
AN ECLECTIC APPROACH TO
BUILDING NATURAL LANGUAGE INTERFACES

Brian Phillips. Michael J. Freiling, James H. Alexander,
Steven L. M essick, Steve Rehfu~, Sheldon N ichollt

Tektronix, Inc.
P.O. Box 500, M/S 50-662

Beavertoa, OR 97077

ABSTRACT

INKA is a natural language interface to facilitate
knowledge acquisition during expert system development for
electronic instrument trouble-thooting. The expert system
design methodology develops a domain definition, called
GLIB, in the form of a semantic grammar. This grammar for-
mat enables GLIB to be used with the INGLISH interface,
which constrains users to create statements within a subset of
English. Incremental patting in INGLISH allows immediate
remedial information to be generated if a user deviates from
the sublanguage. Sentences are translated into production rules
using the methodology of lexical-functional grammar. The sys-
tem is written in Sms/ltalk and, in INK,A, produces rides for a
Prolog inference engine.

INTRODUCTION

The ides/ natural language interface would let any user,
without any prior training, interact with a computer. Such an
interface would be useful in the knowledge acquisition phase
of expert system development where the diagnostic knowledge
of a Hilled practitioner has to be elicited. As technicians are
not farnifiar with formal knowledge representation schemes, a
trained intermediary, a knowledge engineer, is generally
employed to handcraft the interns/ format. This process is
time-consuming and expensive.

INKA (INglish Knowledge Acquisition) permits task
experts to express their knowledge in a subset of English, and
have it automatically translated into the appropriate represen-
tational formalism. In particular, the version of INKA to be
discussed here accepts input in a sublanguage called GLIB
which permits the statement of facts and rules relevant to the
troubleshooting of electronic systems (Freiling et al., 1984),
and translates these statements into Prolog unit clauses for later
proce~ng by a specialized inference mechanism. Experiments
with INKA to date have enabled us to construct mfflcient
troubleshooting rules to build a localizing troubleshooter for a
simple circuit.

INKA is designed as one of the tools of DETEKTR, an
environment for building knowledge based electronic instru.
ment troubleshooters (Freiling & Alexander, 1984).
DETEKTR supports an expert system development methodol-
ogy which is outlined below. The design goal of INKA is that
it serve as a natural language input system to facilitate transfer
of knowledge during the knowledge acquisition phase of expert
system development. IIqKA is not intended to stand alone as
the sole mechanism for knowledge transfer, but to be sup-

t A summer intern at Tektronix, currently at the Univer-
sity of llfinois, Champs/gn-Urbana.

ported by components capable of managing a coherent dis/o-
gue with the task expert. McKeown (1984) has po/nted out a
number of important aspec~ of the pragmatics that relate to
the usage phase of an expert system. Similar pragmatics are
required to insure adequate construction of the system's
knowledge base during the knowledge a c ~ n phase of an
expert system's development. The most important pragmatic
facility is one to estimate the degree of epistemi¢ coverage of
the knowledge acquired so far, and to prompt the task expert
for more knowledge in areas where the coverage is weak. It is
unfeasible to assume that any task expert can simply perform a
~memory dump" of expertise into some natural language
interface and be done with it.

This paper discusses the natural language technology used
in building INKA. The system incorporates a diverse collec-
tion of natural language technologies in its construction.
Specifically, INKA utilizes a semam/c grammar (Burton, 1976)
to characterize the domain sublanguage, lexical-functional
sem~aics (Kaplan & Bresnan, 1982) to translate to the internal
form of representation, and an interface that includes left-
corner parsitlg with in-line guidance to address the Linguistic
coverage problem that aris~ with sublanguages. We feel this
eclectic approach is a useful for building application-oriented
natural language interfaces. Although we are describing a
knowledge acquisition application, the methodology can be
used for any application whose sublanguage can be stated in
the prescribed grammar formalism.

Tereisias (Davis, 1977) provides a natural language
environment for debugging a knowledge base. INKA at
present contains no facilities to modify an existing rule or to
test the evolving knowledge base for some level of integr/ty;
these are to be future additions.

INKA is written in Smalltalk (Goidberg & Robson, 1983)
and runs on both the Tekuroulx Magnolia Workstation and the
4404 Artificial Intelligence System. INKA makes extensive
use of the bit-mapped display and three-button mouse on these
systems.

