
CONTEXT-FRKFNESS OF THE LANGUAGE ACCEPTED
BY MARCUS' PARSER

R. Nozohoor.-FarshJ
School of Computing Sdence. Simon Fraser Unlversit3"

Buruaby. British Columbia, Canada VSA 156

ABSTRACT

In this paper, we prove that the set of sentences parsed
by M~cus' parser constitutes a context-free language. The
proof is carried out by construing a deterministic pushdown
automaton that recognizes those smngs of terminals that are
parsed successfully by the Marcus pa~er.

1. In~u~on

While Marcus [4] does not use phrase mucture rules as
base grammar in his parser, he points out some correspondence
between the use of a base rule and the way packets are
acuvated to parse a constmcu Chamlak [2] has also assumed
some phrase structure base ~ in implementing a Marcus
style parser that handles ungrammatical situations. However
neither has suggested a type for such a grammar or the
language accepted by the parser. Berwick [1] relates Marcus'
parser to IX(k.0 context-free grammars. Similarly, in [5] and
[6] we have related this parser to LRRL(k) grammars.
Inevitably. these raise the question of whether the s~s=g set
parsed by Marcus' parser is a context-free language.

In this paper, we provide the answer for the above
que'.~/on by showing formally that the set of sentences accepted
by Marcus' parser constitutes a context-free language. Our
proof is based on simulating a simplified version of the parser
by a pushdown automaton. Then some modificauons of the
PDA are suggested in order to ascertain that Marcus' parser.
regardless of the s~a~mres it puts on the input sentences,
accepts a context-free set of sentences. Furthermore. since the
resulung PDA is a deterministic one. it conRrms the
deterrmnism of the language parsed by this parser. Such a
proof also provides a justification for a.~uming a context-free
underlying grammar in automatic generation of Marcus type
parsers as discussed in [5] and [6].

2. Assumption of a finite size buffer

Marcus' parser employs two data su'ucmres: a pushdown
stack which holds the constructs yet to be completed, and a
finite size buffer which holds the lookaheads. The iookaheads
are completed constructs as well as bare terminals. Various
operations are used to manipulate these data struaures. An

"attentiun shift" operation moves a window of size k-3 to a
given position on the buffer. This occurs in pazsing some
constructs, e.g., some NP's, in par-dcul~ when a buffer node

other than the first indicates start of an NP. "Restore buffer"
restores the window to its previous position before the last
"attention shift'. Marcus suggests that the movements of the
window can be achieved by employing a stack of displacements
from the beginning of the buffer, and in general he suggests
that the buffer could be unbounded on the fight. But in
practice, he notes that he has not found a need for more than
five ceils, and PARSIFAL does not use a stack to implement
the window or virtual buffer.

A comment regar~ng an infinite buffer is in place here.
An unbounded buffer would yield a passer with two stacks.
Generally. such parsers characterize context-sensitive languages
and are equivalent to linear bounded automa~ They have also
been used for pa.mng some context-free languages. In this role
they may hide the non-determinism of a context-free language
by storing an unbounded number of lonkaheads. For example.
LR-regular [3], BCP(m,n), LR(k.-) and FSPA(k) parsers [8] are
such parsers. Furthermore, basing parsing decisions on the
whole left contexts and k Iookaheads in them has often resulted
in defining classes of context-free (context-sensitive) grammars
with undecidable membership. LR-reguh~. IX(L=) and
FSPA(k) are such classes. The class of GLRRL(k) grammars
with unbounded buffer (defined in [5]) seems to be the known
exception in this category that has decidable membership.
Waiters [9] considers context--sensitive grammars with
deterministic two--stack parsers and shows the undeddabiliD' of
the membership problem for the class of such grammars.

In this paper we assume that the. buffer in a Marcus
style parser can only be of a finite size b (e.g.. b=5 in Marcus'
parser). The limitation on the size of the buffer has two
important consequences. First. it allows a proof for the
context-freeness of the language to be given in terms of a
PDA. Second, it facilitates the design of an effecuve algorithm
for automatic generation of a parser. (However. we should add
that: 1- some Marcus style parsers that use an unbounded
buffer in a consu'ained way. e.g., by resuming the window to
the k r i s h t m o s t elements of the buffer, are equivalent to
pushdown automata. 2- Marcus style parsers with unbounded
buffer, similar to GLRRL parsers, can still be constructed for
those languages which ale known to be context-free.)

