CONTEXT-FREENESS OF THE LANGUAGE ACCEPTED
BY MARCUS’ PARSER

R. Nozohoor-Farshi
Schoo! of Computing Science, Simon Fraser University
Burnaby, British Columbia, Canada V5A 1S6

ABSTRACT

In this paper, we prove that the set of sentences parsed
by Marcus’ parser constitutes a context-free language. The
proof is carried out by constructing a deterministic pushdown
automaton that recognizes those stings of terminals that are
parsed successfully by the Marcus parser.

1. Introduction

While Marcus [4] does not use phrase stucture rules as
base grammar in his parser, he points out some correspondence
berween the use of a2 base rule and the way packets are
activated to parse a construct Charniak [2] has aiso assumed
some phrase structure base grammar in implementung a Marcus
style parser that handles ungrammatical sitations. However
neither has suggested a type for such a grammar or the
language accepted by the parser. Berwick [1] relates Marcus'
parser 10 LR(kt) context-free grammars. Similarly, in [5] and
[6)] we have related this parser to LRRL(k) grammars.
Inevitably, these raise the question of whether the suing set
parsed by Marcus’ parser is a context~free language.

In this paper, we provide the answer for the above
quesiion by showing formally that the set of sentences accepted
by Marcus’ parser constitutes a context-free language. Our
proof is based on simulatng a simplified version of the parser
by a pushdown automaton. Then some modifications of the
PDA are suggested in order to ascertain that Marcus' parser,
regardless of the stmuctures it putis on the input sentences,
accepts a context-free set of sentences. Furthermore, since the
resuluing PDA is a deterministic one, it confirms the
determinism of the language parsed by this parser, Such a
proof also provides a justification for assuming a contexi~free
underlying grammar in automatic generation of Marcus type
parsers as discussed in [S] and [6].

2. Assumption of a finite size buffer

Marcus’ parser employs two data structures: a pushdown
stack which holds the constructs yet to be completed, and a
finite size buffer which holds the lookaheads. The lookaheads
are completed constructs as well as bare terminals. Various
operations are used to manipulate these data structures. An

"attention shift" operation moves a window of size k=3 to a
given position on the buffer. This occurs in parsing some
constructs, ¢.g., some NP’s, in particular when a buffer node
other than the first indicates start of an NP. "Restore buffer”
restores the window to its previous position before the last
"atiention shift". Marcus suggests that the movements of the
window can be achieved by employing a stack of displacements
from the beginning of the buffer, and in general he suggests
that the buffer could be unbounded on the right But in
practice, he notes that hz has not found a need for more than
five cells, and PARSIFAL does not use a stack to implement
the window or virtual buffer.

A comment regarding an infinite buffer is in place here.
An unbounded buffer would yield a parser with two stacks.
Generally, such parsers characterize context-sensitive languages
and are equivaient to linear bounded automata. They have also
been used for parsing some contexi-free languages. In this role
they may hide the non-determinism of a contexi-free language
by storing an unbounded number of lookaheads. For exampie,
LR-reguiar (3], BCP(m.n), LR(k») and FSPA(k) parsers [8] are
such parsers. Furthermore, basing parsing decisions on the
whole left contexts and k lookaheads in them has often resulted
in defining classes of context-free (context-sensitive) grammars
with undecidable membership. LR-regular, LR(ke=) and
FSPA(k) are such classes. The class of GLRRL(k) grammars
with unbounded buffer (defined in [S]) seems to be the known
exception in this category that has decidable membership.
Walters [9) considers context-sensitive grammars with
deterministic two-stack parsers and shows the undecidability of
the membership problem for the class of such grammars.