LANGUAGE AS A KNOWLEDGE ENGINEERING TOOL

The major bottlenecks in building knowledge based sys-
tems have proven to be related to the definition and acquisi-
tion of knowledge to be processed.

The first bottleneck occurs in the knowledge definition
phase of system development, where symbolic structures are
defined that represent the knowledge necessary to accomplish
a particular task. A bottleneck arises because of the ~ortage
of knowledge engineers, who are skilled in defining these struc-
tures and using them to express relevant knowledge.

254

The second bottleneck occurs in the knowledge acquisition
phase, which involves the codification of the knowledge neces-
sary for a system to function correctly. A bottleneck arises
here because in current practice, the presence of the
knowledge engineer is required throughout this time-
consuming process.

In the course of defining a viable methodology for the
construction of expert systems (Frelling & Alexander 1984;
Alexander et al. 1985), we have identified cermia classes of
problems where the task of def inin$ the knowledge structures
and the task of actually building them can be effectively
separated, with only the former being performed by a trained
knowledge engineer. The problem of building a large collec-
tion of knowledge-based troubleshooters for electronic instru-
meats is an example. In order to support the construct/on of a
large class of such systems, it makes sense to perform the
knowledge definition step for the overall domain initially, and
to build domain-specific developmera tools, which include
problem-oriented mbsets of Enghsh and special purpose graph-
ical displays, that can be reused in the development of each
individual knowledge-based system.

Even in the context of such an approach, we have found
that there is usually a shortage of capable knowledge engineers
to carry out the knowledge deflnltioa phase, and that a well-
defined methodology can be of great value here in aiding non-
linguistically oriented computer scientists to carry out this ver-
bal elicitation task. The major issue is how to gee started
defining the forms into which knowledge is to be cast.

We have found it an effect/ve technique tO begin this pro-
cem by recording statements made by task experts on tape, and
transcribing these to fairly natural En~)i~. When enough
recording has been done, the statements begin to take on
recognizable patterns. It is then pom/ble to build a formal
grammar for much of the relevant utterances, using linguistic
engineering techniques such as semantic grammars The sym-
bols of this grammar and the task specific vocabulary provide
convenient points for defining formal sub-structures, which are
pieced together to define a complete symbolic representation.
Once the grammar is reasonably well-defined, the mapping to
symbolic representation can be carried out with mapping tenh-
niques such as the f-structure constraints of lexical-fuactioaal
grammar.

Up to this point, we can imagine that the entire task has
been carried out on paper, or some machine-readable
equivalent. Even in such a rudimentary form, the exercise is
useful, because it provides a conveniently formal documenta-
tion for the knowledge representation decisions that have been
made. However, it is also the case that these formal defini-
tions, if appropriately constructed, provide all that is necessary
to construct a problem specific interface for acquiring utter-
antes expressed in this sublanguage. In fact, the idea of using
this technique to build acquisition interfaces, using INGLISH,
actually occurred as a result of wondering what to do with a
grammar we had constructed simply in order to document our
representation structures (Freiling et al. 1984).

We do not intend to imply that it is possible in complex
knowledge based system applications to simply build a gram.
mar and immediately begin acquirin~ knowledge. Often the
process leading to construction of the grammar can be quite
complex. In our case, it even involved building a simple proto-
type troubleshooting system before we had gained sufficient

confidence in our representation structures to attempt a
knowledge acquis/tion interface.

Nor do we intend to claim that all the knowledge neces-
sary to build a complete expert system need be computed in
this fashion. Systems such as INKA can be justified on an
economic bash if they make pom/ble only the transfer of a ~ '~
nificam fraction of the relevant knowledge.

G L I B - A PROBLEM SPECHrIC SUBLANGUAGE

The knowledge acquisition language developed for elec-
tron/c devine troubleshooting is called GLIB (General
Language for Insumneat Behavior), and is aimed primarily at
describing observations of the static and dynamic behavior of
electrical signals as measured with oscilloscopes, voltmeters,
and other standard electronic test instruments (Freiling et al.
1984). The grammatical structure of GLIB is that of a seman-
tic grammar, where non-terminal symbols represent units of
interest to the problem domain rather than recognizable
linguistic categories.