1 1 7

3. Simplified parser

A few reswictions on Marcus' parser will prove to be
convenient in outli-i- 5 a proof for the context-freene~ of the
language accepted by it.

(i) Prohibition of features:
Marcus allows syntactic nodes to have features containing the
grammatical properties of the constituents that they represenL
For implementation purposes, the type of a node is also
considered as a feature. However, here a distinction will be
made between this feature and others. We consider the type of
a node and the node itself to convey the same concept (ke., a
non-terminal symbol). Any other feature is disailowecL In
Marcus' parser, the binding of traces is also implemented
through the use of features. A trace is a null deriving
non-termimJ (e.g., an NP) that has a feature pointing to
another node, Le., the binding of the trace. We should mess at
the outset that Marcus' parser outputs the annotated surface
su'ucture of an utterance and traces are intended to be used by
the semantic component to recover the underlying
predicate/argument structure of the utterance. Therefore one
could put aside the issue of trace registers without affe~ng any
argument that deals with the strings accepted by the parser, i.e.,
frontiers of surface su'ucmre~ We will reintroduce the features
in the generalized form of PDA for the completeness of the
simulation.

fib Non-acfessibilit~' of the oar~¢ tree;
Although most of the information about the left context is
captured through the use of the packeting mechanism in
Marcus' parser, he nevertheless allows limited access to the
nodes of the partial parse tree (besides the current active node)
in the ac6on parts of the grammar rules. In some rules, after
the initial pattern roaches, conditional clauses test for some
property of the parse tree. These tests are limited to the left
daughters, of the current active node and the last cyclic node
(NP or S) on the stuck and its descendants. It is plausible to
eliminate tree accessibility entirely through adding new packets
and/or simple flags. In the simplified parser, access to the
partial parse tree is disallowed. However. by modifying the
stack symbols of the. PDA we will later show that the proof of
context-freeness carries over to the general parser (that tests
limited nodes of parse tree).

(iii) Atomic actions:
Action segments in Marcus' grammar rules may contain a series
of basic operations. To simplify the mnulation, we assume that
in the simplified parser actions are atomic. Breakdown of a
compound action into atomic actions can be achieved by
keeping the first operation in the original rule and inuoduclng
new singleton packets containing a default pattern and a
remaining operation in the a~on parx These packets will
successively dea~vate themselves and activate the next packet
much like "run <rule> next"s in PIDGIN. The last packet will

activate the first if the original rule leaves the packet still
active. Therefore in the simplified parser action segments are of
the following forms:

(1) Activate packetsl; [deactivate packets2].
(2) Deactivate packets1; [a~vate packets2].
(3) Attach ith; [deactivate packetsl]: [activate packets2].
(4) [Deactivate packetsl]: create node; activate packets2.
(5) [Deactivate packets1]; cattach node: activate packets2. ~
(6) Drop; [deactivate packets].]; [activate packets2].
(7) Drop into buffer; [deactivate packetsl];

[activate packets2].
(8) Attention shift (to ith cell); [deactivate packetsl];

[a~vate packe~].
(9) Restore buffer; [deactivate packetsl]; [activate packets2].

Note that "forward attention shift has no explicit command in
Marcus' rules. An "AS" prefix in the name of a rule implies
the operation. Backward window move has an explicit command
"restore buffer'. The square brackets in the above forms
indicate optional parrs. Feature assignment operations are
ignored for the obvious reason.

