Semantic Caseframe Parsing and Syntactic Generality

Philip J. Hayes. Peggy M. Andersen. and Scott Safier

Carnegie Group Incorporated
Commerce Court at Station Square
Pittsburgh. PA 15219 USA

Abstract
We have implemented a restricted 3ijomain parser cailed
Plume.”™ Building on previous work at Carnegie-Meilon
Unversity e.g. [4. 5. 8]. Plumes approach to parsing 1S
based on semantic caseframe nstantaton This nas the
advantages of efficiency on grammatucal nput. and
robustness in the face of ungrammaticai nput Whie Plume
1S well adapted to simpie Jeclaratve and mperative
utterances. it handies passives relative clauses and
interrogatives in an ad hoc manner leading to patchy
syntactic coverage This paper outhnes Plume as it

for
and

currently exists and descnbes our
extending Plume to handle passives
interrogatives 1n a general manner

detailed design
relative clauses.

1. The Plume Parser

Recent work at Carnegie-Melion Unwersity e.g. [4. 5] has
shown semantic caseframe instantnation to be a highly robust
ang efficient method of parsing restricted domamn nput. In

this appreoach to parsing. a caseframe grammar contains the

domain-specitic semantic informaton. and the parsing
program contains general syntactic knowledge. Input s
mapped onto the grammar using this buityn syntacnhc
knowledge We have chosen this approach for Plume™ a
commercial restncted domain parser.'! because of s
advantages in efficilency and robustness.

Let us take a simple example from a natural !anguage

interface. called NLVMS. that we are deveioping under a

1
Mnre PlumeTM s the ot

™

precisely. name the run-hme system

associated amih Language Craft an ntegrated enviromment for the

geveiopment of natural language interfaces The Plume parser ahich
translaies Engush inputl nto casetrame instances. 1s a Maar component

ot 1S run-time svstem The omer naor -omponent translales the
caseframe instances nto apphcation <speciic 'anguages. In adoion to
the Plume run-hme system. Language Craft ncluges grammar
develogment tools ncluging 3 structured edidor and fracing and
pertarmance measurement 1GoIS Bon Plyume 1nd canquage Craft are
products of Carnegie Grouvd. And aie - urrently ar restncted release
Plume ang Language Cran MR ragemarrs o larnegie 310up

‘ncorporateg

153

NLYMS 18 an

7Vl

contract with Digital Equipment Corporation
vms?

The Plume grammar for this intertace contains

intertace to Digital's operating system for

computers.®
the following semantic caseframe® corresponding to the copy

command of VMS:

(icopyﬁ
:cf-type clausal
:header copy
:cases
(file-to-copy
sfiller *file*
:positional Direct-Object)
(source
:filler *directory*
:marker from | out of)
(destination
:filler *filex* |
:marker to | into

directory
I in | onto)

]

This defines a caseframe called -copy’ with three cases:

file-to-copy. source. and destination The file-to-copy case s

filled by an object of type “file’ and appears in the input
as a direct object. Source s filled by a -dwectory’ and
should appear in the nput as a prepositional phrase

preceded or marked by the prepositions “from” or “out of”

Destination is filled by a “file* or directory* and is marked

by “to”. “into”. or “onto” Finally the copy command itseif
is recognized by the header word indicated above (by
header) as “copy”.
Using this caseframe. Flume can parse inputs like:
Copy too bar out of [x| into [yf*
From (x| to [y] copy foo bar
oo par copy trom (x| 10 [y]
2VMS and VAX are tragemarks ot Digital Equipment Corporation
3TP"S 15 4 Sumphihed &rS1Ion ot e rasafr e doonatky o the Jrammar.

