Entity-Oriented Parsing

Philip J. Hayes

Computer Science Department, Carnegie-Mellon University
Pitisburgh, PA 15213, USA

Abstract!

An entity-oriented approach to restricted-domain parsing is
proposed. In this approach, the definitions of the structure and
surface representation of domain entities are grouped together.
Like semantic grammar, this allows easy exploitation of limited
doinain semantics. In addition, it facilitates fragmentary.
recognition and the use of muitiple parsing strategies, and so is
particularly useful for robust recognition of extragrammatical
input. Several advantages from the point of view of language
definition are also noted. Representative samples from an
entity-oriented language definition are presented, along with a
control structure for an entity-oriented parser, some parsing
strategies that use the control structure, and worked examples
of parses. A parser incorporating the control structure and the
parsing strategies is currently under implementation.

1. Introduction

The task of lypical natural language interface systems is much
simpler than the general problem of natural language
undcrstunding: The simplifications arise because:

1. the systems operate within a highly restricted domain of
discourse, so that a precise set of object types cun be
established, and many of the ambiguities that come up in
more general natural tanguage processing can be ignored or
constrained away;

2. even within the restricted clomain of discourse, a natural
language interface system only needs to recognize a limited
stibset of all the things that could be said -— the subset that
its back-end can respond to.

The most commonly usced lechnique to exploit these limited
domain constraints is scinantic grammar (1,2, 2] in whicih
semantically defined categories (such as <ship> or <ship-
attributed) are used in a grammar (usually ATN based) in place of
synlactic categories (such as <noun> or <adjective>). While
semantic grammar has been very successful in exploiting limited
domain constraints to reduce ambiguities and eliminate spurious
parses of grammatical input, it still suffers from the fragility in the
face of extragrammatical input characteristic of parsing based on
transition nets [4]. Also. tho task of restricted-domain language
definition is typically dillicult in interfaces based on se:nantic
grammar, in part because the grammar definition formalism is not

well integrated with the mathed of drfining the object and aciions’

of the domain of discourse (though see [6]).

1This research was sponsored by the Air Farce Office of Scientific Resraich
under Contract AFOSR-82-0219

212

This paper proposes an alternative approach te reslricted
domain language recognition called enlity-oriented parsing.
Entity-oriciited parsing uses the same notion of semantically-
defined categeries as s2mantic grammar, but does nct embad
these categories in a yrammatical structure designed for syntactic
recognition. listead, a scheme more reminiscent of conceptual or
case-frame parsers (3, 10, 11] is employed. An entity-oriented
parser operates from a coilection of definitions of the various
entities (objects. events, ccmmonds, states, etc.) that a particular
interface systemn needs to rzcognize. These definitions contain
information about the internal structure of the entities, about the
way the entities will be manifested in the natural language input,
and aboul the correspondence between the internal structure and
surface representation. This arrangement provides a good
framework for exploiting the simplifications possible in restricted
domain natural lanouage recognition because:

1. the entities form a natural set of types through which to
constrain the recognition semantically. The iypes also form a
ratural basis for the structural definitions of entities.

2.the set of things that the back-end can respond to
corresponds to a subset of the domain zntities (remember
that entities can be events or commands as well as objects).
So the goal of an entity-oricented system will norinally be to
recognize one of a “"top-avel” class of entities. This is
anaiogous to the set of basic message paiterns that the
nachinge translation system of Wilks (11} aimed to recognize
in any input,

In addition to providing a good general basis for restricted
domain natural language recognition, we claim that the entity-
otiented opproach also faciiitates robustness in the face of
extragrammatical input znd ease of language definition for
reciricten domain langueges. Entity-orieated parsing has the
pctential to provide better parsing robustness than more
traditional semantic grammiar technigues for two major reasons:

e The individual definition of at domain entities facilitctos their
independant recoynition. \suthning there is approgriate
indexing of entities through lexicui dems that might appear in
a surface description of them. this rccognition can be done
hottom-up, thus making possible recognition of elliptical,
tragreniary, or partially incorprehesible input. The same
deriritions can dise be used in a wore efficiant top-down
munner when the input cenforms te the system's
espectations.