4. Simulation of the simplified parser

In this s~'fion we construct a PDA equivalent to the
simplified parser. This PDA recognizes the same string set that
is accepted by the parser. Roughly, the states of the PDA are
symbolized by the contents of the parser's buffer, and its stack
symbols are ordered pairs consisting of a non-terminai symbol
(Le.. a stack symbol of the parser) and a set of packets
associated with that symbol

Let N be the set of non-terminal symbols, and Y" be
the set of terminal symbols of the pazser. We assume the top
S node, i.e., the root of a parse tree, is denoted by So, a
distinct element of N. We also assume that a f'L"~I packet is
added to the PIIX3IN 8ranm~ar. When the parsing of a
sentence is completed, the activation of this packet will cause
the root node So to be dropped into the buffer, rather than
being left on the stack. Furthermore, let P denote the set of
all packets of rules, and 2/' the powerset of P, and let
P.P~,P2.- be elements of 2/'. When a set of packets P is active,
the pattern segments of the rules in these packets are compared
with the current active node and contents of the viruml buffer
(the window). Then the action segment of a rule with highest
priority that matches is executed. In effect the operation of the
parser can be characterized by a partial function M from a~ve
packets, current active node and contents of the window into
atondc actions, ke.

M: 2~N(1)~fV (k) "* ACTIONS

*Cauach" is used as a short notation for "create and
attach'.

118

where V = N U ~, V(k)= V0+VI+_+Vk and AC"I'IONS is the
set of atomic actions (1) - (9) discussed in the previous section.

Now we c a n consu-act the equivalent PDA
A=(Q2.r,r,6,qo,Ze,f) in the following way.

Z = the set of input symbols of A, is the set of terminal
symbols in the simplified parser.
r = the set of stack symbols [X.P], where XeN is a
non-terminal symbol of the parser and P is a set of packets.
Q = the set of states of the PDA, each of the form
<P~,P,,buffer>, where P~ and P~ are sets of packem. In general
Pt and P: are erupt3" sets except for those states that represent
dropping of a current a~ve node in the parser. Pt is the set
of packets to be activated explicitly after the drop operation,
and P~ is the set of those packets that are deactivated. "buffer"

a suing in (] (1)v) (m)[v(k) , where 0~r~b-k The last
vertical bar in "buffer" denotes the position of the current
window in the parser and those on the left indicate former
window positions.
qo = the initial state = ¢~,~X>, where X denotes the null
suing.
f = the final state = <~.e~S,>. This state corresponds to the
outcome of an activation of the final packet in the parser. In
this way, i.e., by dropping the So node into the buffer, we can
show the acceptance of a sentence simultaneously by empty
stack and by final state.
Z, = the start symbol - [S~,P~, where P, is the set of initial
packets, e.~, {SS-Start, C-Pool} in Marcus' parser.
6 = the move function of the PDA, deemed in the following
way:

Let P denote a set of active packets, X an active node
and WIW2...W n, n < k, the content of a window. Let
o[WIW2...WnS be a suing (representing the buffer) Such that:
~ e ([(1) V)(b-k) and " fleV where Length(o WlW2_WnB)~b.
and a ' is the suing a in which vertical bar's are erased.

~on-),-move~; The non-X-moves of the PDA A correspond to
bringing the input tokens into the buffer for examination by
the parser. In Marcus' parser input tokens come to the
attention of parser as they are needed. Therefore. we can
assume that when a rule tests the contents of n cells of the
window and there are fewer tokens in the buffer, terminal
symbols will be brought into the buffer. More specifically, if
M(P,X,W!...W n) has a defined value (i.e., P contains a packet
with a rule that has pattern segment [X][W:t]_[Wn]), then
(<e ,o ~lwz _w~ >,w3. ~.[X.P]) =

(<o.O.a[WI-WjW3÷I>.[X.P]) for all a. and for j = 0, _, n--1
and Wj÷l eI'~.