In essence. Plume's parsing aigonthm is to find a caseframe

header. in this case “copy”. and use the associated

caseframe, “copy’. to guide the rest of the parse. Once

the caseframe has been identified. Plume looks for case

markers, and then parses the associated case filler directly

following the marker Plume aiso tries 10 parse positionaily

specified cases. like direct object. in the usual position in

the sentence - immediately following the header for direct

object. Any input not accounted for at the end of this

procedure is matched against any unfiled cases. so that

cases that are supposed t0 be marked can be recognized
without their markers and positionally indicated cases can be

recognized out of their usual positions. This flexible.

interpretive style of matching caseframes against the input
allows Plume to deatl with the kind of variation in word order

illustrated in the examples above.

The above examples implied there was some method to

recognize files and directories. They showed oniy atomic

file and directory descriptions. but Plume can aiso deal with

more compiex abject descriptions. In fact. in Plume

grammars, objects as well as actions can be described by

caseframes. For instance. here i1s the caseframe’ used o
define a file for NLVMS.
[*file*

+cf-type nominal
:header file !
tname ?(%period !extension)
:cases
(name
:assignedp !name)
(extension
:assignedp !extension
:marker written in
:adjective <language>
:filler <language>)
(creator
:filler *person*
:marker created by)
(directory
:filler *directory*
:marker in)

a4
n he syntax
nrackets.

used witn YMS. airectones are :ndicated by square

-‘«\qam amphhed

5D\ume aulomane aily 1eengizes tetemuners and Juantihers assuciated
ith nomipgl o« asetrames

154

This caseframe allows Plume to recognize file descriptions
like:5

foo

foo.bar

The file created by John

The fortran file in (x| created by John

The caseframe notation and parsing aigorithm used here are
very similar to those described above for clause level input.
The significant differences are additions related to the
:adjective and :assignedp attributes of some of the cases
above. While Plume normaily only looks for fillers after the
header in nominal caseframes an adjective altnbute of a
siot tells Plume that the siot filler -may appear before the

header.

An :assignedp attribute allows cases to be filled through

recognition of a header. This is generally useful for proper

names. such as foo and foo.bar. In the example above.
the second aiternative header contains 'wo variables name
and 'extension. that can each match any singte vord. The

question mark ndicates optionality. so that the header can

be either a single word or a word followed bv a penod and

another word. The first word 15 assigned to the vanable
‘name. and the second uf it s there' to the vanable
‘extension If 'name or ‘'extension are matched while
recognizing a file header. thew values are placed n the

name and extension cases of “hie’

With the above maodificattons Plume can parse nominat

caseframes using the same algonthm that it uses for clausas

caseframes that account for complete sentences. However

there are some Interactons belween the (wo levels of

parsing. In particular. there can be ambiguity about where

to attach marked cases. For instance. in:

Copy the ‘ontran fite in (x| w0 [y]

“in [x]” could either fiil the directory case of the file
described as “the fortran fle” or couid fill the destnation
case of the whole copy command. The second

interpretation does not work at the giobal level because the

only place to put "to [y}” s in that same destination case

However. at the tme the fle description s parsed. (his
information is not avalable. and Sso both possible
attachments must be consicered In generai. if Plume is
able to fil a case of a nominal caseframe from a

prepositional phrase. it also splits off an aiternative parse in

which that attachment is not made. When all input has

been parsed. Plume retains anly those parses that succeed

at the global level, i.e.. consume all of the input. Others

are discarded.

The current implementation of Plume is based on the

nominal and clausal level caseframe instanuation algorithms

described above. Using these algonthms and a restrcted

domain grammar of caseframes like the ones snown above.

Plume can parse a wage varety of mperative and

declarative sentences relevant 1o that domain. However.

there remain significant gaps n its coverage. [nterrogatives

are not handled at all.” passives are covered only if they

are explicitly specified n the grammar and relatve clauses

can only be handled by pretending they are a form of

prepositional phrase

The regular and predictable relationship between simple

statements. questions and relative clauses and between

actve and passive sentences s ~ell known A parser which

purports to interpret a domain specific language specificaton
using a builltan knowledge of syntax snould account for this

requianty in a general way The current impiementation of

Plume has no mechamsm for domng this. Each ndividual

possipility for questions. relatve clauses. and passives must

be explicitly specitied n the grammar For instance. o

nandle reduced relative clauses as in “the file created Dby

Jim” “created by” s lsted as a case marker {compound

preposition) 1 the creator slot of file. maring a descrnption

of the creator To handle full relatives the case marker

must be specitied as something ke “?twhich <be>)

created by’ While this allows Plume to recognize “the file

which was created by Jim”. “the file created by Jim”. or

even “the file created by Jim on Mondav ' it breaks down

on something like “the hle created on Monday by Jim’

because the case marker “created by ' s no longer a unit.

