Grammar Writing System (GRADE) of Mu-Machine Translation Project
and its Characteristics

Jun-ichi NAKAMURA, Jun-ichi TSUJII, Makoto NAGAO

Department of Electrical Engineering
Kyoto University
Sakyo, Kyoto, Japan

ABSTRACY

A powerful grammar writing system has been
developed. This grammar writing system is called
GRADE (GRAmmar DEscriber). GRADE allows a grammar
writer to write grammars including analysis,

transfer, and generation using the same expression.
GRADE has powerful grammar writing facility. GRADE
allows a grammar writer to control the process of a
machine translation. GRADE also has a function to
use grammatical rules written in a word dictionary.
GRADE has been wused for more than a year as the
software of the machine translation project from
Japanese into English, which is supported by the
Japanese Government and called Mu-project.

1. Objectives

wWhen we develop & machine translation
system, the intention of a grammar writer should be
accurately stated in the form of grammatical rules.
Otherwise, & good grammar system cannot be
achieved. A programming language to write a
grammar, which 1{is composed of a grammar writing
language, and a software system to execute {t, is
necessary for the development of a machine
translation system (Boitet 82).

It a grammar writing language for a machine
translation system is to have a powerful writing
facility, it must fulfill the following needs.

A grammar writing language must be able to
manipulate linguistic characteristics 1in Japanese
and other languages. The 1inguistic structure of
Japanese is largely different from that of English,
for instance. Japanese does not restrict the word
order strongly, and allows the omission of some
syntactic components. When a machine translation
system translates sentences between Japanese and
English, a grammar writer must be able to express
such characteristics.

A grammar writing 1language should have a
framework to write grammars in analysis, transfer,
and generation phase using the same expression. It
is undesirable for the grammar writer to learn
several different expressions for different stages

338

of a machine translattion,

There are meny word specific linguistic
phenomena in a natural language. A grammar writer
must be able to add word specific rules to a
machine translatifon system one after another to
deal with word specific linguistic phenomena, and
improve his machine translation system over a long
period. Therefore, a grammar writing language must
be able to handle grammatical rules written in word
dictionaries.

There 1is natural
translation process. For example, a parsing of
noun phrases which do not contain sentential forms
is executed before a parsing of more complex noun
phrases. An approximate parsing of compound
sentences is executed before a parsing of complex
sentences. Also, when an application sequence of
grammatical rules are written explicitly, a grammar
writing system can execute the rules efficiently,
because the system just needs to test the
applicability of a restricted number of grammatical
rules. So, & grammar writing language must be able
to express several phases of a translation process
in the expression explicitly.

a sequence in a

A grammar writing language must be able to
treat the syntactic and semantic ambiguities in
natural languages. But it must have some
mechanisms to avoid a combinatorial explosion.

Keeping these points in mind, we developed
a new programming system, which is composed of the
grammar writing language and its executing system.
We will call it GRADE (Grammar Describer).

2. Expression of the data for a processing

The form of data to express the structure
of a sentence during an analysis, a transfer, and a
generation process has a strong effect on the
framework of a grammar writing language. GRADE
uses an annotated tree structure for expressing a
sentence. Grammatical rules in GRADE are described
in the form of tree-to-tree transformation with
annotation to each node.

The annotated tree 1in GRADE s tree
structure whose nodes have l1ists of property names
and their values. Figure 1 shows an example of the
annotated tree.

[E-cn . s]
E-CAT = NP E-CAT = VP
E-NUMBER = SINGULAR E-NUMBER = SINGULAR

E-SEM = HUMAN
E-CAT : English Category Symbol
E-NUMBER: English Number (SINGULAR or PLURAL)
E-SEM : English Semantic Marker

Figure 1 An example of the annotated tree in GRADE

The annotated tree can express a lot of
information such as syntactic category, number,
semantic marker., and other things. The annotated

tree can also express a flag in its node, which 1is
similar to a flag in & conventional programming
language, to control the process of a translation.
For example, in a grammar of a generation, a
grammatical rule is applied to all nodes in the
annotated tree, whose processings are not finished.
In such & case, a grammatical rule checks the DONE
flag whether it is processed or not, and sets T to
the newly processed ones.

3. Rewriting Rule in GRADE

The basic component of a grammar writing
language is a rewriting rule. The rewriting rule
in GRADE transforms one annotated tree into anotier
annotated tree. The rewriting rule can be used in
the grammars of analysis, transfer and generation
phase in a machine translation system, because the
tree-to-tree transformation by this rewriting rule
is very powerful.