),-moves: By 7,-moves, the PDA mimics the actions of the
parser on successful matches. Thus the ~-function on), input
corresponding to each individual atomic action is determined
according to one of the following cases,

C ~ ¢ (I) and (2):
If M(P,X,W!W2...W n) = "activate PI; deactivate P2" (or
"deactivate P2; activate P].'), then

6 (<~ ,~ ~[w I w 2 . .w n B >A.[x.P]) =
(<¢,¢,o[WIW2...Wn~>,[X,(P U PI)--P2]) for all a md B.
Case (3):
If M(P,X,WIW2_W:L-W n) = "attach ith (normally i is I);
deactivate])1; activate P2", then

(<~ .0 ," I w 1 - . w t .-.Wn B >A .[x~']) -
(<¢,¢,alW1...W£_iW£+1..WnB>. [X,(P 11 P2)-PI]) for all

Cases (4) and ($):
If M(P,X,WI_Wn)= "deactivate P1; create/cattach Y; activate
P2" then
6 (<e .o a 1%..-.Wn B >A,[x,P]) =
(< ~ , , , ~ l w z . . w n a > . [x,P-P1][Y~'2]) for ~u o and B.
Case (6):
If M(P.X,W1...W n) = "drop; deactivate P1; activate P2", then
6(<o,e,olW!_Wna>),,[X.P]) = (<P2,PlaIWI..WnS>,7`) for all
o and B, and fm'thermore

6 (<P2'PI'a[W1 -Wn B >,7`.[Y,P'~) "
(<~,~. alWI..WnB>, [Y.(P' U P2)-PI]) for all a and 8, and
F e 2 P. YeN.
The latter move corresponds to the deactivation of the packets
PI and activation of the packets P2 that follow the dropping of
a curt'erie active node.
Case (7):
If M(P,X,WI-W n) = "drop into buffer; deactivate PI; activate
P2", (where n < k), then
6 (< , . , . , I w l . . W n a > . x . [x y]) - (<P2,PI,aIXWI..WnB>A) for
all a and a, and furthermore

6 (~ 2 a'x ~1 x wz . -W n a >A,[Y~q) -
(<o,e,~IXW~..Wna>, [Y.(P' U P2)-P:].]) for all a and B. and
for all P ' e Y and YeN.
Case (8):
If M(P.X.Wl..Wi...W n) = "shift attention to ith cell; deactivate
PX; activate P2", then
6 (<o ,~ ~ l w l - . w ~ _ w n a >A .ix.P]) =
(<, .e,a lwl . . .~w£_WnB>. [x,(P v P2)-P1]) for all o and B.
Case (9):
If M(P,X,Wi...Wn)= "restore buffer; deactivate PI; a~vate P2",
then
6 (<o .o ,a ,I o ,[WX---Wn a >.X.[X.P]) =
(<e,e,a,[a,Wl...Wna>. [X.(P U P2)-P1]) for all a,, , , , and S
such that ¢~ contains no vertical bar.

Now from the construction of the PDA, it is obvious
that A accepts those strings of terminals that are parsed
successfully by the simplified parser. The reader may note that
the value of 6 is undefined for the "cases in which
M(X,P,Wt_Wn) has multiple values. This accounts for the fact
that Marcos' parser behaves in a deterministic way.
Furthermore. many of the states of A are unreachable. This is
due to the way we constructed the PDA, in which we
considered activation of every subset of P with any active node

119

and any Iookahead window.

5. Simulation of the general parser

It is possible to lift the resu'ictions on the simpLified
parser by modifying the PDA. Here. we describe how Marcus'
parser can be simulated by a generalized form of the PDA.

fi) Non-atomic actions;
The behaviour of the parser with non-atomic actions can be

described in terms of M'eM*. a sequence of compositions of

M. which in turn can be specified by a sequence 6' in 6".

(ii) Accef~ibilirv 9f desefndants of current 8ctive node. and
current cyclic node:
What parts of the partial parse tree are accessible in Marcus'
parser seems to be a moot point Marcus [4] states

"the parser can modify or directly examine exactly two
nodes in the active node stack.., the current active node
aad S or NP node closest to the bottom of gacl¢...
called the dominming cy¢lic node.., or... current cyclic
node... The parser ia aLso free to exanune the
descendants of these two nodex although the parser
cannot modify them. It does this by specif)~ng the
exact path to the descendant it wishes to examine."