¢

Fiecent work 5, 8] has suggested (he usefulness of multiple
construction-specific recngnition stritcgies for restricied
domain parsing, particularly for deuling with
extragrarmmatica! input. The individual entity definitions form
an ideal framework arclt«d which to crganize th: inultiple

strategies. In particular, each definition can specify which
strategies are applicable to reccgnizing it. Of course, this
only provides a framework for robust recognition, the
robustness achieved still depen:is on the quality of the actual
recognition strategies used.

The advantages of entity-oriented parsing for

definition include:

language

o All information relating to an entity is grouped in one place,
so that a language definer will be able to sec more clearly
whether a definition is complete and what would be the
consequences of any addition or change to the definition.

Since surface (syntactic) and structural information about an
enlity is grouped together, the surtace information can refer
to the structure in a clear and coherent way. In particular,
this aliows hierarchical surface information to use the natural
hierarchy defined by the structural information, leading to
greater consistency of coverage in the surface language.

Since entity definitions are indcpendent, the information
necessary to drive 1ecogniticn by the multiple construction-
specific strategies mentioned above can be represented
directly in the form most useful to each strategy, thus
removing the need for any kind of "grammar conipilation”
step and allowing more rapid grammar development.

In the remainder of the paper, we make these arguments more
concrete by looking at some fragments of an entity-oriented
language definition, by outlining the control structure of a robust
restricted-domain parser driven by such definitions, and by tracing
through some worked examples of the parser in operation. These
exaimples also shown describe some specific parsing strategies
that exploit the control structures. A parser incorporaling the
control structure and the parsing strategies is currently under
implementation. Hts design embodies our expecience with a pilot
entily-oriented parser that has already been implemented, but is
not described here. '

2. Example Entity Definitions

This section presents some example entily and language
definitions suitable for use in entity-orientedd parsing. The
exaimples are drawn fiem the domain of an intarface to a database
of college courses. Heve is the (partial) delinitions of a course.

EntityName: CollegeCourse
Type: Structured
Components: (
[ComponentName: fourseNumber
lypa: Intager
GreaterThan: 99
Lesslhan: 1000

[ComponentName: CourseDepartment
1ype:_ColleguDepartment

[ComponentName: CourseClass
Iype: CollegeClass

[ComponentName: Courselnstructor
Typa: CollegeProfessor

213

)
SurfaccRupresantation:
[SyntaxType: NounPhrase
Head: {course | seminar |
$Courscbepartment S$CourseMumber | ...)

AdjectivalComponents: (CourseDepartment ...}

Adjectives: (
|AdjectivalPhrase: (new | most recent)
Component: CourseSemaster
Value: CuriesntSemester

] -
)
PostNominalCases: (

[Preposition: (?intendad for | directed to | ...)
Component: Coursellass

[Preposition: (?taught by | ...)
Component: Courselnstructor

1

J
]

For reasons of space, we cannot explain all the‘details of this
lunyuage. In essence, & course is definnd as a structured object
with components: number, department, instructor, elc. (square
brackets denote attribute/value lists, and round brackets ordinary
lists). This definition is kept separate from the surface
representation of a course which is defined to be a noun phrase
with adjectives, poslnmniri-a! cuses, etc.. At a more detailed level,
note the special purpose way of specifying a course by its
department juxtaposed with its number (e.g. Computer Science
101} is handicd by an alternate pattorn tor the head ot the noun
phrase (dollar signs refer back to the components). This allows
the user to say (redurdantly) phrases like "CS 101 taught by
Smith”. Nole also that the way the department ol a course can
appear in the surface representation of a course is specified in
terms of the CourseDepartment component (and hence in terms of
its type, CollegeDepariment) rather than directly as an explicit
surface representation. This ensures consistency throughout the

language in what will be recognized as a description of a
department. Coupled with the ability to use general syntactic
descriptors (like NounPhrase in the description of a
SurfaceRepresentation), this can prevent the kind of patchy
coverage prevalent with standard semantic grammar language
definitions.