This semantic grammar formalism is an important part of
the D E T E K T R methodology because the construction of
semantic grammars is a technique that is easily learned by the
apprentice knowledge engineer. It also ma~es possible the
establishment of very strong constraints on the formal language
developed by this process. Two of the design constraints we
find it advisable to impose are that the language be unambigu-
ous (in the formal sense of a unique derivation for each legal
sentence) and that it be context-free. These constraints, as will
be seen, make pom/ble features of the interface which cannot
normally be delivered in other contexts, such as menus from
which to select all legal next terminal tokens. While increasing
complexity of the acquisition sublanguage may make these
goals unfeas/ble past a certain point, in simple systems they are
features to be cherished.

Figure I shows a fragment of the GLIB grammar. In the
DETEKTR version of INKA, sentences in this language are
accepted, and mapped into Proiog terms for proceming by a
Prolog based diagnostic inference engine. At present, the eric/-
ration is unguided: responsibility res/des with the user to ensure
that all relevant statements are generated. We are still studying
the issues involved ia determining completeness of a
knowledge base and assimilating new knowledge. One out-
come of these studies should be means of guiding the user to
areas of the knowledge base that are incomplete and warrant
further elaboration. Future enhancements to the system will
include explanation and modification facilities, so that
knowledge may be added or changed after testing the infer-
ence engine.

THE NATURAL LANGUAGE INTERFACE DESIGN

INGLISH - INterface enGLISH (Ph/Ilips & Nicholl,
1984) - allows a user to create sentences either by menu selec-
tion, by typing, or by a mixture of the two. This allows the
self-paced transition from menu-driven to a typed mode of
interact/on. In-line help is available. To assist the v/pist,
automatic spelling correction, word completion, and automatic
phrase completion are provided. INGLISH constrains users to
create statements within a subset of English, here GLIB.

A statement can be entered as a sequence of menu-
selections using only the mouse. A mouse-click brings up a
menu of words and phrases that are valid extensions of the

255

<:rttl*'~> ::I=
IF <cond i t i on> T H E N <¢on¢ lmma>

<condifiou> :: ' ,
<¢otltl=n independeln predicate> I
<context independent predicate> WHEN ~'-.m~-tund coa tex t>

<conclus ion> :: ! ,
<fuectionaJ context>

<atonf i¢ funct~nal context> ::-
<device> HAS FAILED I
<device> B OK

< f ~ conner> ::1.
<atomic functional context> !
<atomic functional context> AND <functional context> I
<atomic functio~taJ context> OR <f,,r~tionaI context>

<atOtUiC stt~tetugaJ contexL> ::~,
<device> IS REMOVED

~-JtfttCtttt~l COtlteXt> ::1=
<a tomi¢ structm'aJ con tex t> I
<a tomic structural context> AND <structural context>

<context independent prostate> ::=
<value predicate>

<value predicatc> : :=
<value expre~on> IS <value expreslion> I
<value expt~mou> <comparator> <value c~im:smon>

<coml~tralOf> ::~
IS E Q U A L T O I = I
IS GREATER THAN I > I
IS LESS THAN I < !
IS LESS THAN OR EQUAL TO I <= I
IS GREATER THAN OR EQUAL TO I > - I
IS N O T E Q U A L TO I ! : ,

Figure 1: A fragment of GLIB

current sentence fragment. Once a selection is made from the
menu using the mouse, the fragment is extended. This
sequence can be repeated until the sentence is completed.
Creating a sentence in this manner compares with the
N L M E N U system (Tennant e t a l . , 1983). Unl ike N L M E N U ,
keyboard entry is also possible with IHGLISH. Gilfoil (1982)
found that users prefer a command form of entry to menu-
driven dialogue as their experience increases. When typing, a
user who is unsure of the coverage can invoke a menu, ei ther
by a mouse-click or by typing a second space character , to find
out what INGLISH expects next without aborting the current
statement. Similarly, any unacceptable word causes the menu
to appear, giving immediate feedback of a deviation and
suggestions for correct continuation. A choice from the menu
can be typed or selected u~ng the mouse. | N G L I S H in fact
allows all actions to be performed from the keyboard or with
the mouse and for them to be freely intermingled. As only
valid words are accepted, all completed sentences are well-
formed and can be translated into the internal representation.

Figure 5, in the " INGLISH" window, shows a complete
sentence and its translation, and a partial sentence with a menu
of continuations. The numbers associated with each menu
item provide a shorthand for entry, i.e., "~12" can be typed
instead of "RESISTANCE". As menu entries can be phrases,
this can save significant typing effort.

Input is processed on a word-by-word basis. Single spaces
and punctuat ion characters serve as word terminators. Words
are echoed as typed and overwrit ten in uppercase when
accepted. Thus, if lowercase is used for typing, the progress of
the sentence is easily followed. A n invalid entry remains visi-
ble along with the menu of acceptable continuations then is
replaced when a selection is made.