Moreover using the current techmiques. Plume s ability to
ll'he current omplementation of Plume contains 4 lempoarary methad ot
nanghng nterrngatves. Hated N LArtern mate g o asetrame

msianhahnn

Y ere -ne T A I L TR

TRpfm ety L

155

recognize the above inputs 1s completely unrelated to 1s
ability to recognize inputs like:

the file Jim created on Monoay

the person that the file was created 2y on Monday

the gay on which Jim created ine hie
If an interface could recognize any of these exampies it
might seem unreasonable to a wuser that it couid not
recognize ail of the others. Moreover given any of the

above examples. a user might reasonably expect recogmtion

of related sentence level inputs hke

Create the fHle on Mongay’

Jim created the hie on Mongay

Oig Jim create the hie on Mongay®

Was the hle createad by Jim on Monaay?
Who created the hie on Monaay”

What gay was the file created on?

The current impiemenmation of Plume has no means of

guaranteemng such regularity of coverage. Of course. this

problem of patchy syntactic coverage is not new for

restricted domain parsers. The lack of syntactic generality
of the original semantic grammar [3] for the Sophie system’
2] led

RUS parser (1].

to the concept of cascaded ATNs {10] and the

A progression with similar goals occurred
from the LIFER system (9] to TEAM [6] and KLAUS (7]

The basic obstacle to achieving syntactic generality n

these network-based approaches was the way syntactic and

semannc nformation was mixed together in the grammar

networks. The sofutions. therefore. rested on separatung the

syntactc and semantc information. Plume alreaagy

incorporates just the separation of syntax and semantics

necessary for syntactic generahty general syntactic

knowledge resides in the parser. while semanuc informanon

the grammar This suggests that

resides in syntactic

generalty :n a system like Plume can be achieved by

mproving the parser s caseframe nstantration aigorithms

sthout 1Ny major changes to jrammar content 'n terms of

the apove examples invoiving sreate’ :t suggesls we can

use a singte ‘create’ caseframe to nandle all the examples

We simply need !0 provide suitable extensions to the

existing caseframe nstantiation algOfIIth In the next

section we present a detalled design for such extensions

2. Providing Plume with Syntactic Generality

As described above. Plume can currently use clausal

caseframes only to recognize single clause imperative and

declarative utterances in the active voice. This section

describes our design for extending Plume so that relative
and interrogative uses of clausal caseframes in passive as
well as active voice can aiso be recognized from the same

information.

We will present our general design by showing how it
operates for the following °create” caseframe in the context
of NLVMS:

[*create*
:cf-type clausal
sheader <create>
:cases
(creator
:filler *person*
:positional Subject)
(createe
tfiller *file*
:positional Direct-Object)
(creation-date
:filler *date*
:marker on)

]

Note that symbois in angle brackets represent non-terminals

in a context-free grammar (recognized by Plume using

pattern matching techniques) in the caseframe definition

apove <create> matches aii morphological vanants of the
verp “create” ncluding “create’ ‘creates’ ‘created” and
‘creatng” ithough not compound renses hke S Ireanng’

see Delow). Using the existing Plume :ms ~ouid Jniy 3ilow

us !0 recognize simpie imperatives and active Jeclaratives

ike-

Create ‘oo bar on Mongay
sim creared foo 2ar un Mongay

2.1 Passives

Plume recognizes passive sentences through its processing

of the serp cluster t+e 'he main verb plus the sequence of
modal and auxiliary serb immediately preceding it. Once
the main verb has DbDeen located a special verb cluster

processing mechanism reads the verb cluster and determines

from it whether the sentence 1S active or passwe ° The
parser records this informatcn in a special case called
" %voice” .