In this paper we assumne that the- buffer in a Marcus
stvle parser can only be of a finite size b (e.g., b=5 in Marcus’
parser). The limitation on the size of the buffer has two
important consequences. First, it allows a proof for the
context-freeness of the language 1o be given in terms of a
PDA. Second, it facilitates the design of an effective algorithm
for automatic generation of a parser. (However, we should add
that: 1- some Marcus style parsers that use an unbounded
buffer in a constrained way, e.g, by resmicting the window to
the k rightmost elements of the buffer, are equivalent to
pushdown automata. 2- Marcus style parsers with unbounded
buffer, similar to GLRRL -parsers, can still be constructed for
those languages which are known to be contexi-free.)

117

3. Simplified parser

A few restricions on Marcus' parser will prove o be
convenient in outlining a proof for the context-freeness of the
language accepted by it

(i) Prohibition of features:

Marcus allows syntactic nodes to have features containing the
grammatical properties of the constituents that they represent
For implementaton purposes, the type of a node is also
considered as a feamre. However, here a distinction will be
made berween this feature and others. We consider the type of
a node and the node itself 10 convey the same concept (ie., a
non-terminal symbol). Any other feature is disallowed. In
Marcus’ parser, the binding of waces is also implemented
through the use of features. A ftrace is a null deriving
non-terminal (e.g, an NP) that has a feamre pointing w©
another node, ie., the binding of the wace. We should soess at
the outset that Marcus’ parser outputs the annotated surface
saucture of an unerance and waces are intended to be used by
the semantic component to recover the underlying
predicate/argument suucture of the utwerance. Therefore one
could put aside the issue of trace registers without affecting any
argument that deals with the strings accepted by the parser, ie.,
frontiers of surface structures. We will reinoduce the features
in the generalized form of PDA for the compicteness of the
simulation.

jii) Non—-accessibilitvy of th

Although most of the information about the left context is
capured through the use of the packeting mechanism in
Marcus’ parser, he nevertheless allows limited access to the
nodes of the partial parse tree (besides the current active node)
in the action parts of the grammar rules. In some rules, after
the initial pattern marches, conditional clauses test for some
property of the parse tree. These tesis are limited 10 the left
daughters of the curremt active node and the last cyclic node
(NP or S) on the stack and its descendants. It is plausible to
eliminate trec accessibility entirely through adding new packets
and/or simple flags. In the simplified parser, access to the
parial parse wee is disallowed. However, by modifying the
stack svmbols of the. PDA we will later show that the proof of
context-freeness carries over to the general parser (that tests
limited nodes of parse wee).

(iii)_Atomic_actions:

Action segments in Marcus’ grammar rules may contain a series
of basic operations. To simplify the simulation, we assume that
in the simplified parser actions are atomic. Breakdown of a
compound action into atomic actions can be achieved by
keeping the first operation in the original rule and introducing
new singleton packets containing a default pattern and a
remaining operation in the action part These packets will
successively deactivate themselves and activate the next packet
much like "run <rule> next"s in PIDGIN. The last packet will

activate the first if the original rule leaves the packet still
active. Therefore in the simplified parser action segments are of
the following forms:

(1) Activate packetsl; [deactivate packets?].
(2) Deactivate packets); [activate packets2].
(3) Anach ith; [deactivate packetsl]; [activate packets2].
(4) [Deactivate packetsl]: create node; activate packets2.
(5) [Deactivate packetsl]; cattach node; activate packets.!
(6) Drop: [deactivate packetsl); [activate packets2].
(7) Drop into buffer; [deactivate packetsl];
[activate packets2].
(8) Aunention shift (to ith cell); [deactivate packetsl];
[activate packets2].
(9) Restore buffer; [deactivate packetsl]; [activate packets?].

Note that forward atention shift has no explicit command in
Marcus’ rules. An "AS" prefix in the name of a rule implies
the operation. Backward window move has an explicit command
"restore buffer”. The square brackets in the above forms
indicate optional pars. Feature assignment operations are
ignored . for the obvious reason.