GRADE
The
components.

consists of a
declaration
(1)
a grammar
rewriting
This part
rewriting
see the
the GRADE

A rewriting rule in
declaration part and a main part.
part has the following four
Directory Entry part, which contains
writer's name, a version number of the
rule, and the last date of the revision.
is not used at the execution time of the
rule. A grammar writer 1{s able to
information by using the help facility of
system. (2) Property Definition part, where a
grammar writer declares the property names and
their values. (3) Variable Init. part, where &
grammar writer declares the names of variables.
(4) Matching Instruction part, where a grammar
writer specifies the mode to apply the rewriting
rule to an annotated tree.

The main part specifies the transformation

339

in the rewriting rule, and has the following three
parts. (1) Matching Condition part., where the
condition of a structure and the property values of
an annotated tree 1is described. (2) Substructure
Operation part, which specifies operations for the
annotated tree that has matched with the condition

written in the matching condition part. (3)
Creation part, which specifies the structure and
the property values of the transformed annotated

tree.

3.1. Matching Condition part

The matching condition part specifies the
condition of the structure and the property values
of the annotated tree. The matching condition part
allows a grammar writer to specify not only a rigid
structure of the annotated tree, but also
structures which may repeat several times,

structures which may be omitted, and structures in
which the order of their sub-structures is not
restricted.

For example, the structure in which
adjectives (ADJ) repeat arbitrary times and & noun
{(N) follows them in English 1{is expressed as
follows.

matching_condition;
-——> %(ADJS N);
ADJ ... ADJ N ADJS: any(%(ADJ)):

The structure like a combination of a verb (V) and
an adverbial particle (ADVPART) 1in this seguence
with or without a pronoun (PRON) in between in
English is written as follows.

matching_condition;

---> %L(V PRON ADVPART);
V (PRON) ADVPART PRON: optional;
A typical Japanese sentential structure in which
three 8dverbial phrases (ADVP), each composed of a
noun phrase (NP) and a case particle (GA, WO, or
NI) proceed an verb (V) 1in no particular order f{s
expressed as follows.
matching_condition;
X(A1 A2 A3 Y):
Al, A3: disorder;
ADVP1 ADVP2 ADVP3 V ---> Al: X{{ADVP1 NP1 GA)):
A2: %((ADVP2 NP2 ¥WO)):
NP1 GA NP2 WO NP3 NI A3: %((ADVP3 NP3 NI1)):
The matching condition part allows a

grammar writer to specify conditions about property

names and property values for the nodes of the
annotated tree. A grammar writer can compare not
only a property value of a node with a constant

value, but also values between two nodes in a tree.

for example, the number agreement between a subject
noun and &8 verb is written as follows.

matching_condition:
%L(NP VP):
NP .NUMBER = VP.NUMBER:

3.2, Substructure Operation part

The substructure operation part spec\fies
operations for the annotated tree which has matched
with the matching condition part. The substructure
operation part allows a grammar writer to set a
property value to & node, and to assign a tree or a
property value to a variable, which is declared in
the variable init. part. It also allows him to
call a subgrammar, a subgrammar network, &
dictionary rule. a built-in function, and a LISP
function. The subgrammar, the subgrammar network,
the dictionary rule, and the built-in function will
be discussed 1in section 4., 5., and 6. In
addition, a2 grammar writer can write a conditional
operation by using the IF-THEN-ELSE form. An
operai.ion to set ‘A’ to the lexical wunit of the
determiner node (DET.LEX), if the number of the NP
node is SINGULAR, is written as follows.

substructure_operation:

17 NP.NUMBER = 'SINGULAR';
then DET.LEX <= °*A’;
else DET.LEX <= °NIL';
end_1f;

3.3. Creation part

property values of
written in the

The structure and the
the transformed annotated tree is
creation part. The transformed tree 1s described
by node names such as NP and VP, which are used in
the matching condition part or the substructure
operation part. A creation part to create the tree
whose top node is S and which has a NP sub-tree and
a VP sub-tree is written as follows.

creation;
%X((S NP VP));

3.4, Matching Instruction part

The main part of a rewriting rule in GRADE
(the matching condition part, the substructure
operation part, and the creation part) can be
applied not only to a whole tree, but aiso to
sub-trees. Figure 2 shows an example of the
application of a main part. .

