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1 Abstract 

We prove in this paper that unordered, or ID/LP 
grammars, are e.xponentially more succinct than context- 
free grammars, by exhibiting a sequence (L,~) of finite 
languages such that the size of any CFG for L,~ must 
grow exponentially in n, but which can be described by 
polynomial-size I D / L P  grammars. The results have im- 
plications for the description of free word order languages. 

2 I n t r o d u c t i o n  

Context free grammars in immediate dominance and 
linear precedence format were used in GPSG [3] as a skele- 
ton for metarule generation and feature checking. It is in- 
tuitively obvious that grammars in this form can describe 
languages which are closed under the operation of taking 
arbitrary permutations of strings in the language. (Such 
languages will be called symmetric.) Ordinary context- 
free grammars, on the other hand, "seem to require that 
all permutations of right-hand sides of productions be ex- 
plicitly listed, in order to describe certain symmetric lan- 
guages. For an explicit example, consider the n-letter al- 
phabet E,~ = {al . . . . .  a,~}. Let P,~ be the set of all strings 
which are permutations of exactly these letters. It seems 
obvious that no context-free grammar could generate this 
language without explicitly listing it. Now try to prove 
that  this is the case. This is in essence what we do in this 
paper. We also hope to get the audience for the paper 
interested in why the proof works! 

To give some idea of the difficulty of our problem, we 
begin by recounting Barton's results [1] in this confer- 
ence in 1985. (There is a general discussion in [2].) He 
showed that the universal recognition problem (URP) for 
ID/LP  grammars is NP-complete.  1 This means that if 
P :~ N P ,  then no polynomial algorithm can solve this 
problem. The difficulty of the problem seems to arise 
from the fact that  the translation from an ID/LP  gram- 
mar to a weakly equivalent CFG blows up exponentially. 
It is easy to show, assuming P ~ N P ,  that any reason- 
able transformation from I D / L P  grammars to equivalent 
CFGs cannot be done in polynomial time; Rounds has 
done this as a remark in [8]. In this paper, we remove 
the hypothesis P ~: N P .  That  is, we can show that no 
algorithm whatever can effect the translation polynomi- 

The universal recognition problem is to tell for an ID/LP gram- 
mar G and a string w ,  wh e th e r  or  not  w E L(G). 

ally in all cases. (Unfortunately, this does not solve the 
P - NP question!) 

Barton's reduction took a known NP-complete prob- 
lem, the vertex-cover problem, and reduced it to the URP 
for ID/LP. The reduction makes crucial use of grammars 
whose production size can be arbitrarily large. Define the 
fan-out of a grammar to be the largest total number of 
symbol occurrences on the right hand side of any produc- 
tion. For a CFG, this would be the maximum length of 
any RHS; for an ID/LP grammar, we would count sym- 
bols and their multiplicities. Barton's reduction does the 
following. For each instance of the vertex cover problem, 
of size n, he constructs a string w and an ID /LP  grammar 
of fanout proportional to n such that the instance has a 
vertex cover if and only if the string is generated by the 
grammar. He also notes that if all ID /LP  grammars have 
fanout bounded by a fixed constant, then the URP can 
be solved in polynomial time. 

This brings us to the statement of our results. Let Pn 
be the language described above. Clearly this language 
can be generated by the ID/LP  grammar 

S - -  a l , . . . , a n  

whose size in bits is O(n log n). 

T h e o r e m  1 There is a constant c > I such that any 
contezt-free gr .mmar Gn generating Pn must have size 
~(cn). 2 Moreover, every [ D / L P  grammar'generating pn, 
whose fanout is bounded by a fized constant, must likewise 
have ezponential size. 

The theorem does not actually depend on having a 
vocabulary which grows with n. It is possible to code 
everything homomorphically into a two-letter alphabet. 
However, we think that the result shows that ordinary 
CFGs, and bounded-fanout ID /LP  grammars, are inade- 
quate for giving succinct descriptions of languages whose 
vocabulary is open, and whose word order can be very 
free. Thus, we prefer the statement of the result as it is. 