The spelling corrector (a Smalltalk system routine is used)
only corrects to words that would be acceptable in the current
syntactic/semantic context. As Carbonell and Hayes (1983)
point out, this is more efficient and accurate than at tempting
to correct against the whole application dictionary.

Word complet ion is provided with the "escape" character
(cf. DEC, 1971). When this is used, INGLISH attempts to
complete the word on the basis of the characters so far typed.
If there are several possibilities, they are displayed in a menu.

Automat ic phrase complet ion occurs whenever the con-
text permits no choice. The complet ion will extend as far as
poss/ble In an extreme case a dngle word could yield a whole
sentence! The system will "soak-up" any words in the comple-
t ion that have also been typed.

The spelling cot'rector and automatic phrase completion
can interact in a disturbing manner. Any word that is outside
the coverage will be treated ~s an error and an at tempt will be
made to correct it. If there [s a viable correction, it will be
made. Should phrase completion then be possible, a portion of
a sentence could be constructed that is quite different from the
one intended by the user. Such behavior will probably be less
evident in large g r amman . Nevertheless, it may be necessary
to have a "cautious" and "trusting" mode, as in Interlisp's
DWIM (Xerox, 1983), for users who resent the precocious
impat/ence of the interface.

The system does not support anaphora, and ellipsis is
offe:ed indirectly. The interface has two modes: " E N T R Y "
and "EDIT" (Figure 5). These are selected by clicking the
mouse while in the pane at the top right of the interface win-
dow. Rules are normally entered in the Enter mode. When in
Edit mode, the window gives access to the SmalltaLk editor.
This allows any text in the window to be modified to create a
new statement. After editing, a menu command is used to
pass the sentence to the p a n e r as if it were being typed. Any
errc;" in the constructed sentence causes a remedial menu to be
displayed and the tail of the edited sentence to be thrown
away.

The 1HGLISH interface alleviates the problem of linguis-
tic coverage for designers and users of natural language inter-
faces. A natural language interface user composes his entries
bearing in mind a model of the interface's capabilities. If his
model is not accurate, his interactions will be error-prone. He
may excerd the coverage of the system and have his entry
rejected. If this happens frequently, use of the interface may
be abandoned in frustration. On the other hand he may form
an overly conservative model of the system and fail to ur~ize
the full capabifities of the interface (Tennant , 1980). An inter-
face designer is confronted by many linguistic phenomena ,
e.g., noun groups, retative rlauses, ambiguity, reference,
ellipsis, anaphora, and paraphrases. On account of perfor-
mance requirements or on a lack of a theoretical understand-
ing, many of these constructions will not be in the interface.
INGLISH allows designers to rest more comfortably with the
compromises they have made, knowing that users can sys-
tematically discover the coverage of the interface.

2 5 6

T H E I M P L E M E N T A T I O N O F I N G L I S H

INGLISH parses incrementally from left to right and per-
forms all checking on each word as it is entered. The parser
follows the Left-Corner Algorithm (Gr/ffiths & Petrick, 1965),
modified to a pseudo-parallel format so that it can follow all
parses simultaneously (Phillips, 1984). Th/s algorithm builds
phrases bottom-up from the left-comer, i.e., rules are selected
by the first symbol of their r/ght-hand-s/des. For example,
given a phrase initial category e, a rule of the form X - -e - -
wi l l be chosen. The remaining rule segments of the right-hand
s/de are predictions about the structure of the remainder of the
phrase and are processed left-to-right. Subsequent inputs will
directly match success/ve rule segments ff the latter are term/-
aal symbols of the grammar. When a non-terminal symbol is
encountered, a subparse is initiated. The subparse is also con-
structed bottom-up from the left-corner, following the rule
selection process just described. When an embedded rule is
completed, the phrase formed may have the structure of the
non-terminal category that or/ginated the subparse and so com-
plete the subparse. If there is no match, it will become the
left-corner of a phrase that will eventually match the originat-
ing category.

