ each word with its tagged 
counterpart. (We are not yet attempting to deal with 
phrases.) 

Head finding on noun definitions was done 
with an awk program which examines consecutive 
pairs of words (working from right to left) and marks 
prenoun-noun and nonn-posmoun boundaries. It 
recognizes certain kinds of word sequences as 
beyond its ability to disambiguate, e.g.: 

(28) alarm 1 2a n a [ signal }? warning } of 
danger 

(29) aitatus 0 0 n a { divine }7 imparting } of 
knowledge or power 

The result of all this effort is a rudimentary 
parsing system, in which the tagged vocabulary is the 
lexicon, the tagging program is the lexical analyzer, 
and the head finder is a syntax analyzer using a very 
simple finite state grammar of about ten rules. 
Despite its lack of linguistic sophistication, this is a 
clear step in the direction of parsing. 

And the effort seems to be justified. 
Development took about four weeks, most of it spent 
on the lexicon. (And, to be sure, mote work is still 
needed.) This is more than we expected, but 
considerably less than the eight man-months spent 
developing and testing the LSP definition grammar. 

Tagging and head finding were performed on 
a sample of 2157 noun definition texts, covering the 
nouns from a through anode. 170 were flagged as 
ambiguous; of the remaining 1987, all but 58 were 
correct for a success rate of 97.1 percent. 

In 37 of the 58 failures, the head finder 
mistakenly identified a noun (or polysemous 
adjective/noun) modifying the head as an 
independent noun: 

(30) agiotage 0 1 n ( exchange } business 
(3 I) alpha 1 3 n the { chief ) or brightest star of 

a constellation 

There were 5 cases of misidenfification of a 

following adjective (parsable as a noun) as the head 
n o u n :  

(32) air mile 0 0 n a unit { equal } to 6076.1154 
feet 

The remaining failures resulted from errors in the 
creation of the tagged vocabulary (5), non-definitien 
dictionary lines incorrectly labeled as definition texts 
(53, and non-noun definitions inconecfly labeled as 
noun definitions (6). The last two categories arose 
from errors in our original W7 tape. 

Among the 170 definitions flagged as 
ambiguous, there were two mislabeled definitions 
and one vocabulary en~r. There were 128 cases of 
noun followed by an -/n& form; in 116 of these the 
-/ng form was a participle, otherwise it was the head 
noun. (The other case flagged as ambiguous was of a 
possible head followed by a preposition also parsable 
as an adjective. This flag turned out to be 
unnecessary.) There were also seven instances of 
miscellaneous misidentification of a modifying noun 
as the head. Thus the "success rate" among these 
definitions was 148/170 or 87.1 percent. 

We are still working on improving the head 
finder, as well as developing similar "grammars" for 
posmominal phrases and for the major phrase 
str~tures of other definition types. In the course of 
this work we expect to solve the major "problem in 
this parficnl~ grammar, that of prenominal modifiers 
identified as heads. 

Parsing, again 
Simple text processing, even without such 

lexical knowledge as parts of speech, is about as 
accurate as parsing in terms of correct vs. incorrect 
relational triples identified. (It should be noted that 
both methods require hand checking of the output, 
and it seems unlikely that we will ever completely 
eliminate this step.) The text processing strategy can 
be applied to the entire corpus of definitions, without 
the labor of enlarging a parser lexicon such as the 
LSP Dictionary. And it is much faster. 

This way of looking at our results may make 
it appear that parsing was a waste of time and effort, 
of value only as a lesson in how not to go about 
dictionary analysis. Before coming to any such 
conclusion, however, we should consider some other 
factors. 

It has been suggested that a more "modem" 
parser than the LSP could give much faster parsing 
times. At least part of the slowness of the LSP is due 
to the completeness of its associated English 
grammar, perhaps the most detailed grammar 
associated with any natural language parser. Thus a 

221 



probable tradcoff for greater speed would be a lower 
percentage of definitions successfully parsed. 

Nonetheless, it appears that the immediate 
future of parsing in the analysis of dictionary 
definitions or of any other large text corpus lies in a 
simpler, less computationally intensive parsing 
technique. In addition, a parser for definition 
analysis needs to be able to return partial parses of 
difficult definitions. As we have seen, even the 
LSP's detailed grammar failed to parse about a third 
of the definitions it was given. A partial parse 
capability would facilitate the use of simpler 
grammars. 