340

Transformation of main part in a rewriting rulé:

N |
8 C D =-==> E
/N

B C D

Transformation of a whole annotated tree:

A A
A B C D -—-> A////\\\}
N AN
/N
Figure 2 An example of an application of the main

part

The matching instruction part specifies the

traverse path of the annotated tree. There are
four types of the traverse pathes, which are the
combinations of <left-to-right or right-to-left>
and <bottom-to-top or top-to-bottom>. When a
grammar writer specifies left-to-right and
bottom-to-top mode, the annotated tree will be
traversed as follows,
//5
/\ R
1 2
4. Control of the grammatical rule applications
A grammar writing language must be able to

express detailed phases of a translation process in
the expression expliicitly. GRADE allows a grammar
writer to divide a whole grammar into several
parts. Each part of the grammar 1is called a
subgrammar. A subgrammar may correspond to &
grammatical unit such as the parsing of a simple
noun phrase and the paring of a compound sentence.
A whole grammar is then described by a network of
subgrammars. This network 1is called a subgrammar
network. A subgrammar network allows a grammar
writer to control the process of a translation in
detail, When a subgrammar network in the analysis
phase consists of a subgrammar for a noun-phrase
(SG1) and a subgrammar for a verb-phrase (SG2) in
this sequence, the executor of GRADE first applies
SG1 to an input sentence, then applies SG2 to the
result of an application of SG1.

4.1. Subgrammar

A subgrammar consists of a set of rewriting
rules. Rewriting rules in & subgrammar have a
priority ordering in their application. The n-th

rewriting rule in a subgrammar is tried before the

(n+1)-th rule.

A grammar writer can specify four types of
application sequence of rewriting rules in a
subgrammar. Let us assume the situation that a set
of rewriting rules in the subgrammar is composed of
RR1, RR2, ..., and RRn, that RR1, ..., and RRi-1
cannot be applied to an input tree, and that RRi
can be applied to {t. When a grammar writer
specifies the first type. which is called ORDER(1),
the effect of the subgrammar execution 1{s the
application of RRi to the input tree. When a
grammar writer specifies the second type. which is
called ORDER(2)., the executor of GRADE tries to
apply RRi+1, ..., RRn to the result of the
application of RRi. So, ORDER(2) means that
rewriting ruics in the subgrammar are sequentially
applied to an input tree.

The third and fourth type, which are called

ORDER(3) and ORDER(4), are the iteration type of
ORDER(1) and ORDER(2) respectively. So, the
executor of GRADE tries to apply rewriting rules
until no rewriting rule 1is applicable to the
annotated tree.
SEARCH-CANDIDATE-OF-NOUNS.sg:
sg_mode; order{2):
re_in_sg:
CANDIDATE-~OF-NOUNS-1;
UP-KP-TO-PNP:
CANDIDATE~OF-NOUNS-2;
end_sg.SEARCH-CANDIDATE-OF -NOUNS ;
Figure 3 An example of a subgrammar
figure 3 shows an example of a subgrammar.

When this subgrammar 1is applied to an annotated
tree, the executor of GRADE first tries to apply
the rewriting rule CANDIDATE-OF-NOUNS-1 to the
input tree. If the application of this rule
succeeds, the d{nput tree 1is transformed to the
result of the application of the rewrtiting rule
CANDIDATE-OF-NOUNS~-1. Otherwise, the input tree fis
not modified. In either case, the executor of
GRADE next tries to apply the rewriting rule
UP-NP-TO-PNP to the 1nput tree. The executor

continues such a process until the spplication of
the last rewriting rule CANDIDATE-OF-NOUNS-2 s
finished.
4.2. Subgrammar Network

A subgrammar network describes the
application sequence of subgrammars. The

specification of &8 subgrammar network consists of
the following five parts. (1) Directory Entry
part, which 1{s as the same as the one in a
rewriting rule. (2) Property Definition part,

341

which is the same as the one in a rewriting rule.
This part 1is wused as the default declaration in
rewriting rules. (3) Variable Init. part, which is
the same as the one 1in a rewriting rulie. The
variables are used to control the transition of the
subgrammar network. The variables are referred to
and assigned in the substructure operation part of

the rewriting rule. The variables are also
referred 1n a8 1ink specification part, which will
be described later. (4) Entry part, which

specifies a start node of the network. (5) Network
part, which specifies a network of subgrammars.

The network part specifies the network
structure of subgrammars, and consists of node
specifications and 1ink specifications. The node

specification has & label eand a subgrammar or a
subgrammar network name, which 1is called when the
node gets the control of the processing. The 1link
specification specifies the transition among nodes
in 8 subgrammar network. The link specification
checks the value of a variable which 1{s set in a
rewriting rule, and decides the 1lsbel of a node
which will be processed next. ’

PRE.sgn:

directory_entry:
owner (J.NAKAMURA): version(V02L05):
Tast_update(83/12/25);

var_init;
@PRE-FLAG tnit(T):

entry:
START;

network;

START: PRE-STEP-1.s3g:

LOOP : PRE-STEP-2.sg:
A: PRE-STEP-3.39:
B: PRE-END-CHECK.sg:
if @PRE-FLAG; then goto LOOP;
else goto LAST;
LAST: PRE-STEP-4.s9:

exit;
end_sgn.PRE;

Figure 4 An example of a subgrammar network.