Subsidiary objects like CollegeDepartment are defined in similar
fashion. :

IntityName: Collegebepartment
fype: Enumeration
foumeratedValues:
Computer ScivnceDepartment
Mathemat icsDepartment
Historyhepartment
)
SurfaceRaprescntation:
[Syntaxtiype: PatternSet
Patterns: (
[Patiern: (CS | Compuler Science | Comp Sci | ...)
Vatue: ComputerSciencellepartment

]

GollegeCourse will also be involved in higher-level entities of our
resirictad domain such as a command to the data base systom to
enrol a student in A course.

tntityName: taroiCommand
type: Structured
Components: (
|.Componenllame: Fnrolleo
fype: CotlugeStadent
1
[ComponentName: Etnrolln
Type: ColleyiCourse

)
SurfaceRepresentation:
{ Syntaxiype: tmpurativeCaseframeo

llezd: (earol | register) inclode | ...)
DirectObjuect: (3Enralles)
Cases: (
[Preposition: (in | into | ...)
Component: tarolla
)
]

These examples also show how alt informaticn about an entity,
concerning both fundamental structure and surface
representation, is grouped togethoer and integrated. This supports
the claim that entity-oriented language definition makes it easiar to
determine whether a language definition is complete.

3. Control Structure for a Rcbust Entity-
Oriented Parser

The potential advantages of an entity-oriented approach from
the point of view of robustness in the face of ungrammatical input
were outlined in the introduction. To exploit this petential whiile
maintaining efficiency in parsing grammatical input, special
attention must be paid to the control structure of the parser used.
Desirable characteristics for the control structure of any parser
capable of handling ungrammatical as well as grammatical input
include:

e the control structure allows gramrmuatical input to be parsed
straighiforwardly withnut considaring any of the possible
grammatical deviations that could occur;

e the control structure enabiles progressively higher degrees of
grammatical deviation to be considerad when the input does
not sitisfy grammatical expactations;

e the control structure allows simpler deviations
considered before more complex deviations.

to be

The first two points are self-evident, but the third may require
some explanation. The problam it addresses arises particularly
when there are several alternative parses under consideration. In
such cases, it is important to prevent the parser from considering
drastic devintions in one brarich of the parsc before considering
siimple ones in the other. Forinclance, the parser should not start
hypothesizing missing words in one branch when a simple epelling
correction in another branch would allow the parse to go through.

We have designed a parser control structure for use in entity-
oriented parsing which nas ol ¢f the characteristics lisied akove.
This control structure operates through an agenda mechanism.
Each item of the agenda represents a difiercnt continuation of the
parse, i.e. a partial parse plus a specification of what to do next to
continue that partial parse. With each continuation is nssociated

an integer flexibility ‘evel that represents the degree of
grammatical deviation impled by the continuation. That is, the

- flexibility level represents the degree of grammatical deviation in

214

the input it the continuation were to produce a complete parse’
without finding any more deviation. Continuations with a lower
flexibility are run before centinuations with a higher fiexibility level.
Once a complete parse has been obtained. continuations with a
flexibility leve! higher than that of the continuation which resulted
in the parse are abandoned. This means that the agenda
mechanism never activates any continuations with a flexibility

level higher than the level representing the lowest level of
grammatical deviation necessary to account for the input. Thus

cffort is not wasted exploring more exotic grammatical deviations
when the input can be accounted for by simpler ones. This shows
that the parser has the first two of the characteristics listed above.

In addition to taking care of alternatives at different flexibility
levels, this control structure aiso handles the more usual kind of
alternatives faced by parsers — those representing alternative
parses due to local ambiguity in the input. Whenever such an
ambiguity arises, the control structure duplicates the relevant
continuation as many times as there are ambiguous alternatives,
giving each of the duplicated continuations the same flexibility
level. From there on, the same agenda mechanism used for the
various flexibility levels will keep each of the ambiguous
alternatives separate and ensure that ail are investigated (as long
as their flexihility level is not too high). Integrating the treatment of
the normal kind of ambiguities with the treatment of alternalive
ways of handling grammatical deviations ensures that the level of
grammatical deviation under consideration can be kept the same
in focally embiguous branches of a parse. This fuifills the third
characteristic listed above.