The parser includes a Re,whabiliry Mmriz (Griffiths &
Petrick, 1965) to provide top-down filtering of rule selection.
The mntrix indicates when a category A can have a category B
as a left-most descendant in a passe tree. The matrix is static
and can be derived from the grammar in advance of any pan.
ing. I t is computable as the transitive closure under multiplica-
tion of the boolean matrix of left daughters of non-terminal
categories in the grammar. It is used as a further constraint on
rule selection. For example, when the goal is to construct a
sentence and the category of the lust word of input is e, then
rule selection, giving X - c --, will also be constrained to have
the property S * X -- The filtering is applicable whenever a
rule is selected: during subparses the constraint is to reach the
category originating the subparse.

A semantic grammar formalism is used in INGLISH,
which make the grammar application dependent. As was men-
tioned earlier, this format was independently chosen as pan of
the knowledge engineering methodology for describing the
avplication domain. The rationale for the choice for
INGLISH was that the simultaneous syntactic and semantic
checking assists in achieving real-time processing. A fragment
of the grammar is shown in Figure 1.

Pre-processing on the grammar coasu'uc:s the terminal
and non-terminal vocabularies of the grammar, the reachabllity
matrix, and an inverse dictionary. The set of all possible initia/
words and phrases for sentences can also be precomputed.

The Smafltalk system contnin~ controllers that manage
activity on a variety of input devices and from these a con-
troller was readily constructed" to coordinate mouse and key-

• Smalltalk is an object-oriented language. Instead of
creating a procedure that controls system operation, the
user creates an object (usually a data structure), and a
set of methods (operations that transform, and commun-
icate with the object). Smalitalk programs create objects
or send messages to other objects. Once received, mes-
sages result in the execution of a method.

Programmers do not create each object and its
methods individually. Instead, classes of objects are de-

board activity in INGLISH. Either form of entry increments
an intermediate buffer which is inspected by the parser. When
a complete word is found in the buffer it is parsed.

Every phra~ in an on-going analys/s is contained in a
Smalltalk object. The final parse is a tree of objects. The
intermediate state of a parse is represented by a set of objects
containing partially instantiated phrases. After the first word
has established an initial set of phrase objects, they are Dolled
by the pa~er for their next segments. From these and the
rever~; dictionary, a "lookahead dictionary" is estabfished that
assoc/ates expected words with the phrasal objects that would
accept them. Using this dictionary an incoming word will only
be sent to those o b ~ ' t s that will accept it. If the word in not
in the set of expected words, the dict/onary keys sre used to
attempt spelling correction and, iI correction fails, to make the
menu to be displayed. If the dictionary contains only a single
word, this indicates that automatic phrase completion should
take place. A new lookahead dictionary is then formed from
the updated phrase objects, and so On.

KNOWLEDGE TRANSLATION

The internal form of a diagnostic role is a clause in Pro-
log. Sentences are translated using functional stigmata, as in
lexicai-functioaal grammar. The functional schemata are
attached to the phrase structure rules of GLIB (Figure 2).

(t F o a ~ 0 COND roItM), 0 CNCI. FORM))>
(t COND)-. (t CNCL)-.

<r ide> - > IF <condit ion> THEN <conclus/on>

(. r-OaMl--<.~.((t a~) . (, SYAI"B)}.~

(, ~ * (t SYAI"R)-.

<condition> - > <indicator> IS ~ >

(. e'OltM)--<.umn((, oev), ~m')>
(, OnV)-,

<conclus/on>--> <device> HAS F A I L E D

Figure 2: GL/B rules with attached schemata

Unlike lex/cal-functional grammar, the schemata do not set up
constraint equations as the interface and the semant/c grammar
ensure the well-formedne~ and unamhigu/ty of the sentence.
As a result, propagation of functional structure is handled very
quickly in a post-proce~ng step since the appficable grammati-
ca/ rules have already been chosen by the parsing process.
Further, by restricting the input to strictly prescribed sub-
language GLIB, not Engl~h in general, the Ur~n~Intioa process
is s/mplified.

fined. A clam definition describes an object and the
methods that it understands. Classes are structured
h/erarehically, and any class automaticaUy /nherits
methods from its superclass.

As a result of this hierarchy and code inher/tance,
applications may be wr/tten by adap~ng previously con-

• strutted code to the ~ k at hand. Much of the appUca-
t/on code can be inherited from prev/ously defined
SmaIitalk code. The programmer need only redefine
differences by overriding the inappropriate code with
custom/zed code. (Alexander & Freiling, 1985).

257

The parser constzvcts a par~ tree with attached sche-
mata, referred to as a constituent-structure, or c - s t r u c t u r e .