4. Simulation of the simplified parser

In this section we constuct a PDA equivalent to the
simplified parser. This PDA recognizes the same swing set that
is accepted by the parser. Roughly, the states of the PDA are
symbolized by the contents of the parser's buffer, and its stack
symbols are ordered pairs consisting of a non-terminal symbol
(ie, a siack symbol of the parser) and a set of packets
associated with that symbol.

Let N be the set of non-terminal symbols, and Z be
the set of terminal symbols of the parser. We assume the top
S node, ie, the root of a parse tree, is denoted by S, a
distinct element of N. We also assume that a final packet is
added to the PIDGIN grammar. When the parsing of a
sentence is completed, the activation of this packet will cause
the root node S, 10 be dropped im0 the buffer, rather than
being left on the stack. Furthermore, let P denote the set of
all packets of rules, and 2P the powerset of P, and let
PP, P;... be elements of 2P, When a set of packets P is active,
the pattern segments of the rules in these packets are compared
with the current active node and contents of the virtual buffer
(the window). Then the action segment of a rule with highest
priority that matches is executed. In effect the operation of the
parser can be characterized by a partial function M from active
packets, current active node and contents of the window into
atomic actions, i.e.,

M: 2PN(L)yv(k) 4 ACTIONS

! "Canach” is used as a short notation for “create and
atach”.

118

where V= N U I, V(k)= VO+Vi+.+Vk and ACTIONS is the
set of atomic actions (1) — (9) discussed in the previous section.

Now we can construct the
A=(QZ[T,6,q0Z.f) in the following way.

equivalent PDA

Z = the set of input symbols of A, is the set of terminal
symbols in the simplified parser.

' = the set of swack symbols [XP], where XeN is a
non-terminal symbo! of the parser and P is a set of packets.

Q = the set of staes of the PDA, each of the form
<P, P, buffer>, where P, and P, are sets of packets. In general
P, and P, are empty sets except for those states that represent
dropping of a current active node in the parser. P, is the set
of packets to be activated explicitly after the drop operation,
and P, is the set of those packets that are deactivated. "buffer”
is a sming in ((1)V)@|V) where 0smsb-k The last
verucal bar in "buffer” denotes the position of the current
window in the parser and those on the left indicate former
window positions.

Go = the inital state = <@g)\> where A denotes the null
string.

f = the final state = <g/S,> This state corresponds to the
outcome of an activation of the final packet in the parser. In
this way, ie. by dropping the S, node into the buffer, we can
show the acceptance of a sentence simultaneously by empty
stack and by final state.

Z, = the san symbol = [S,P), where P, is the set of initial
packets, e.g., {SS-Start, C-Pool] in Marcus’ parser. '

6 = the move function of the PDA, defined in the foliowing
way:

Let P denote a set of active packets, X an active node
and W;W,..Wy, n < k the content of a window. Let
o|W;W,..Wp,3 be a sming (representing the buffer) such that:
ae(ﬁl)V)(b-k) and BeV® where Length(a'W, Wy.. W, 8)<b,
and o' is the sming o in which vertical bars are erased.

Non-i-moves: The non-A-moves of the PDA A correspond to
bringing the input tokens into the buffer for examination by
the parser. In Marcus’ parser input tokens come to the
anenuon of parser as they are needed. Therefore, we can
assume that when a rule tests the contents of n cells of the
window and there are fewer tokens in the buffer, terminal
symbols will be brought into the buffer. More specifically, if
M(PXW,..Wp) has a defined value (i.e., P contins a packet
with a rule that has pantern segmemt [X][W,].[W;]), then
6(<Q.0.0|W1...wj>.wj'¢l.[xy]) =
(<o.¢.a|W1ijWj+1>,[X.P]) for all a, and for j = 0, ..., n-1
and “’j_',lCZ-

A-moves: By A-moves, the PDA mimics the actions of the
parser on successful matches. Thus the &-function on A input
corresponding 10 each individual atomic action is determined
according to one of the following cases.