It a sentence is found to be actve the standard parsing

algorthm described above 15 used If it is found to be

156

passive. the standard algorithm i1s used with the modification
that the parser looks for the direct object or the indirect
obiect'° in the subject position. and for the subject as an
“by”. Thus.
given the ‘“create’ caseframe above. the follow:ng passive

optional marked case with the case marker

sentences could be handled as well as ther active

counterparts.

Foo bar was created oy /im

FGo par coulg have Deer .réareg Qv Jim
Foo par i1s being createg oy sm

Foo bar was createa on Monaay

2.2. Relative clauses
The detailed design presented telow allows Plume to use

the ‘create” caseframe !o parse nominais lke:

the file Jim createg on Monday
the person that the lile was createg dy on Monaay
the gay on wnich Jim created the hle

To do thus. we introduce the concept of a relanve case A

is a link back from the caseframes for the

fill

relative case

objects that the cases of a clausal caseframe to that

clausai caseframe. A grammar preprocessor generates a

relative case automatcailly from each case of a clausal

caseframe. associating 1t with the nominai caseframe that

fills the case in the clausal caseframe. Relative cases do

not need o be specified by the grammar wrier. For

instance. a reiative case 's generated from the createe case

of ‘create and ncluded in the -file” caseframe. It looks
like this:
{(*file*
(:relative-cf *create*
:relative-case-name createe
:marker <create>
9“ also determines the tense of the sentence and whetner it s
athrmative or negative
”)Sn 4 'here s a case vith a positonal :nQurect-obiecCt siot. the
mgrect pect 15 allowed 1o passivize Ne an 'hus ungerstang senences
twe "Mary vas given a book. " rom 3 “give’ Lasetrame ofn boin a
dieesr apect angd an mdirect ,hiect - ase

Note that :marker is the same as :header of ‘create”
Similar relative cases are generated in the ‘person”
caseframe for the creator case. and in the ‘date”
caseframe for the creation-date case. differing only in

‘relative-case-name.

Relative cases are used similarly to the ordinary marked

cases of nominat caseframes. In essence. if the parser s

parsing a nominal caseframe and finds the marker of one

of its relative cases. then it tries to instantiate the :relative-

cf. It performs this instantation n the same way as ! the

relative-cf were a top-level clausal caseframe and the word

that matched the header were :its main verb. An important
difference 1s that it never tnes to fill the case ~hose name
1S given by refative-case-name. That case s filled by the
nominal caseframe which contains the relative case For
instance. suppose the parser 1s trying 1o process.
The file Jim created on Monday

And suppose that « has already located “file’ and used
that to determine it s nstantiatng a “file® nominal
caseframe It 1s able to match (against “created”i the

‘marker of the relative caseframe of “hie' shown above. It

then tries to instanbate the relatve-ct “create” wusing its

that it does not try to fill

relative-case-
going
creation-gate

standard technigues except

the case of ‘create’ specified as the

This

createe.

name. instannation succeeds with “Jim” into

creator. and “on Monday” being used to Hil

The parser then uses (a pomnter 10) the nomnal caseframe

currently being instanuated. “file” to fill createe. the
relative-case-name case of °create’ and the newly created
instance of °create" is attached to this instance of ‘file* as
a modifier

Moare compietely. Plume's algonthm for relatve clauses is:

1. When processing a nominai caseframe. Plume scans
for the :markers of the reiative cases of the nominal
caseframe at the same ume as it scans far the
regular case markers of that nomnal caseframe

2. 1f it finds a ‘marker of a relatve case. It tnes to
instgnuate the relanve-cf just as though it were the
top-level clausal casetrame and the header were Hs
main verd. e«cept that