The problem is that whether by descendants of these
two nodes, one means the immediate daughters, or descendants
at arbiu'ary levels. It seems plausible that accessibility of
immediate descendants is sufficient. To explore this idea, we

need to examine the reason behind pardal tree accesses in
Marcus' parser. It could be argued that tree accessibility serves
two purposes:

(I) Examinin~ what daughters are attached to the current active
node considerably reduces the number of packet rules one
needs to write.
(2) Examining the current cyclic node and its daughters serves
the purpose of binding traces. Since transformations are applied

in each transformat/onal cycle to a single cyclic node, it seems

urmecessary to examine descendants of a cyclic node at

arbitrarily lower levels.

If Marcus' parser indeed accesses only the immediate

daughters (a brief examination of the sample grammar [4] does

not seem to conwadict this): then the accessible part of the a

parse tree can represented by a pair of nodes and their

daughters. Moreover, the set of such pairs of height--one trees

are finite in a grammar. Furthermore, if we extend the access

to the descendants of these two nodes down to a finite fixed

depth (which, in fact seems to have a supporting evidence from

X theory and C-command), we will still be able to represent

the accessible pans of parse trees with a finite set of f'mite
sequences of fixed height trees,

A second interpretation of Marcus' statement is that
descendants of the current cyclic node and current active node

at arbium-ily lower levels are accessible to the parser. However,
in the presence of non--cyclic recussive constructs, the notion of
giving an exact path to a descendant of the current a~ve or

current cyclic node would be inconceivable; in fact one can

argue that in such a situation parsing cannot be achieved

through a i'mite number of rifle packets. The reader is

reminded here that PIDGIN (unlike most programming

languages) does not have iterative or re, cursive constructs to test

the conditions that are needed under the latter interpretation.

Thus, a meaningful assumption in the second case is to

consider every recursive node to be cycl/c, and to Limit

accessibility to the sobtree dominated by the current cyclic node

in which branches are pruned at the lower cyclic nodes. In

general, we may also include cyclic nodes at fixed recursion
depths, but again branches of a cyclic node beyond that must
be pruned, in this manner, we end up with a finite number of
finite sequences (hereafmr called forests) of finite trees
represenung the accessible segments of partial parse uee~

Our conclusion is that at each stage of parsing the
accessible segment of a parse tree. regar~ess of how we
interpret Marcus' statement, can be represented by a forest of
trees that belong to a finite set Tlc,h. Tlc,h denotes the set of
all trees with non-termirml roots and of a maximum height h.
In the general case, th/s information is in the form of a forest.

rather than a pair of trees, because we also need to account for
the unattached subtrees that reside in the buffer and may
become an accessible paxt of an active node in the future.
Obviously, these subtrees will be pruned to a maximum height
h-1. Hence, the operation of the parser can be characterized by
the partial function M from active packets, subtrees rooted at
current acdve and cyclic nodes, and contents of the window into
compound actions, i.e..

M: Y'X(T,, h u [_x.})xCrc, h u ,Xl)XCr+t,h.~. u zY k)
"* ACTIONS

where TC, h is the subset of "IN, h consisting of the trees with
cyclic roo~

In the PDA simulating the general parser, the set of
stack symbols F would be the set of u'iples [T¥,Tx,P], where
T¥ and T x are the subtrees rooted at current cyclic node Y
and current ac~ve node X, and P is the set of packets
associated with X. The states of this PDA will be of the form
<X.P~.P2,huffer>. The last three elements are the same as
before, except that the buffer may now contain subtrees
belonging to TlC,h. 1. (Note that in the simple case. when h=l.
TIC,hol=N). The first entry is usually), except that when the
current active node X is dropped, this element is changed to
T' x. The subu'ee "I x is the tree dominated by X. i.e., T X.
pruned to the height h-1.