Cases (1) and (2):

If MPXW;W,. W) = Tactivate Py; deactivate P," (or
"deactivate P,; activate P "), then
5(<0.8.0| Wy Wy W 8>A[X.P]) =

(<9 8 0| Wy Wo . W 8>[X.(P U Py)}-P,]) for all o and 5.

Case (3):

If MPXWyWy. . W;..Wp) = "antach ith (nomally i is 1);
deactivate Py; activate P,", then :

8(<0.0.a| Wy . W, .. Wy B>A[XP]) =
(<@.8.a| Wy Wi _ Wy W8> [X(P U P)yP;]) for all
a,fb.

Cases (4) and (5):

If M(PXW;..Wy)= "deactivate Py; create/cattach Y; activate
P,", then

5(<2.0.a| W1 ..Wp 8>A[XP]) =

(<P 8.0 Wy . Wy 8>, [XP-P,][YP,]) for all o and 4.

Case (6):

If M(PX,W;..Wp) = "drop; deactivate Py; activate P,", then
8(<0.,0.0| Wy Wy, 8>0,[XP]) = (<Pp.Py.a|Wy..W, 8>2) for all
a and 8, and furthermore

6(<Py.Py.a| Wy Wpa>A[YP]) =

(<88, o|Wy..W; 8>, [Y(P' U Py)-Py]) for all o and 4, and
Pe2 . YeN.

The latter move corresponds to the deactivation of the packets
P; and activation of the packets P, that follow the dropping of
a current active node.

Case (7):

If M(PX,W,..W,) = "drop into buffer; deactivate Py; activate
P5", (where n < k), then

6(<0.8.a|Wy..Wp 8>A[XP]) = (<Pp.Py.alXW,..Wp8>2) for
all a and 4, and furthermore

8(<Py.Py .o| XW, .. W 8>A,[Y.P]) =

(<0.8.a|XW, . W, 8>, [Y.(P' U P,)P;]) for all a and 8, and
for all P'e)i’ and YeN.

Case (8):

If M(PXW;..W;..Wp,) = "shift attention t0 ith cell; deactivate
Py: activate P,", then

6(<o,o.a|Wl...Wi...Wn8>.7\.[X.P]) =

(<0.0.0|Wy.JW, W 3> [X(P U P,)-P;]) for all a and 3.
Case (9):

If M(PX,W;..Wp)= "restore buffer; deactivate Py; activate Pp",
then

5(<0.0.0]a ,le...WnB>,)\,[X.P]) =

(<8.0.0,la,Wy..Wp 8>, [X(P U Py)P;]) for all a,e; and 3
such that o, contains no vertical bar.

Now from the construction of the PDA, it is obvious
that A accepts those strings of terminals that are parsed
successfully by the simplified parser. The reader may note that
the value of & is undefined for the ‘cases in which
M(XP,W,..W,) has multiple values. This accounts for the fact
that = Marcus' parser behaves in a deterministic way.
Furthermore, many of the siates of A are unreachable. This is
due to the way we constucted the PDA, in which we
considered activation of every subset of P with any active node

119

and any lookahead window.

5. Simulation of the general parser

It is possible to lift the resmictions on the simplified
parser by modifying the PDA. Here, we describe how Marcus’
parser can be simulated by a generalized form of the PDA.

(i) Non-atomic actions:

The behaviour of the parser with non-atomic actions can be
described in terms of MeM’, a sequence of compositions of
M, which in mrm can be specified by a sequence §' in 5.

ii ccessibility
current_cvelic node:
What paris of the partial parse tree are accessible in Marcus’
parser seems 10 be a moot poinL Marcus [4] states

ndants of current active pod

“the parser can madify or directly examine exactly two
nodes in the active node stack... the currenl active node
and S or NP node closest 1o the bottom of stack..
called the dominating cyclic node... or.. current cyclic
node.. The parser is also free to examine the
descendants of these two nodes.., although the parser
cannot modify them. It does this by specifying the
exact path to the descendant it wishes to examine.”