For further work with the machine-~Jul~ble 
W7, another valuable feature would be the ability to 
handle ill-formed input. This is perhaps startling, 
since a dictionary is supposed to be the epitome of 
wellftxmedness, by definition as it were. However, 
Peterson [1982] counted 903 typographical and 
spelling en~rs in the machine-readable W7 
(including ten errors carried over from the printed 
WT), and my experience suggests that his count was 
conservative. Such errors are probably little or no 
problem in more recent MRDs, which are used as 
typesetter input and are therefore exacdy as correct 
as the printed dictionary; exrots creep into these 
dictionaries in other places, as Boguraev [1988] 
discovered in his study of the grammar codes in the 
Longman Dictionary of Contemporary English. 

Before choosing or designing the best parser 
for the m~k, it is worthwhile to define an appropriate 
task: to determine what sort of information one can 
get from parsing that is impossible or impractical to 
get by easier means. 

One obvious approach is to use parsing as a 
backup. For instance, one category of definitiuns that 
has steadfastly resisted our text processing analysis is 
that of verb definitions whose headword is a verb 
plus separable particle, e.g. give up. A text 
processing program using part-of-sgw.~h tagged 
input can, however, flag these and other troublesome 
definitions for further analysis. 

It still seems, though, that we should be able 
to use parsing more ambitiously than this. It is 
intrinsically more powerful; the techniques we refer 
to here as "text processing" mostly only extract 
single, stereotyped fragments of information. The 
most powerful of them, the head finder, still performs 
only one simple grammatical operation: finding the 
nuclei of noun phrases. In conwast, a "real" parser 
generates a parse tree containing a wealth of 
structural and relational information that cannot be 
adequately represented by a fcenn~li~m such as 
word-relation-word triples, feature lists, etc. 

Only in the simplest definitions does our 
present set of relations give us a complete analysis. 
In most definitions, we are forced to throw away 
essential information. The definition 

(33) dodecahedron 0 0 n a solid having 12 plane 
faces 

gives us two relational triples: 

(34) (dodecahedron 0 0 n) t (solid) 
(35) (dodecahedron 0 0 n) nn-aUr (face) 

The first triple is straightforward. The second triple 
tells us that the noun dodecahedron has the (noun) 
auribute face, i.e. that a dodecahedron has faces. 
But the relational triple structme, by itself, cannot 
capture the information that the dodecahedron has 
specifically 12 faces. We could add another triple 

(36) (face) nn-atlr (12) 

i.e., saying that faces have the anribute of  (a 
cardinality of) 12, but this Iriple is correct only in the 
context of the definition of a dodecahedron. It is not 
permanendy or generically true, as are (28) and (29). 

The information is present, however, in the 
parse Iree we get from the LSP. It can be made 
somewhat more accessible by putting it into a 
dependency form such as 

(37) (soild (a) (having (face (plural) (12) 
(plane)))) 

which indicates not only that face is an attribute of 
that solid which is a dodecahedron, but that the 
~ t y  12 is an attribute of face in this particular 
case, as is also plane. 

In order to be really useful, a structure such as 
this must have conjunctionphrases expanded, 
passives inverted, inflected forms analyzed, and other 
modifications of the kind often brought under the 
rubric of "transformations." The LSP can do this sort 
of thing very welL The defining words also need to 
be disambiguated. We do not hope for any fully 
automatic way to do this, but co-¢r.currence of 
defining words, perhaps weighted according to their 
position in the dependency slructure, would reduce 
the human di~mbiguator's task to one of post- 
editing. This might perhaps be further simplified by 
a customized interactive editing facility. 

We do not need to set up an elaborate 
network data structure, though; the Lisp-like tree 
structure, once it is transformed and its elements 
disambiguated, constitutes a set of implicit pointers 
to the definitions of the various words. 