Flexibility levels are additive, i.e. if some grammatical deviation
has already been found in the input. then finding a new one will
raise the {lexibility level of the continuation concerned to the sum
of the flexibility levels involved. This ensures a relatively high
flexibility level and thus a relfatively low likelihood of activation for
continuations in which combinations of deviations are bzing
postulated 1o account fer the input.

Since space is limitad, we cannot go into the implementation of
this control structure. However, it is possible to give a brief
description of the control structure primitives used in
programming the parser. Recall first that the kind of entity-
oriented parser we have been discussing consists of a collection
of recognition strategies. The more specific strategies exploit the
idiosyncratic features of the entities/construction types they are
specific to, while the more general strategies apply to wider
classes of entities and depend on more universal characteristics.
In either case, the strategies are pieces of (Lisp) program rather
than more abstract rules or networks. Integration of such
strategies with the general scheme of flexibility levels described
above is made straightforward through a special split function
which the control structure supports as a primitive. This split
function allows the programmer of a strategy to specify one or
more: alternative continuations from any point in the strategy and
to associate a different flexibility increment with each of them.

The implementation of this statement takes care of restarting each
of the alternative continuations at the appropriate time and with
the appropriate local context.

Some examples should make this account of the control
structure much clearer. The examples will also present some
specific parsing strategies and shcw how they use the split
function described above. These strategies are designed to effect
robust recognition of extragrammatical input and efficient
recognition of grammatical input by exploiting entity-oriented
language definitions like those in the previous section.

4.Example Parses
t.et us =xamine first how a simple data base command like:

Enroi Susan Smith in CS 101

might be parsed with the control structure and language
definitions presented in the two previous sections. We start off
with the top-leve! parsing sirategy, RecognizeAnyEntity. This
sirategy first trics to identify a top-level domain entity (in this case
a data base command) that might account for the entire input. It
does this in a bottom-up manner by indexing from words in the
input to those entities that they could appear in. In this case, the
best indexer is the first word, ‘enro!, which indexes
EnrolCommand. In general. however, the best indexer need not
be the first word of the input and we need to consider all words,
thus raising the potential of indexing more than one entity. In our
example, we would also index CuollegeStudent, CollegeCourse,
and CollegeDepartment. However, these are not top-level domain
entities and are subsumed by EnrolCommand, and so can be
ignored in favour of it.

Once EnrolCommand has been identified as an entity that might
account for the input, RecognizeAnyEntity initiates an attempt to
recognize it. Since EnrolCommand is listed as an imperative case
framz, this task is handled by the ImperativeCaseFrame
reccgnizer strategy. in contrast tc the bottom-up approach of
RecognizeAnyEntity, this strategy tackles its more specific task in
a top-down manner using the case frame recognition algorithm
developed for the CASPAR parser [8]. In particular, the strategy
will match the case frame header and the preposition ‘in', and
initiate recognitions of fillers of its direct object case and its case
marked by 'in’. These subgoals are to recognize a CollegeStudent
to fil the Enrollee case on the input segment "Susan Smith'” and
a CollegeCourse to fill the Enrolln case on the segment "CS 101",
Both of theze recognitions will be successful, hence causing the
ImperativeCaseFrame recognizer to succeed and hence the entire
recognition. The resulting parse would be:

[InstanceOf: EnrolCommand

Enrotlee: [InstanceOf: CollegeStudent
FirstNames: (Susan)
Surname: Smith

EnrolIn: [InstanceOf: CollegeCourse
CourseDepartment: ComputerScienceDepartment
CourseNumber: 101

]
]

Note how this parse result is expressed in terms of the underlying
structural representation used in the entity definitions without the
need for a separate semantic interpretation step.

215

The last example was completely grammatical and so did not
require any fiexibility. After an initial bottom-up step to find a
dominant entity, that entity was recognized in a highly efficient
top-down manner. For an example involving input that is
ungrammatical (as far as the parser is concerned), consider:

Place Susan Smith in computer science for freshmen

There are two problems here: we assume that the user intended
‘place’ as a synonym for ’enrol’, but that it happens not to be in the
system’s vocabulary; the user has also shortened the
grammatically acceptable phrase, 'the computer science course
for freshmen’, to an equivalent phrase not covered by the surface
representation for CollegeCourse as defined earlier. Since ’place’
is not a synonym for 'enrol’ in the language as presently defined,
the RecognizeAnyEntity strategy cannot index EnrolCommand
from it and hence cannot (as it did in the previous example) initiate
a top-down recognition of the entire input.