The problem is that whether by descendants of these
two nodes, one means the immediate daughters, or descendants
at arbitrary levels. It seems plausible that accessibility of
immediate descendants is sufficient To expiore this idea, we
need 10 examine the reason behind partial wee accesses in
Marcus’ parser. It could be argued that tree accessibility serves
WO purposes:

(1) Examining what daughters are anached to the current active
node considerably reduces the number of packet rules one
needs to write.

(2) Examining the current cyclic node and its daughters serves
the purpose of binding traces. Since transformations are applied
in each tansformatonal cycle to a single cyclic node, it seems
unnecessary to examine descendants of a cyclic node at
arbitarily lower levels.

If Marcus’ parser indeed accesses only the immediate
daughters (a brief examination of the sample grammar [4] does
not seem 1o contradict this), then the accessible part of the a
parse wee can represented by a pair of nodes and their
daughters. Moreover, the set of such pairs of height-one trees
are finite in a grammar. Furthermore, if we extend the access
w the descendants of these two nodes down to a finite fixed
depth (which, in fact seems to have a supporing evidence from
X theory and C-command), we will stll be able 10 represent
the accessible parts of parse wees with a finite set of finite
sequences of fixed height trees.

A second interpretation of Marcus’ statement is that
descendants of the current cyclic node and current active node

at arbitrarily lower levels are accessible to the parser. However,
in the presence of non-cyclic recursive constructs, the notion of
giving an exact path to a descendant of the current active or
current cyclic node would be inconceivable; in fact one can
argue that in such a situation parsing cannot be achieved
through a finite number of rule packetss The reader is
reminded here that PIDGIN (unlike most programming
languages) does not have iterative or recursive constucts to test
the conditions that are needed under the latter interpretation.

Thus, 2 meaningful assumption in the second case is to
consider every recursive node to be cyclic,c, and to limit
accessibility to the subtree dominated by the current cyclic node
in which branches are pruned at the lower cyclic nodes. In
general, we may also include cyclic nodes at fixed recursion
depths, but again branches of a cyclic node beyond that must
be pruned In this manner, we end up with a finite number of
finite sequences (hereafter called forests) of finite trees
representing the accessible segments of partial parse wees.

Our conclusion is that at each stage of parsing the
accessible segment of a parse wee, regardless of how we
interpret Marcus' statement, can be represented by a forest of
trees that belong w a finite set Ty, p. Ty, p denotes the set of
all wees with non-terminal roots and of 2 maximum height h.
In the general case, this information is in the form of a forest,
rather than a pair of trees, because we also need to account for
the unatiached subtrees that reside in the buffer and may
become an accessible part of an active node in the fumre.
Obviously, these subuees will be pruned to a maximum height
h-1. Hence, the operation of the parser can be characterized by
the parual function M from active packets, subtrees rooted at
current active and cyclic nodes, and contents of the window into
compound actions, i.e.,

M 2PX(Ty p U (T, U OBX(Ty, poy U ZXK)
+ ACTIONS'

where Tc,h is the subset of TN'h consisting of the mees with
cyclic roots.

In the PDA simulating the general parser, the set of
stack symbols T' would be the set of wmiples [Ty, Ty.P}, where
Ty and Ty are the subwees rooted at curremt cyclic node Y
and current active node X, and P is the set of packets
associated with X. The states of this PDA will be of the form
<X,P,,P, buffer>. The last three elements are the same as
before, except that the buffer may now conuin subtrees
belonging 10 Ty, p-j. (Note that in the simple case, when h=l,
‘I‘“'h_fN). The first enuy is usually A except that when the
curtent active node X is dropped, this element is changed to
Tg. The subtree Ty is the mee dominated by X, ie. Ty,
pruned to the height h-1.