Even with all this work done, however, a big 
gap remains between words and ideal semantic 
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concepts. Let us consider the ways in which W7 has 
defined all five basic polyhedrons: 

(38) dodecahedron 0 0 n a solid having 12 plane 
faces 

(39) cube 1 1 n the regular solid of six equal 
square sides 

(40) icosahedmn 0 0 n a polyhedron having 20 
faces 

(41) octahedron 0 0 n a solid bounded by eight 
plane faces 

(42) tetrahedron 0 0 n a polyhedron of four faces 
(43) polyhedron 0 0 n a solid formed by plane 

faces 

The five polyhedrons differ only in their 
number of faces, apart from the cube's additional 
attribute of being regular. There is no reason why a 
single syntactic/semantic structure could not be used 
to define all five polyhedrons. Despite this, no two of 
the definitions have the same structure. These 
definitions illaslrate that, even though W7 is fairly 
stereotyped in its language, it is not nearly as 
stereotyped as it needs to be for large scale, 
automatic semantic analysis. We are going to need a 
great deal of sophistication in synonymy and moving 
around the taxonomic hierarchy. (It is worth 
repeating, however, that in building our lexicon, we 
have no intention of relying exclusively on the 
information contained in W7). 

Figure 2 shows a small part of a possible 
network. In this sample, the definitions have been 
parsed into a Lisp-like dependency slructure, with 
some wansformations such as inversion of passives, 
but no attempt to fit the polyhedron definitions into a 
single semantic format. 

(cube 1 1) T (solid 3 1 (the) (regular) 
(of (side 1 6b (PL) (six) 

• (equal) (square}) ) ) 
(dodecahedron 0 0) T (solid 3 1 (a) 

(have (OBJ (face 1 5a5 (PL) 
(12) (plane))))) 

(icosahedron 0 0) T (polyhedron (a) 
(have (OBJ (face 1 5a5 (PL) 
( 2 0 ) )  ) ) ) 

(octahedron 0 O) T (solid 3 1 (a) 
(bound (SUBJ (face 1 5a5 (PL) 
(eight) (plane)) ) ) ) 

(tetrahedron 0 0) T (polyhedron (a) (of 
(face 1 5a5 (PL) (four)) ) ) 

(polyhedron 0 0) T (solid 3 1 (a) (form 
(SUBJ (face 1 5a5 (PL) 
(plane)) ) ) ) 

(solid 3 1) T (figure (a) (geometrical) 
(have (OBJ (dimension- (PL) 
(three)) ) ) ) 

(face 1 5a5) T (surface 1 2 (plane) 
(bound (OBJ (solid 3 1 (a) 
(geometric)) ) ) ) 

(side 1 6a) T (line (a) (bound (OBJ 
(NULL)) ) (of (figure (a) 
(geometrical)) ) ) 

(side 1 6b) T (surface 1 2 (delimit 
(OBJ (solid (a))))) 

(surface 1 2) T (locus (a) (or (plane) 
(curved)) (two-dimensional) 
(of (point (PL)) . . .)) 

Figure 2. Part of a "network" of parsed definitions 

If this formalism does not look much like a 
network, imagine each word in each definition (the 
part of the node to the right of the taxonomy marker 
'W") serving as a pointer to its own defining node. 
The resulting network is quite dense. We simplify by 
leaving out other parts of the lexical entry, and by 
including only a few disambignations, just to give the 
flavor of their presence. Disambignation of a word is 
indicated by the inclusion of its homograph and sense 
numbers (see examples 1 and 2, above). 

Summary 
In the process of developing techniques of 

dictionary analysis, we have learned a variety of 
lessons. In particular, we have learned (as many 
dictionary researchers had suspected but none had 
attempted to establish) that full namral-langnage 
parsing is not an efficient procedure for gathering 
lexical information in a simple form such as 
relational Iriples. This realization stimulated us to do 
two things. 

F'n~'t, we needed to develop faster and more 
reliable techniques for extracting triples. We found 
that many Iriples could be found using UNIX text 
processing utilities combined with the recognition of 
a few structural patterns in definitions..These 
procedures are subject to further development and 
refinement, but have already yielded thousands of 
triples. 

Second, we were inspired to look for a form 
of data representation that would allow our lexical 
d-tabase to exploit the power of full natural-language 
parsing more effectively than it can through triples. 
We are now in the early stages of investigating such 
a representation. 
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