Definition of the move function for this PDA is very
similar to the simplified case. For example, under the

120

assumption that the pair of height-one trees rooted at current
cyclic node and current active node is accessible to the parser,
the det'mition of 6 fun~on would include the following
statement among others:
If M(P,Tx,T¥,W!_Wn) - "drop; deactivate PZ; activate P 2 "
(where T x and T¥ represent the height--one trees rooted at the
current active and cyclic nodes X and Y), then

8(<X,e,~.=[W3.-W1B>. k.[Ty.Tx,P]) =
(<X,P2,PI,alWz_WIa>,X) for all a and 8. Furthermore,

_6(<XJ'2,Pz~lwz..wla>. X,[Ty.TzJ"]) -
(<x¢¢.o~Wz..wza>. [Ty.Tz,(r u P2)-Pz]) for all (TzY) in
TN,IX2~ such that T z has X as its rightmmt leaf.
In the more general case (i.e., when h > 1). as we noted ha
the above, the first entry in the representation of the state will
be T' x, rather than its root node X. In that case, we will
replace the righonost leaf node of T Z, i.e., the nonterrmnal X,
with the subtree T' x. This mechanism of using the first ent23."
in the representation of a state allows us to relate attachments.
Also, in the simple case (h=l) the mechanism could be used to
convey feature information to the higher level when the current
active node is dropped. More specifically, there would be a
bundle of features associated with each symbol. When the node
X is dropped, its associated features would be copied to the X
symbol appea.tinll in the state of the PDA (via first _8-move).
The second _8-move allows m to copy the features from the X
symbol in the state to the X node dominated by the node 7_

(iii) Accommodation of fC2tur~$;
The features used in Marcus' parser are syntactic in nature and
have f'mite domains. Therefore the set of" attributed symbols in
that parser constitute a finite set. Hence syntactic features can
be accommodated in the construction of the PDA by allowing
complex non-terminal symbols, i.e., at-a'ibuted symbols instead of
simple ones.

Feature assitmments can be simulated by .replacing the
top stack symbol in the PDA. For example, under our previous
assumption that two height-one trees rooted at current active
node and current cyclic node are accessible to the parser, the
definition of _8 function will include the following statement:
If M(P,Tx:A,T¥:B,Wl...Wn) = "assign features A' to curt'erie
active node; assign features B' to current cyciic node; deactivate
Pl ; activate P2" (where A,A',B and B' axe sets of features).
then

_6(<x~.o l wz...w z B >~, [% . . .T x :A~']) =
(<k'~'~'~lWl"Wla>' [TY:e U B"Tx:A It A ',(P U P2)-Pz]) for
all ° and 8.

Now, by lifting all three resuictions introduced on the
simplified parser, it is possible to conclude that Marcus' parser
can be simulated by a pushdown automaton, and thus accepts a
context-free set of suing.s. Moreover, as one of the reviewers
has suggested to us. we could make our result more general if
we incorporate a finite number of semantic tests (via a finite

or°de set) into the parser. We could still simulate the parser
by a PDA.

Farthermore, the pushdown automaton which we have
constructed here is a deterministic one. Thus, it confirms the
de - - in+s in of the language which is parsed by Marcus'
mechanism. We should also point out that our notion of a
context-free language being deterministic differs from the
deterministic behavour of the parser as described by Marcus.
However, since every deterministic language can be parsed by a
deterministic parser, our result adds more evidence to believe
that Marcus' paner does not hide non-determinism in any
form.

It is easy to obtain (through a standard procedure) an
LR(1) grammar describing the language accepted by the
generalized PDA. Although this grammar will be equivalent to
Marcus' PIDGIN grammar (minus any semantic considerations).
and it will be a right cover for any undetl.ving surface grammar
which may be assumed in consu'ucting the Marcus parser, it
will suffer from being an unnatural description of the language.
Not only may the resulting structures be hardly usable by any
reasonable sernantic/pragmatics component, but also parsing
would be inefficient because of the huge number of
non-teminals and productions.

In automatic generation of Marcus-style parsers, one can
assume either a context-free or a context-sensitive grammar (as
a base grammar) which one feels is naturally suitable for
describing surface structures. However, if one chooses a
context--sensitive grammar then one needs to make sure that it
only generates a context-free language (which is unsolvable in
general). In [5] and [0"J, we have proposed a context-free base
grammar which is augmented with syntactic features (e.g.,
person, tense, etc.) much like amibuted grammars in compiler
writing systems. An additional advantage with this scheme is
that semantic features can also be added to the nodes without
an extra effort. In this way one is also able to capture the
context-sensitivity of a language.