Definition of the move function for this PDA is very
similar to the simplified case. For exampie, under the

120

assumption that the pair of height-one wees rooted at current
cvclic node and current active node is accessible to the parser,
the definition of § funcion would include the following
statement among others:

If M(PTy.Ty.W;..Wp) = "drop; deactivate Py; activate P,"
(where Ty and Ty represent the height-one wees rooied at the
current active and cyclic nodes X and Y), then
S(A02.a|Wy .. Wy 8> A[Ty Ty Pl) =

(<X.Py.Py o|W;..W;8>2) for all a and 8. Furthermore,
§(<X.Pz,Pl.a|W1...WlH>. X.[Ty.Tz.P']) =

(AP2.0|W.. W8> [Ty.To (P U Pz)-Pll) for all (T,,P') in
Ty, 1X¥2" such that T has X as its rightmost leaf.

In the more general case (i.e, when h > 1), as we noted in
the above, the first enmy in the represemation of the state will
be Ty, rather than is root mode X. In that case, we will
replace the rightmost leaf node of T, ie. the nonterminal X,
with the subtree Ty, This mechanism of using the first eny
in the representation of a state allows us to relate attachments.
Also, in the simple case (h=l) the mechanism could be used 10
convey feature information to the higher level when the current
active node is dropped. More specifically, there would be a
bundie of features associated with each symbol. When the node
X is dropped, its associated features would be copied to the X
symbol appearing in the sute of the PDA (via first §-move).
The second §-move aliows us to copy the features from the X
symbol in the state 1o the X node dominated by the node Z

(iii) Accommodation of features:

The features used in Marcus’ parser are syntactic in nawre and
have finite domains. Therefore the set of attributed svmbols in
that parser constitute a finite set Hence synuactic features can
be accommodated in the construction of the PDA by allowing
complex non-terminal symbols, i.e., atributed symbols instead of
simple ones.

Feature assignments can be simulated by replacing the
top stack svmbol in the PDA. For example, under our previous
assumption that two height-one wees rooted at current active
node and current cyclic node are accessible 1o the parser, the
definition of § function will include the following swatement:

If M(PTyg,n.Ty:p.W1--Wp) = "assign features A' 1o current
active node; assign features B' to current cvclic node; deactivate
P;; activate P," (where A,A'B and B' are sets of features),
then

3(X082.a|Wy .. W1 85X, [Ty.p.Tx:aP) =

(A08.a{W;.. W8>, [Ty,p y B-Tx:a y AP U Py)P;]) for
all o and 4. .

Now, by lifting all three restrictions introduced on the
simplified parser, it is possible to conclude that Marcus’ parser
can be simulated by a pushdown automaton, and thus accepts 2
context-free set of strings. Moreover, as one of the reviewers
has suggested to us, we could make our result more general if
we incorporate a finite number of semantic tests (via a finite

oracle set) into the parser. We could stll simulate the parser
by a PDA.

Furthermore, the pushdown automaton which we have
constructed here is a deterministic one. Thus, it confirms the
determiniSm of the language which is parsed by Marcus’
mechanism. We should also point out that our notion of 2
context-free language being deterministic differs from the
deterministic behavour of the parser as described by Marcus,
However, since every deterministic language can be parsed by a
deterministic parser, our result adds more evidence tw believe
that Marcus’ parser does not hide non—determinism in any
form.

It is easy to obtain (through a standard procedure) an
LR(1) grammar describing the language accepted by the
generalized PDA. Although this grammar will be equivalent to
Marcus’ PIDGIN grammar (minus any semantic considerations),
and it will be a right cover for any underlying surface grammar
which may be assumed in constucting the Marcus parser, it
will suffer from being an unnatural description of the language.
Not only may the resulting suctures be hardly usable by any
reasonable semantic/pragmatics component, but also parsing
would be inefficient because of the huge number of
non—-terminais and productions.