157

a. 1t never looks any further left in the inout than
the neader of the nomiral caseframe or f it
has aiready parsed any other post-rominai
cases of the nominal caseframe no further left
than the nght hand eng of them

it consumes. but otherwise ignores any relative
pronouns (who whim mhien mnan that
)/mmediately precede the segment used !0
instantiate the relative-cf Trus means that alf
words. including “thar” will He accounted ‘or in
"the flile that Jim createc on Mongay”

it does not try to fill the case specified by the
relative-case-name n the relative-¢f: nstead
this case is filled by (a pointer 10) the onginal
nominal caseframe nstance:

if the relative-case-name specifies a marked
case rather than a positional one n the
relative-cf then 11s case marker can be
consumed. Dbut otherwise ignored. during
instantration ot the relative-cf This allows us
0 geal wuh “on’ .n “the 3Jare Jim created the
fle on" or “the care un whicn Jsim created the
hie’

3. Passive relatve clauses (e g. “the file that was
Created on Monday”i can generally be handled using
the same mechanisms used for passwves at the main
Clause levei However. n relative clauses. passives
may sometimes be reduced by omitting the usual
auxihary verb 10 be (and the relative pronoun) as in:

the file created on Monday

To account for such reduced relative clauses. the
verb cluster processor will produce appropnate
additonal readings of the verb clusters i relatve
Cfauses for which the relative pronoun s mssing.
This may lead to muitiple parses. inciuding one for
the above example simiar to the correct one for:
the file John created on Monaay
These ambiguities will be taken care of by Plume s
standard ambiguity reduction methods
2 3 Interrogatives
In addinon to handling passives ina -elative :lauses. we
also wish the information .n the ‘create” zaseframe 1o

hanale interrogatives invalving “create’ such as

2ig Jim create the Hhle- on Mgty

N3s the hle createg by sim on Vcraa,”
WNho created (he hle on Mungay

What Jday was tne tle createg

The pnmary difficuity for Plume wiin interrogatives is that. as

these examples show. the number of vanations in standard

constituent order is much greater than for imperatives ana

declaratives. Interragatives come in a wide variety of forms,
depending on whether the question is yes/no or wh: on
which auxiliary verb 1s used: on whether the voice is active
or passive: and for wh guestions. on which case is queried.

On the other hand. apart from vanations in the order and

placement of marked cases. there is anly one standard
constituent order for imperatives and only two for
declaratives (corresponding to active and passive voice). We

have exploited this low variability by building knowledge of
the imperative and declarative order into Plume's parsing

algorithm. However this is impractical for the larger

number of variations associated with interrogatives.

Accordingly, we have designed a more data-driven approach.

This approach involves two passes through the input: the
first categorizes the input into one on several primary input
categories including yes-no questions. several kinds of wn-

guestions. statements, or imperatives. The second pass

performs a detaled parse of the input based on the

classification made in the first pass. The ruies used contain
basic syntactic informanon about Enghsh. and will remam
constant for any of Plume's restricted domain grammars of

semanuc caseframes for English

The first level of processing nvolves an ordered set of

Each top-levet pattern corresponds to one
This

rc-level patterns.

of the prmary nput categornies mentoned apove.

classificatory matching does not attempt 10 match every

«~0rd in the nputl sentence. but anly to do the mMmimym

necessary to make the classificaion. Most of the relevant

informanon is found at the beginming of the inputs. in

particuiar. the top-level patterns make use of the fronted

auxiliary verb and wh-words n gquestions.

As well as classifying the input. this top-level maich s

aiso used to determine the identity of the caseframe 10 be
instanuated. This s mportant 1o do at this stage because
s heawvily

The

the detailed in the second phase

dependent on the dentty of inhis top-level caseframe

recognitton
special symbol. SverH. that appears exactly once in ail 19p-
level patterns., matches a header of any clausal caseframe
We call the caseframe whose header is matched by S$verb

the pnmary caseframe tor that input.