We start the paper with the technical results, in Sec- 
tion 3, and continue with a discussion of the implications 
for linguistics in Section 4. The final section contains 
a proof of the Interchange Lemma of Ogden, Ross, and 
Winklmann [7], which is the main tool used for our re- 
suits. This proof is included, not because it is new, but 
because we want to show a beautiful example of the use of 

2This notation meam.s that for inKnitely ram W n, the size of Gn 
m u s t  be  bigger  than  c n. 
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combinatorial principles in formal linguistics, and because 
we think the proof may be generalized to other classes of 
grammars. 

3 Technical Results 

As we have said, our basic tool is the Interchange 
Lemma, which was first used to show that the "embedded 
reduplication" language { w z z y  I w, z, and y E {a, b, c}" } 
is not context-free. It was also used in Kac, Manaster- 
Ramer, and Rounds [6] to show that English is not CF, 
and by Rounds, Manaster-Ramer, and Friedman to show 
that reduplication even over length n strings requires 
context-free grammar size exponential in n. The cur- 
rent application uses the last-mentioned technique, but 
the argument is more complicated. 

We will discuss the Interchange Lemma informally, 
then state it formally. We will then show how to apply it 
in our case. 

The IL relies on the following basic observation. Sup- 
pose we have a context-free language, and two strings in 
that language, each of which has a substring which is the 
yield of a subtree labeled by the same nonterminal sym- 
bol at the respective roots of the subtrees. Then these 
substrings can be interchanged, and the resulting strings 
will still be in the language. This is what distinguishes 
the IL from the Pumping Lemma, which finds repeated 
nonterminals in the derivation tree of just one string. 

The next observation about the IL is that it attempts 
to find these interchangeable strings among the length n 
strings of the given language. Moreover, we want to find 
a whole set of such strings, such that in the set, the inter- 
changed substrings all have the same length, and all start 
at the same position in the host string. The lemma lets 
us select a number m less than n, and tells us that the 
length k of the interchangeable substrings is between role 
and m, where r is the fanout of the grammar. Finally, the 
lemma gives us an estimate of the size of the interchange- 
able subset. We may choose an arbitrary subset Q(n) of 
L(n), where L(n) is the set of length n strings in the lan- 
guage L. If we also choose an integer m < n, then the 
IL tells us that there is an interchangeable set A C_ Q(n) 
such that IAI _> IQ(n)I/(INI" n=), where the vertical bars 
denote cardinality, and N is the set of nonterminals of 
the given grammar. (The interchanged strings do not 
stay in Q(n), but they do stay in L(n).  ) Notice that 
if Q(n) is exponential in size, then A will be also. Thus, 
if a language has exponentially many strings of length 
n then it will have an interchangeable subset of roughly 
the same exponential size, provided the set of nontermi- 
nals of the grammar is small. Our proof turns this idea 
around. We show that any CF description of the permu- 
tation language L(n)  must have an exponentially large 
set of nonterminals, because an interchangeable subset of 
this language cannot be of the same exponential order as 
n!, which is the size of L(n).  

Now we can give a more formal statement of the 
lem/'fla. 

Defini t ion.  Suppose that A is a subset {zl . . . . .  -p} 
of L(n). A has the k-interchangeability property iff there 
are substrings Zh . . . ,  z v of zl, . . . ,  z v respectively, such 
that each z, has length k, each z~ occurs in the same 
relative position in each zi, and such that if z~ = wiziy( 
and z i = wjz iV j for any i and j ,  then wi~jVl is an element 
of L(n). 

I n t e r c h a n g e  L e m m a .  Let G be a CFG or ID/LP 
grammar with fanout r, and with nonterminal alphabet 
N. Let m and n be any positive natural numbers with 
r < m_< n. Let L(n) be the set of length n s t r i n g s i n  
L(G), and Q(n) be a subset of L(n). Then we can find 
a k-interchangeable subset A of Q(n), such that m / r  <_ 
k _< m, and such that 

Ial >_ IQ(n) l l  ( INI"  n2). 