In automatic generation of Marcus-style parsers, one can
assume either a context~free or a context-sensitive grammar (as
a base grammar) which one feels is namrally suitable for
describing surface structures. However, if one chooses a
context-sensitive grammar then one needs 10 make sure that it
only generates a context-free language (which is unsolvable in
general). In [5] and [6), we have proposed a context-free base
grammar which is augmented with syntactic features (e.g.,
person, tense, ewc.) much like amributed grammars in compiler
writing systems. An additional advaniage with this scheme is
that semantic features can also be added o the nodes without
an extra effort. In this way one is aiso able to capture the
conteat-sensitivity of a language.

6. Conclusions

We have shown that the information examined or
modified during Marcus parsing (i.e., segments of partial parse
trees, contents of the buffer and active packets) for a PIDGIN
grammar is a finite set By encoding this information in the
stack symbols and the states of a deterministic pushdown
automaton, we have shown that the resulting PDA is equivalent
to the Marcus parser. In this way we have proved that the set
of surface sentences accepted by this parser is a context-free
set.

An important factor in this simulation has been the
assurnption that the buffer in a Marcus style parser is bounded.
It is unlikely that all parsers with unbounded buffers written in

121

this stvle can be simulated by deterministic pushdown automata
Parsers with unbounded buffers (i.e., two-stack parsers) are used
either for recognition of context-sensitive languages, or if they
parse conexi-free languages, possibly tw bide the
non-determinism of a language by storing an unlimited number
of lookaheads ip the buffer. However, this does not mean that
some Marcus-type parsers that use an unbounded buffer in a
constrained way are not equivalent to pushdown automata.
Shipman and Marcus [7] consider a model of Marcus’ parser in
which the active node stack and buffer are combined o give a
single data stucture that hoids both complete and incompiete
subtrees. The onginal stack nodes and their lookaheads
alternatelv reside on this soucture. Letting an unlimited number
of completed constructs and bare terminals reside on the new
structure i equivalent to having an unbounded buffer in the
original model. Given the restricion that anachments and drops
are always limited to the k+] rightmost nodes of this data
structure, it is possible 1o show that a parser in this mode! with
an unbounded buffer still can be simulated with an ordinmary
pushdown automaton. (The equivalent condition in the original
model is to restrict the window to the k rightmost elements of
the buffer. However simulation of the single structure parser is
much more staightforward.)

ACKNOWLEDGEMENTS

The author is indebted to Dr. Len Schubent for posing
the question and carefully reviewing an early draft of this
paper. and to the referees for their helpful comments. The
research reponted here was supponied by the Nanmal Sciences
and Engineering Research Council of Canada operating grants
A8818 and A9203 at the universities of Albera and Simon
Fraser.

REFERENCES

{1] RC. Berwick The Acquistion of Syntactic Knowledge. MIT
Press. 1985.

() E Chamiak A parser with something for everyone.
Parsing natural language, ed. M. King, pp. 117-149. Academic
Press. London. 1983.

{3 K Culik O and R Cohen LR-regular grammars: an
extension of LR(k) grammars. Journal of Computer and System
Sciences, vol. 7, pp. 66~96. 1973.

[4 MP. Marcus. A Theory of Syntactic Recoguition for
Nawral Language. MIT Press, Cambridge, MA. 1980.

{5 R Nozohoor-Farshi LRRI(k) grammars: 2 left o right
parsing technique with reduced lookahesds. Ph.D. thesis, Dept
of Computing Science, University of Alberta. 1986.

[6§ R Nozohoor-Farshi On formalizations of Marcus' parser.
COLING-86. 1986.

{77 DW. Shipman and MP. Marcus. Towards minimal data
structures for deterministic parsing. IJCAI-79. 1979.

8] TG. Siymanski and JH Williams Noncanoanical
extensions of botom-up parsing techniques. SIAM Jowrmal of
Computing, vol. §, no. 2, pp. 231-250. June 1976.

(8] D.A. Walters Deterministic coniexi-sensitive languages.
Information and Contrel, vol. 17, pp. 14-61. 1970.

122