158

The second more detailed parsing phase is arganized
Associated with each top-

A

relative to the primary caseframe.
there is a corresponding parse template.
the primary

level pattern,

parse template specifies which parts of

caseframe will be found in unusual positions and which
parts the default parsing process (the one for deciaratives

and imperatives) can be used for.

A simpliied example of a top-level pattern for a yes-no

question is:'’

<gux> (($verb !! <aux>) (&s Sverb) $rest

This top-level pattern wiil match inputs like. the following:

Oid Jim create foo?
Was foo createa by Jim?

The first element of the above top-ievel pattern s an

auxiliary verb. represented by the non-terminal <aux > This

auxiiary 1s remembered and used by the verb ciluster

processor (as though were the first auxihary n the Cluster;

t0 determine tense and voice. According to the next part

of the pattern. some word that 1s not a verb or an auxiiary

must appear after the fronted auxiliary and before the main

verp i$ the negation operator. and !! marks a

&s

matcher to scan until it finds $vero. which matches the

disjunction). Next. the scanming operator tells the

‘header of any clausal caseframe Finally, $rest matches

the remaining nput.

It the top-levet pattern successfuily matches. Plume uses
the associated parse template to direct its more detalled

processing of the nput. The goal of this second pass

through the input 1S to nstantiate the caseframe

corresponding (0 the header matched by $verb in the top-

level pattern. The concept of a kernel-caseframe i

important to this stage of processing. A kernel-caseframe

corresponds o that part of an input that can be processed

according o the algonthm aiready buit into Plume for

declarative and imperative sentences.

.
L)

I 1his pattern, anly nputs where the tronted auxiiary < tne nrst
worg 1 the sentence are allowea The more Thmpiex patterny rhat s
aclually ssed by Ptyme dlows grepusitonaily markeg ;ases ‘o appear
imihatty as wen

The parse template associated with the above top-ieve!

pattern for yes/no questions is:

.aux kernel-caseframe
+ (:query)

This template tells the parser that the input consists of the

auxiliary verb matched in the first pass followed Dy a

kernel-caseframe. For example. n:

Dig Jim create foo?

the auxiliary verb. “did”. appears first followed by a kernel-

caseframe. “Jim create foo Note how the kernei-

caseframe looks exactly like a declarative sentence, and so
can be parsed according to the usual declarative/imperative

parsing algonthm

in addition to specification of where to find components of

the pnmary caseframe. a parse lempiate includes

annotations (indicated by a pius sign) in the above

template for yes/no questions. there s just one annotaton -
gquery. Some annotations. like this one ndicate what type
of input has been found. while others direct the processing
of the parse tempiate. Annotations of the first type record
which case is being queried in wh guestions. that is. which
the wh word. Wh questions thus

case 1S associated with

include one of the following annotatons: subject-query.

object-query. and marked-case-query Marked case queries

correspond to examples like:

On what day aigd Jsim create f00”
What day aid Jim create foo on?

in which a case marked by a preposition is being asked

about. As illustrated here the case-marker in such quernes
can either precede the wh word or appear somewhere .after
To deali with this. the parse tempiate for marked

This

the verbd.

case quenes has the annotaton Hoaung-case-marker.

annotation 1s of the second type that 1s it affects the way

Plume processes the associated parse template.

Some top-level patterns result in two possibiities for parse

templates. For example. the following top-ievel pattern

< un-nord> <aux> ((Svero oz aux >0 Sverd Srest

189

could match an object query or a marked case query.

including the following:

What did Jim create”?
By whom was foo createa?'?
Who was foo created by?

These inputs cannot be satisfactornily discnminated by a top-
level pattern. so the above top-level pattern has two different
parse templates associated with it

wh-object .aux kernel-caseframe
+ (object-query!

wh-markea-case-filler aux kernel-caseframe
+ (‘marked-case-query floating-case-marker)

When the above top-level pattern matches, Plume tries to
parse the input using both of these parse tempiates. In
general. only one wilt succeed n accounting for all the

input. so the ambiguity will be eliminated by the methods

aiready buiit into Plume.