Now we can prove our main theorem. First we show 
that no CFG of fanout 2 can generate L(n) without an 
exponential number of nonterminals. The theorem for 
any CFG then follows, because any CFG can be trans- 
formed, into a CFG with fanout 2 by a process essentially 
like that of transforming into Chornsky normal form, but 
without having to eliminate e-productions or unit produc- 
tions. This process at most cubes the grammar size, and 
the result follows because the cube root of an exponen- 
tial is still an exponential. The proof for bounded-fanout 
ID/LP is a direct adaptation of the proof for fanout 2, 
which we now give. 

Let Pn be the permutation language above, and let 
G be a fanout 2 grammar for this language. Apply the 
Interchange Lemma to G, choosing Q(n) = P~, r = 2, 
and m = n/2. (n will be chosen as a multiple of 4.) 
Observe that IQ(n)l = IL(n)[ = n!. From the IL, we get a 
k-interchangeable subset A of L(n),  such that n/4 < k < 
n/2, and such that 

n! 
IAI _> INI" n'-" 

Next we use the fact that A is k-interchangeable to get an 
upper  bound on its cardinality. Let wtz t y t  and w~.=~.y~. 
be members of A, and let E(z) be the set of alphabet 
characters appearing in z. We claim that E(z l )  = ~(z~_). 
For if, say =t has a character not occurring in z~., then 
the interchanged string wtz2yl  will have two occurrences 
of that character, and thus not be in L(n), as required by 
the IL. Without loss of generality, ,.V.(z) = {al . . . . .  ak}. 
The number of strings in A is thus less than or equal to 
the number of ways of selecting the z string - that  is, k!, 
times the number of ways of choosing the characters in 
the rest of the string - that  is, (n - k)!. In other words, 

IAI < k! (n - k)!. 

Putting the two inequalities together and solving for IN[, 
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we get 

INI > k! (n - k)! " n "W = n -~"  " 

From Pascal's triangle in high school mathematics, (i) in- 
creases with k until k - n/2. Thus since n/4 < k < n/2, 
we have (i) > (n~4), which by using Stirling's approxi- 
mation 

m! ".., mm e-m~/27rm 

to estimate the various factorials, grows exponentially 
with n. Therefore, so does IN[, and our theorem is 
proved. 

To obtain the result for a two-letter alphabet, con- 
sider the homomorphism sending the letter aj into 0 j 1. 
Let Ii'n be the image of Pn under this mapping. Then, 
because the mapping is one-to-one, P .  is the inverse ho- 
momorphic image of Kn. If for every c > 1 there is a 
sequence of CFGs Gn generating K,  such that the size of 
G,~ is not ft(c"), then the same is true for the language 
Pn, contradicting Theorem I. The reason is that the size 
of a grammar for the inverse homomorphic image of a 
language need only be polynomiaUy bigger than the size 
of a grammar for the language itself. The proof of this 
claim rests on inspection of one of the standard proofs, 
say Hopcroft and Ullman [5]. The result is proved us- 
ing pushdown automata, but all conversions from pdas 
to grammars require only polynomial increase in size. 

Our final technical result concerns an n-symbol ana- 
logue of the so-called MIX language, which has been con- 
jectured by Marsh not to be an indexed language (see 
[4] for discussion.) We define the language M, to be the 
set of all strings over En which have identical numbers 
of occurrences of each character al in En. Observe that 
/I,I,~ is infinite for each n. However, there is a sequence of 
finite sublanguages of the various Mn, such that this se- 
quence requires exponentially increasing context-free de- 
scriptions. ~Ve have the following theorem. 

T h e o r e m  2 Consider the set Mn(n=) of all length n 2 
strings of Mn. Then there is a constant c > 1 such that 
any context.free grammar Gn generating Mn(n 2) must 
have sue f~(cn). 