Figure 4 shows an example of a subgrammar
network. When the executor of GRADE applies this
subgrammar network to an 1input tree, the executor
checks the var-init part, then puts & new variable
@PRE-FLAG on & stack, and sets T to @PRE-FLAG as an
initial value. After that, the executor checks the
entry part and find the 1label of the start node
START in the network. Then the executor searches
the node START and applies the subgrammar
PRE-STEP-1 to the input tree. After the
application, the executor sapplies the subgrammar
PRE-STEP-2 (node name: LOOP) and PRE-STEP-3 (node

name: A) to the annotated tree in this sequence.
Next, the executor applies the subgrammar
PRE-END-CHECK (node name: B8) to the tree.

Rewriting rules in PRE-END-CHECK examine the tree
and set T or NIL to the variable 8PRE-FLAG. The
executor checks the l1ink specification part, which
is started by IF, and examines the value of the
variable QPRE-FLAG. The node 1n the network which

will be activated next is the node LOOP if
@PRE-FLAG is not NIL. otherwise, the node LAST.
Thus, while GPRE-FLAG 1is not NIL, the executor
repeats the applications of three subgrammars,
PRE-STEP-2, PRE-STEP-3, and PRE-END-CHECK, to the
annotated tree. When @PRE-FLAG becomes NIL, ihe
subgrammar PRE-STEP-4 in the node LAST is applied

to the tree, and the application of this subgrammar
network PRE is terminated.

5. Handling the grammatical rule 1in the word

dictionaries

GRADE allows a grammar writer to write word
specific grammatical rules &s a subgrammar in an
entry of word dictionaries of a machine transltation
system. A subgrammar written in a dictionary entry
is called a dictionary rule. The dictionary rule
is specific to a particular word in the dictionary.

The dictionary rule is retrieved with a
entry word and a rule identifier as the key, and {is
applied to the annotated tree which is specified by
a grammar writer, when CALL-DIC operation in the
substruciure operation part is executed. Figure 5
shows an example of a rewriting rule which calls a
dictionary rule. In this case, a dicttonary rule
which is written in an entry of a word as indicated
by V.LEX (the value of the lexical unit of wverb),
and whose name 1s ANALYSIS, 1{s applied to the
sequence of NP1, V, NP2, and PP (noun phrase 1,
verb phrase., bnoun phrase 2, and prepositional
phrase). Then the result of the application of the
dictionary rule is assigned to the variable 8S.

CASE-FRAME.rr:

var_1init: @S:
matching_condition:

%(NP1 V NP2 PP);
substructure_operation;

8S <= call-dic(V.LEX

ANALYSIS X(NP1 V NP2 PP)):

creation:

%(08S);
end_rr . CASE-FRAME;

Figure 5 An example of a rewriting rule which calls
a dictionary rule

6. Treatment of Ambiguities

A grammar writing language must be able to
treat the syntactic and semantic ambiguities in
natural languages. GRADE allows 2 grammar writer
to collect 811 the result of possible tree-to-tree

342

transformations by a subgrammar. However, it must
avoid a combinatorial explosion, when it encounters
the ambiguities.

For instance, let us assume that a grammar

writer writes a subgrammar which contains two
rewriting rules to analyze the case frame of a
verb, that a rewriting rules i{s the rule to

construct VP (verb phrase) from V and NP (a verb
and a noun phrase), and that the other s the rule
to construct VP (verb phrase) from V, NP and PP (a
verb, & noun phrase. and a prepositional phrase).
When he specifies NONDETERMINISTIC_PARALLELED mode
to the subgrammar, the executor of GRADE applies
both rewriting rules to an input tree. constructs
two transformed trees, and merges them into a new
tree whose top node has a special property PARA,
The top node of this structure is called a para
special node, whose sub-trees are the transformed

trees by the rewriting rules. Figure 6 shows an
example of this mode and a para node.
PARA
-—=>
V NP PP SG
VP PP VP
VvV NP V NP PP