The method of parsing interrogatives presented above

allows Plume to handle a wide variety of interrogatves in a
very generali way using domain specific semantic caseframes.
The wrter of the caseframes does not have to worry about

whether they will be used for imperative. dectarative, or

interrogative sentences. (or in relative clauses). He is free

to concentrate on the domain-specific grammar. In addition.

the concept of the kernei-caseframe allows Plume to use

the same efficient caseframe-based parsing algornthm that it

used for dectarative and imperative sentences 10 parse
major subparts of questions.

3. Conclusion

Prewious work (e.g. (4. 5. 8]) ana experience with our

current implementation of Plume. Carnegie Gioup s semantic

caseframe parser. has shown samantic caseframe
instantiation to be an efficient ang highly robust method of
parsing restricted domain nput However hke other

methods of parsing heavily dependent on restricted domain

semantics. these mual attempts at parsers based on

semantic caseframe instantnanon sutfer from patchy syntactic

coverage.

After first describing the current implementation of Plume.
this paper presented a detaied design for endowing Plume
with much broader syntactic coverage includihg passives.

interrogatives, and relative clauses. Relative clauses are

accommodated through some grammar preprocessing and a

minor change in the processing of nominal caseframes.

Handling of interrogatives relies on a set of ruies for
classifying inputs into one of a limited number of types.
Each of these types has one or more associated parse
templates which guide the subsequent detailed parse of the
sentence. As the final version of this paper is prepared
(late April. 1985). the handling of passives and interrogatives
has already been implemented in an internai development
version of Plume. and relative clauses are expected to follow

soon.

Though the above methods of incorporating syntactic
generality into Plume do not cover all of English syntax.
they show that a sigmificant degree of syntactic generality
can be provided straightforwardly by a domain specific

parser driven from a semanuc caseframe grammar

160

References

1. Bobrow. R J.
Bolt. Beranek. and Newman.

The RAUS System
1978

BBN Report 3878.

2. Brown. J. S. and Burton. R R Multiple
Representations of Knowledge for Tutonial Reasoning.
Representation ana Undgerstanding. Bobrow. 0. G. and
Collins, A.. Ed.. Academic Press. New York. 1975. pp.
311-349.

In

3. Burton, R. R. Semantic Grammar An Engineering
Technique for Constructing Natural Language Understanding
Systems. BBN Report 3453. Boit. Beranek, and Newman.
Inc., Cambridge. Mass.. December. 1976.

4. Carbonell. J. G.. Boggs. W. M.. Mauidin. M. L.. and
Anick, P. G. The XCALIBUR Project: A Natural Language
Interface to Expert Systems. Proc. Eighth int. Jt. Conf. on

Artificial Intelligence. Karlsruhe. August. 1983.

5. Carbonell. J. G. and Hayes. P J.
for Parsing Extragrammatical Language”.
Linguistics 10 (1984).

“Recovery Strategies
Computational

6. Grosz, B. J.
Intertace System.
Processing. Santa Momica. February

TEAM: A Transportable Natural Language
Proc. Cont on Applied Natural Language
1983.

7. Haas. N. and Hendnx. G. G. An Approach to Acquiring
and Applying Knowledge Proc. Nationai Conference of the
American Assoc:ation for Artificial Intelligence. Stanford
University. August. 1980. pp. 235-239

8. Hayes. P J. and Carbonell. J G. Muit-Strategy
Parsing and its Role in Robust Man-Machine Communication.
Carnegie-Mellon Unwversity Computer Science Department.
May. 1981.

9. Hendrix. G. G. Human Engineering for Applied Naturat
Language Processing. Proc Fifth Int. Jt. Conf on Aruficial
Intelligence. MIT. 1977. pp. 183-191

10. Woods. W. A "Cascaded ATN Grammars’ Amerncan
Journal of Computational Linguistcs 6. 1 (August 1980). 1-12