Proof. This proof is really just a generalization of the 
proof of Theorem 1. It uses, however, the Q subsets in a 
way that the proof of Theorem 1 does not. 

First, we drop the n subscript in Mn(n2). Observe 
next that  in every string in M(n2), each character in En 
occurs exactly n times. Let O(n 2) = {u '~ : lul - n}  be 
the subset of M(n  2) where, as indicated, each string is 
composed of n identical substrings concatenated in or- 
der. Then each u substring must be a permutation of 
E , ,  i.e., a member of P , .  Let Gn be a fanout 2 gram- 
mar generating M(n2). As in the proof of Theorem I, 
apply the Interchange Lemma to G,~, choosing ~ (n  2) as 
above, r - 2, and m -- n/2.  Observe that we still have 
IQ(n2)l - n!. From the IL, we get a k-interchangeable 

subset A of Q(n2), such that n/4 < k < n/2, and such 
that 

n! 
IAI _> I/Vl. n 4  

Once again we use the fact that A is k-interchangeable 
to get an upper bound on its cardinaiity. Let wlztyl 
and w2z2y2 be members of .4, and let E(z) be the set 
of alphabet characters appearing in z. We claim once 
again that E(zt) - Z(z2). To see this, notice that the 
z portions of the strings in A can overlap at most one of 
the boundaries between the successive u strings, because 
]u] -- n and [z[ <_ n/2. If it does not overlap a bound- 
ary, then the reasoning is as before. If it does overlap a 
boundary, then we claim that the characters in z occur- 
ring to the right of the boundary must all be different 
from the characters in z to the left. This is because of 
the "wraparound phenomenon": the u strings are iden- 
tical, so the z characters to the right of the boundary 
are the same characters which occur to the right of the 
previous u-boundary. Since each u is a permutation of 
En, the claim holds. The same reasoning now applies to 
show that r-(zt) - E(z2). For if, say, zt has a charac- 
ter not occurring in z2, then one of the u-portions of the 
interchanged string wxz2yx will have two occurrences of 
that character, and thus not be in M(n~), as required by 
the IL. Without loss of generality, E(z) - {at ..... a~}. 
The number of strings in A is less than or equal to the 
number of ways of selecting one of the u strings. Consider 
the u string to the left of the boundary which z overlaps. 
Because of wraparound, this u string is still determined 
by selecting k positions in the z, and then choosing the 
characters in the remaining n - k positions. Thus we still 
have 

IAI < k! (n - k)! 

and we finish the proof as above. 

4 D i s c u s s i o n  

What do Theorems I and 2 literally mean as far as 
linguistic descriptions are concerned? First, we notice 
that the permutation language P,~ really has s counting 
property: there is exactly one occurrence of each sym- 
bol in any string. The same is true if we consider, for 
fixed m, the strings of length mn in Mn, as n varies. 
Here there must be exactly m occurrences of each symbol 
in En, in every string. It seems unreasonable to require 
this counting property as a property of the sublanguage 
generated by any construction of ordinary language. For 
example, a list of modifiers, say adjectives, could allow 
arbitrary repetitions of any of its basic elements, and not 
insist that there be at most one occurrence of each modi- 
fier. So these examples do not have any direct, naturally 
occurring, linguistic analogues. It is only if we wish to 
describe permutation-like behavior where the number of 
occurrences of each symbol is hounded, but with an un- 
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bounded number of symbols, that we encounter difficul- 
ties. 

The same observation, however, applies to Barton's 
NP-cornpleteness result. Exactly the same counting prop- 
erty is required to make the universal recognition problem 
intractable. If we do not insist on an n-character alpha- 
bet, of course, then the universal recognition problem is 
only polynomial for ID/LP grammars; and correspond- 
ingly, there is a polynomial-size weakly equivalent CFG 
for each ID/LP grammar. But even with a growing al- 
phabet, it is still possible that direct ID/LP recognition 
is polynomial on the average. One way to check this pos- 
sibility empirically would be to examine long utterances 
(sentences) in actual fragments of free word-order lan- 
guages, to see whether words are repeated a large num- 
ber of times in those utterances. If there is a bound, and 
if all permutations are equally likely, then the above re- 
sults may have some relevance. It is definitely the case 
that speculations about the difficulty of processing these 
languages should be informed by more actual data. How- 
ever, it is equally true that the conclusions of a theoretical 
investigation can suggest what data to collect. 