Translation proceeds by instantiatinS the meta-vatiablns of the
schemata of the c-structm~ created by INGLISH to form func-
tional equations which ate solved to produce a functional struc-
ture (f - ~ e) . The final rule form is obtained from the f-
structure of the sentence when its sub.structures are recursively
trandormed according to the contents of each f-structure.

As an example, given the lexical-functioaal form of the
semantic grammar in Figure 2 and the following sentence:

IF LED-2 IS ON THEN TRANSISTOR-17 HAS FAILED

the' c-structure in Figure 3 would be produced. This shows
that a rule has a condition part, COND, and a conclus/on part,
CNCL, that should become a clausal-form ~Ule(COND,
CNCL). ~ The meta-symbol t refers to the parent node and t
to the node to which the schema is attached.

The final phase of INKA interprets the f-structures to
produce Pmlog clauses. All of the information required to
produce the clauses is contained in the FORM property in this
example. The FORM property is printed, with all variables
instantiated, to produce the f'mal rule in the form of a Prolog
clause. The f-strucntre of Figure 4 produces the Prolog clause

rule(state(led-2, on), ~tatus(transistor-17, failed)

KNOWLEDGE USE

Translated rules are sent to a diagnostic engine that has
been implemented ia Pmiog. The diagnosdc engine uses
GLIB statements about the hierarchical structure of the device
to build a strategy for successive localization of failures. Start-
ing at the highest level (' the circuit" in GLIB terminology),
named sub-cimults are examined in turn, and diagnostic rules
retrieved to determine correctness or failure of the sub-circuit

<rule>

IF <condition.:> THEN

(taqD~/t] (t ~nl,A~)~. (t STA~))=~

<indicator> IS <state>

LED-2 ON

<conclusion>

(* FOItMl--qmm~(* bey).
(, cev)-.
<device>. HAS FAILED

I
TR.ANSISTOR- 17

Figure 3: C-structure

The functional specifications of the example may be
solved by instantiating the recta-symbols with actual nodes and
assigning properties and values to the nodes according to the
specifications. In the example given, most specifications are of
the form "(t pmpert'y)=value" where "value" is most often *.
This form indicates that the node graphically indicated by t in

• the c-structure is the specified property of the parent node
(pointed to by *). Specifications are left-= _~:o¢_ lative and have a
functional semantic interpretation. A specification of (t
COND FORM) refers to the FORM property of the parent
node's COND property. The f-~mcture for the example is
given in Figure 4.

in question. If no specific determination can be made, the
sub-circuit is a.mumed to be functioning properly.

A sample session including acquisition of a rule and ato-
ning of a test diagnosis is shown in Figure 5. The circuit used
in this example consists of an oscillator wh/ch drives a light
emitting diode (LED-2 in the schematic) and a power supply
(LED-1 indicates when the power supply is on). The
schematic diagram of the circuit is in the upper pane of the
"Insu'ument Data" window; the circuit board layout is in the
lower pane. Rules for diagnosing problems in the circuit

| IND led-2
COND[STATE on

[FORM <sta~(O IND FORM), (t STATE FORM))>

CNCL [DEV tr~i,~torol7
t FORM <s~u.¢((, DEV), fa~ed)>

t FORM <rule(O COND), (, CNCL))>

Figure 4". F-structure

258

GUll Knowledge Acquisition Entry

IF NODE 4 VOLTAGE IS EQUAL TO NODE 5 VOLTAGE THEN RESISTOR 2 HAS FAILED . "PARSED
rula(comp(aq.voltage(nods(4)).voltags(nods(5))).status(componsnt(r ssistor(2))0 f ailed),-)

IF lOWER SURLY 1 .

CURRENT ($3)
FREQUENCY (#4)
HAS FAILED (#5)
IMPEDANCE (#6)

IS (ltT~

POWER (#111
RESISTANCE (#12

VOLTAGE (#13)
"'ABORT 1#14)

Is led number 2 not flashing? yes

What is the voltage of node number 2? 15

IS led numl:)ef 1 dim? no

Is it true that the voltage of node number 4 is equal to the
voltage of node number .5? yes

Oscillator number 1 is failing.

Resistor number 2 iS failing.