Figure 6 An example of a para special node

A grammar writer can select the most
appropriate one from the sub-trees under a3 para
special node. A grammar writer 1is able to use

built-in functions, MAP-SG, MAP-SGN, SORT, CUT, and
INJECTION in the substructure oper&tion part to
choose the most appropriate one. Figure 7 shows an
example to use these built-in functions.

substructure_operation;
@X <= call-dic(V.LEX CASE-FRAME %(N NP PP)):

8X <= call-built(map-sg %(8X) tree
EVALUATE-CASE-FRAME);
8X <= call-built(sort %X(8X) tree SCORE):
8X <= call-buflt{cut %(@X) tree 1);
8X <= call-buiit(injection %(8X) tree 1):
Figure 7 An example of built-in functions
In this substructure operation part, the
executor of GRADE applies the dictionary rule
written in a word which 1{s the value of V.LEX
(lexical unit of verb) to the tree, and sets the
result to the variable ax. When the
nondeterministic-paralleled mode 1s used in the

dictionary rule, the value of @X is the tree whose
root node is a para special node. After that, the
executor calls built-in function MAP-SG to apply

the subgrammar EVALUATE-CASE-FRAME to each sub-tree
of the value of @X, and sets the result to 8X
again. The subgrammar EVALUATE-CASE-FRAME computes
the evaluation score and sets the score to the
value of the property SCORE in the root node of the

sub-trees. Next, the executor calls built-in
function SORT, CUT, and INJECTION to get the
sub-tree whose score is the highest one among the
sub-trees under the para special node. This tree

is then set to @X as the most appropriate result of
the dictionary rule.

node 1s treated as the
same as the other nodes in the current
implementation of GRADE. A grammar writer can use
the para node as he want, and can select a sub-tree
under a para node at the later grammatical rule
application.

The para special

7. System configuration and the environment

The system configuration of GRADE is shown
in Figure 8. Grammatical rules written in GRADE
are first translated into internal forms, which are
expressed by s-expressions in LISP. This
translation is performed by GRADE transtator. The
internal forms of grammatical rules are applied to

an input tree, which 1is an output of the
morphological analysis program. This rule
application is performed by GRADE executor. The
result of rule applications is sent to the
morphological generation program.

Dictionary Grammar

N
GRADE
translator
Dictionary Grammar
rule (Internal form)
\\. -~
input__ | GRADE | output
sentential tree executor | sentential tree
Figure 8 The system configuration of GRADE
GRADE system is written in UTILISP
(University of Tokyo Interactive LISP) and
implemented on FACOM M382 with the additional
function of handling Chainese characters. The
system is also usable on Lisp Machine Symboltics
3600. The program size of GRADE system i{s about
10,000 lines.
8. Conclusion
The grammar writing system GRADE 1is

discussed in this paper.
features. (1) Rewriting rule

GRADE has the following
is an expression 1in

343

tree-to-tree transformation with
(2) Rewriting rule has a
powerful writing facility. (3) Grammar can be
divided 1into several parts and can be linked
together as a subgrammar network. {(4) Subgrammar
can be written in the dictionary entries to express
word specific 1linguistic phenomena. (5) Special
node 1s provided 1in & tree embedding
ambiguities.

the form of
annotation to each node.

for

GRADE has been used for more than a year as
the software of the national machine translation
project from Japanese into English. The
effectiveness of GRADE has been demonstrated in
this project. The linguistic parts of the project
such as the morphological analysis/generation
programs, the grammars for the analysis of
Japanese, the transfer from Japanese into English
and the generation of English, are discussed in
other papers (Sakamoto 84) (Tsujii 84) (Nagao 84).

This study: "Research on the machine
translation system (Japanese-English) of scientific
and technological documents” {s being performed
through Special Coordination Funds for Promoting
Science & Technology of the Science and Technology
Agency of the Japanese Government.

ACKNOWLEDGEMENTS
We would like to acknowlege the
contribution of M. Kogi, F. Nishino, Y. Sakane, M.

Kobayashi, S. Sato, and Y.
much of the system.
the other member
comments.

Senda, who programmed
We would also 1ike to thank
of Mu-project for their useful

REFERENCES

Boitet, ch., et al, Implementation and
Conversational Environment of ARIANE 78.4, Proc.

COLING82, 1982.

Nagao, M., et al, Dealing with Incomplieteness of
Linguistic Knowledege on Language Translation,
Proc. COLING84, 1984.

Sakamoto, Y., et al, Lexicon Features for Japanese
Syntactic Analysis in Mu-Project-JE, Proc.

COLING84, 1984.

Tsujit, J., et al, Analysis Gremmar of Japanese in
Mu-Project, Proc. COLINGSB4, 1984,