5 P r o o f  o f  t h e  I L  

Here we repeat the proof of the IL due to Ogden et al. 
It is an excellent example of the combinatory fact known 
as the Pigeonhole Principle. As we said, we want to en- 
courage more cooperation between theoretical computer 
science and linguistics, and part of the way to do this is to 
give a full account of the techniques used in both areas. 

First we restate the lemma. 

Interchange Lemma. Let G be a CFG or ID/LP 
grammar with fanout r, and with nonterminal alphabet 
N. Let m and n be any positive natural numbers with 
r < m <_ n. Let L(n) be the set of length n strings in 
L(G), and Q(n) be a subset of L(n). Then we can find 
a k-interchangeable subset .4 of ~(n), such that m/r < 
k _< m, and such that 

IAI >_ IQCn)I / ( I . 'V l  • r i b .  

Proof. The proof breaks into two distinct parts: one 
involving the Pigeonhole Principle, and another involving 
an argument about paths in derivation trees with fanout 
r. The two parts are related by the following definition. 

Fix n, r, and m as in the statement of the IL. A 
tuple (j, k, B), where j and k are integers between i and 
n, and where B E N,  is said to describe a string z of 
length n, if (i) there is a (full) derivation tree for z in 
G, having a subtree whose root is labeled with B, and 
the subtree exactly covers that portion of z beginning at 
position j ,  and having length k; and (ii) k satisfies the 
inequality stated in the conclusion of the IL. Notice that 
if one tuple describes every string in a set A, then, since 
G is context-free, A is k-interchangeable. 

The part of the proof involving derivation trees can 
now be stated: we claim that every string : in L(G) has 
at least one tuple describing it. To see that this is true, 
execute the following algorithm. Let z E L(G). Begin 
at the root (S) node of a derivation tree for :, and make 
that the "current node." At each stage of the algorithm, 
move the current node down to a daughter node having 
the longest possible yield length of its dominated subtree, 
while the yield length of the current node is strictly bigger 
than m. Let B be the label of the final value of the current 
node, let j be the position where the yield of the final 
value of the current node starts, and let k be the length 
of that yield. By the algorithm, k <_ m. If k < m/r, then 
since the grammar has fanout r, then the node above the 
final value of the current node would have yield length 
less than m, so it would have been the final value of the 
current node, a contradiction. This establishes the claim. 

Now we give the combinatory part of the proof. Let 
E and F be finite sets, and let J~ be a binary relation (set 
of ordered pairs) between E and F. R is said to cover 
F if every element of F participates in at least one pair 
of R. Also, we define, for e E E, R(e) = {f  ] e R f}. 
One version of the Pigeonhole Principle can be stated as 
follows. 

L e m m a  1 I f  R covers F, then there is an element e E E 
such that 

IR(e)l > [FI/IEI- 

Proof: Since R covers F, we know 

IFI _< ~ IR(e)l 
ere 

If ]R(e)[ < IFI/IEI for every e, then 

IFI < ~"~(IFI/lED = IFI, 
eEE 

a contradiction. 
Now let E be the set of all tuples (j, k, B) where j 

and k are less than or equal to n, and B E N. Then 
]E[ = iN[. n 2. Let F = Q(n). Let e R f iff e describes f .  
By the first part of our proof, R covers F. Thus let e be a 
tuple given by the conclusion of the Pigeonhole Principle, 
and let A be R(e). The size of .4 is correct, and since 
e describes everything in A, then A is k-interchangeable. 
This completes the proof and the paper. 
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