Instrument (3ate

I. No,.
555 I ~ ~4

.oo~-, ~ . ~ . ~ : I ,J,,,i", ~ = ' '

c= I

n n n n n n a n n n n n n n E
I l n n n n n n n n n n n ~ ~ ' ', ,. ~',;_~ ¢ . V . ~ n n n nE
I I D l = e ~ l = l = l i l = ~ ~ , , , - . - ~ . ,.-, ' . , . . , i i l l ~ l = l = i i |
I l n n n n n n n ~ n n n n n n n n = ~ . ~ n n n n=

~ I = I O I I i i D rrll. l,,~ ~,~.'~ = ~ = I= = l= I= n Q " ' ~ = 1 3 1 = 0 [

I l n n n n n n n ~ ~ n ~ n ~ n n n q n v t ~ n n n © ~ l

l l=nnnnnni ! : - .+~ ' i . ,!.;'::,,.~ n | i .,..:.~i~n n l i q nli=.,'t~= n n n nql
l lnn a n n a nilii.;.~ ::~..i.,.,~ n B~,:~.~i~!>.,,~ a n i l n i l n n n n n n n , l
I l n n n n a n n ~ . , ' ~ , ~ n ~ n n n l u i n n n a n nnq l

Figure 5: An []gKA ===/on

(' t roubleshoot ing" rules) are added to the system in the win-
dow labeled " INGLISH." The interface to the diagnnszi¢
engine is in the "Prolog" window. The " INGLISI I" window
shows a recently added rule, with its Prolog translation
immediately below it. It also shows a partially completed rule
along with a menu of acceptable sentence continuations. The
user may select one of the menu items (either a word or
phrase) to be appendcd to the current sentence. The "Pmlog"
window displays the results of a recent test diagnosis. This test
was run after the first rule in the ~ N G L I S H " window was
added, but before the addition of the second rule was begun.
The last question asked during the diagnosis corresponds to the
first rule. Resistor 2, in both the schematic and board
diagrams of the =Instrument Data" window, is highlighted as a
result of running the diagnos/s: whenever the diagnnstic engine

selects a specific component for consideration that component
is highlighted on the display. Some 20 statements and rules
have been co l lec ted '.'or diagnosing the circuit; Figure 6 lists a
portion of them with their Prolog translation.

2 5 9

THE CIRCUIT CONTAINS OSCILLATOR-1 AND POWERSUPPLY-1.
has_cemponent(block(circult), block(oscillator(1))).
has_component(block(c/rcuit), block(powetlupply(1))).

RESISTOR-1 IS PART OF OSCILLATOR-1.
has.xomponent(block(o~-fllator(I)), component(resistor(l))).

IF LED-2 IS NOT FLASHING AND THE VOLTAGE OF NODE-2 IS EQUAL
TO 15 VOLTS THEN OSCILLATOR-1 HAS FAILED.
rule(and(not(state(led(2), flashing))),

comp(voltage(node(2)), If)),
status(block(oscillator(I)), fa/led),
[]).

IIF [..,ED-,1 IS DIM AND LED-2 IS OFF THEN ~ I S T O R - 1 HAS FAILED.
rule(and(state(led(l), dim),

state(led(2), off)),
status(component(resistor(1)), failed),
[]).

Figure 6: GLIB rules with Pmlog translations

DISCUSSION

Informal observations show that subjects generally need
only a few minutes of instruction to start using INGLISH. Ini-
tially there is a preference to tt~ the mouse to explore the cov-
erage and then to begin to incorporate some typing. We have
not had any long-term use~ to observe their trends.

Use~ could react negatively to limited language systems;
even when the coverage is well-engineered users will occasion-
ally encounter the boundaries. Fortunately, Headier &
Michaelis (1983) found that subjects were able to adapt to lim-
ited language systems.

INGLISH does not let the designer off the hookl A umr
can still have a statement in mind and not easily f'md a way to
expre~ it through the grammar. Diligent engineering is still
needed to prepare a grammar that will allow a user to be
guided to a paraphrase of his or/ginal thoughL Nevertheless,
the grammar design problem is simplified: when guidance is
provided fewer paraphrases need be incorporated.

The use of a semantic grammar to define the fragment of
English to be processed does impose limitations on the com-
plexity of acceptable input. In the INKA system as it is
currently cen.mxtcted, however, them are two distinct ways in
which the semantic correctness of an input can be enforced,
t int in the parsing of the of the semantically ceRstralned
grammar, and second in the tran.qat/on process, as the ftmc-
donal structures are built.

In short, the our approach to building practical natural
language inte~.-ees does not depend on a semantic grammar to
¢oastra/n input. In the future we intend to explore the u ~ of
a wider class of grammars that include a domain-independent
kernel and a domain-specific component, like GLIB. In this
approach we are in substantial agreement with Winograd
(1984) who advocates a similar approach as an effective diroc.
finn for further naturul language resea~h.