6. Conclusions

We have shown that the information examined or
modified during Marcus parsing (i.e., segments of partial parse
trees, contents of the buffer and active packets) for a PIDGIN
grmm'nar is a finite set. By encoding this information in the
stack symbols and the states of a deterministic pushdown
automaton, we have shown that the resniting PDA is equivalent
to the Marcus parser. In this way we have proved that the set
of surface sentences accepted by this parser is a context-free
set.

An important factor in this simulation has been the
assumption that the buffer in a Marcus style parser is bounded.
It is unlikely that all parsers with unbounded buffers written in

121

this Style can be simulated by determiuistic pushdown automata.
Parsers with unbounded buffers (i.e., two--stuck pa~rs) are used
either for recognition of context--sensitive ignguages, or if they
parse context-free bmguases, possibly W hide the
non-determinism of a language by storing an ~ t e d number
of lookabeads in the buffer. However, ~ does not mean that
some Marc~-type parsers that use an unbounded buffer in a
conswained way are not equivalent to pushdown automata.
Shipman and Marcus [7] consider a model of Marcus' parser in
which the active node s~ack and buffer are combined w give a
single data suuctme that holds both complete and incomplete
sub~ees. The original stack nodes and their lcokaheads
aJtemately re~de on ~ s'u'ucum~. Letting an n,limited number
of completed conswacts and bare terrnlr'21~ reside on the new
su~cmre is equivalem to having an unbounded buffer in the
original model Given the resmcuon that auadunents and drops
are always limited to the k+l riLzhUno~ nodes of this data
structure, it is possible to now that a parser in this model with
an unbounded buffer s ~ can be simulated with an orrllns~.

pushdown autotoaton. (The equivalent condition in the originaJ
model is to r e s ~ a the window to the k rightmost elemmts of
the hurler. However simuiation of the singte structm'e p tner is
much more su-aightforw'ard.)

ACKNOWI.£DGEM~"rs

The author is indebted to Dr. Lcn Schubert for posing
the question and ~.J 'ul ly reviewing an eazly d r ~ of This
paper, and to the referees for their helpful comments. The
resecrch reported here was supported by the Nann'zl Scionces
and Engineerinl~ Research Council of Canada operating [m~nr, s
A8818 and 69203 at the universities of Alberta and Simon
Fraser.

REFt~t'~ICES

[1] R.C Berw/ck. The Aequistion of S.vlm~¢ K m w l e ~ . MIT
Press. 1985.

[2] E Charniak. A paxser with something for everyone_
Parsing natural Iongua~. ed. M. King. PP. 11"/-149. Academic
Press, London. 1983.

[3] IC Cuiik H and P,. Cohen. I.R-regular grJmrnar~: an
extension of LR(k) gr~mm*,s. Join'hal of Compmer sad S.ntm
Sciem~, voL 7, pp. 66-96. 1973.

[4] M.P. Marcu~ A Theory. of Syatactic Rece~itioe for
Natural Langnal~ MIT Press, Cambridge, MA. 1980.

[5] P,- NozohonPFwJ~L LRRL~) ~ • left m tiSh~
pa.,~g uchn/que with n~duced look~ead~ Ph.D. thed.~ Dept
of Compmin~ Science, Umverdv/of Alberta. 1986`

[6] R. Nozohoor"Ftrdl/. On form~ll,ltions of Mau¢l~' ~ .
COL/NC-86` 1986.

[7] D.W. Shipman and M.P. Maxcm. Towards minimal dam
for demTnln~'nc ~ IJCAI-~. 1979.

[8] T.G. Szymamk/ and LH. Wali,,,,~ N ~
ex~m/uns of bouom-up parting techniques. SIAM Jmnal of
Computing. voL 5. ~ Z PP. 231-'..50. June 1976.

[9] D.A. Walte~ Dem~/nistic conwxPsem/tive languages.
Information and Control. voL 17. pp. 14-61. 1970.

1 2 2