REFERENCES

Alexander, J.H., & Freiling, MJ. Building an Expert System
in SmalRalk-80 (R). Systems and Software, 1985, 4, 111-118,

Alexander, J.H., Freiling, MJ. , Messick, S.L., & Reh/uss, S.
Efficient Expert System Development Through Domain-
Specific Tools. Proceedings of the F~fth International WorkJhop
on Expert Systems and their Applications, Avignon, France,

Burton, R.R. Semamic Grammar: los Eng~ncering Tecb, n i ~ for
Consmac:ing Natural lamgaage UnderstmTding System.v (Techni.
caJ Report No. 3453). Cambridge, MA: Bolt, Beranek, &
Newman Inc., 1976.

Carbonell, J.G., & Hayes, PJ. Recovery Strate~es for Pars-
ing Extragrammatical Language. American Journal of Computa-
tional Linguimics, 1983, 3-4, 123.146.

Davis, R. Interactive Transfer of Expertise: Acquisition of
New Inference Rules. Proceedings of the Fifth International
Joint Colrference on Art~iciai intelligence, Cambridge, MA,
1977, 321-328.

[DEC] TOPS-20 Reference MammL Maynard, MAt Digital
Equipment Corporation, 1971.

Freiling, MJ. , & Alexander, J.H. Diagrams and Grammar:
Tools for the Mass Production of Expert Systems. 1EEE First
Conference on Ar~ficial Intelligence Applications. Denver,
Colorado, 1984.

Freiiing, M., Alexander, J., Feucht, D., & Stubbs, D. GL/B -
A LAnguage for gepreeentmg the Behavior of Electronic Devices
(Technical Report CR-&t-12). Beaverton, OR: Tektronix,
Inc., 1984.

Gilfoil, D.M. Warming up to Computers: A Study of Cogni-
five and Affective Interaction over Time. Proceedings of the
Haman Fncterx in Computer 5y~ema Conference, Gaithersburg,
MD, 1982, 245-250.

Goldberg, A. & Robson, D. Smalltaik 80: The l,a~guage and
its lmpiemamtmiom. Re-dlng, MA: Addison-Wesley, 1983.

260

Griffiths, T., & Petr/ck, $.R. "On the relative efficiency of
coatext.free grammar recoe, niT~ru. ° Comm. ACM, 1965, 8,
289-300.

Headier, J.A., & Michnefis, P.R. The Effects of Limited
Grammar on Interactive Natural Language. ProceEdings of tha
Human Factors in Computer Systems Conference, Bo~a, MA,
1983, 190.192.

Kaplan, R.M., & Bre, mnn, J.W. Lex/cal-Funct/onal Grammar:.
A Formal System for Grammatical Representat/oa. In J.
Brecmm (Ed.), T ~ Ment~ Representation of O r ~ Rein.
r/ore. Cambridge, MA: MIT Press, 1982.

McKeowa, K.R. Natural Language for Expert Sy~ems: Corn-
par/son with databa~ systems. Proceedings of tha International
Conference on Computational l, in~rics , Stanford, CA, 1984,
190-193.

Phillips, B. Aa Ob~'t-or/ented Parser. la B.G. Barn & G.
Gnida (Eds.), Computational Models of Natara~ Langaage Pro.
¢Lu/nz. Amsterdam: North-Holland, 1984.

Phillips, B., & NichoH, S. INGUSH: A Nanwal Language Inter.
face (Techn/cal Report CR-84-27). Beaverton, OR: Tek-
tronix, Inc., 1984.

Tennant, H.R. Evaluation of Natural Language Processors
(Technical Report 1"-103). Coordinated S¢/eace Laboratory,
University of Illinois, Urbana, IL, 1980.

Tennaat, H.R., Ross, K.M., & Thompson, C.W. Usable
Natural Language Interfaces Through Menu-Based Namra/
Language Understanding. Proceedings of the Human Factors in
Computer ~,, ystem.t Conference, Boston, MA, 1983, 190-192.

Winograd, T. Mov/ng the Semans/¢ Fu/o'um (Techn/cal Report
84-17). Center for the Study of Language and laformat/an,
Stanford, CA, 1984.

[Xerox] Interlixp Reference Manual Palo Alto, CA: Xerox
Palo Alto Research Center, 1983.

261