To dea! with such eventualities, RecognizeAnyEntity executes a
split statement specifying two continuations immediately after it
has found all the entities indexed by the input. The first
continuation has a zero flexibility level increment. It looks at the
indexed entities to see if one subsumes all the others. f it finds
one, it attempts a top-down recognition as described in the
previous example. H it cannot find one, or if it does and the top-
down recognition fails, then the continuation itself fails. The
second continuation has a positive flexibility increment and
follows a more robust bottom-up approach described below. This
second continuation was established in the previous example too,
but was never activated since a complete parse was found at the
zero flexibility level. So we did nol mention it. In the present
example, the first continuation fails since there is no subsuming
entity, and so the second continuation gets a chance to run.
Instead of insisting on identifying a single top-level entity, this

second continuation attempts to recognize all of the entities that
are indexed in the hope of later being able to piece together the

various fragmentary recognitions that result. The entities directly
indexed are ColiegeStudent by “Susan” and “Smith"?

CollegeDepartment by “"computer” and ‘“science", and
CollegeClass by "freshmen”. So a top-down attempt is made to
recognize each of these entities. We can assume these goals are
fulfilled by simple top-down strategies, appropriate to the

SurfaceRepresentation of the ccrresponding entities, and
operating with no flexibility level increment.
Having recognized the low-level fragments, the second

continuation of RecognizeAnyEntity now attempts to unify them
into larger fragments, with the ultimate goal of unifying them into a
description of a single entity that spans the whole input. To do
this, it takes adjacent fragments pairwise and looks for entities of
which they are both components, and then tries to recognize the
subsuming entity in the spanning segment. The two pairs here are
CollegeStudent and CollegeDepartment (subsumed by
CollegeStudent) and CollegeDepartment and CollegeClass
(subsumed by CollegeCourse).

To investigate the second of these pairings, RecognizeAnyEntity
would try to recognize a CollegeCourse in the spanning segment
‘computer science for freshmen' using an elevated level of
flexibility. This goal would be handled, just like all recognitions of

CollegeCourse, by the NominalCaseFrame recognizer. With no
flexibility increment, this strategy fails because the head noun is
missing. However, with another flexibility increment, the
recognition can go through with the CcllegeDepartment being
treated as an adjective and the CollegeClass being treated as a
postnominal case — it has the right case marker, "for", and the
adjective and post-nominal are in the right order. This successful
fragment unification leaves two fragments to unify — the old
CollegeStudent and the newly derived CollegeCourse.

There are several ways of unifying a CollegeStudent and a
CollegeCourse — either could subsume the other, or they could
form the parameters to one of three database modification
cammands: EnrolCommand, WithdrawCommand, and
TransterCommand (with the obvious interpretations). Since the
commands are higher level entities than CollegeStudent and
CollegeCourse, they would be preferred as top-level fragment
unifiers. We can also rule out TransferCommand in favour of the

first two because it requires two courses and we only have one. In
addition, a recognition of EnrolCommand would succeed at a

lower flexibility increment than WithdrawCommam‘J,3 since the
preposition 'in’ that marks the CollegeCourse in the input is the
correct marker of the Enrolin case of EnrolCommand, but is not
the appropriate marker for WithdrawFrom, the course-containing
case of WithdrawCommand. Thus a fragment unification based
on EnrolCommand would be preferred. Also, the alternate path of
fragment amalgamation combining CollegeStudent and
CollegeDepartment into CollegeStudent and then combining
CoilegeStudant and CollegeCourse — that we left pending above
cannot lead to a complete instantiation of a top-leve! database
command. So RecognizeAnyEntity will be in a position to assume
that the user really intended the EnrolCommand.

Since this recognition involved several significant assumptions,
we would need to use focused interaction techniques {7] to
prasent the interpretation to the user for approval before acting on
it. Note that if the user does approve it, it should be possible (with
further approval) to add ‘ptace’ to the vocabulary as a synonym for
‘enrol’ since 'place’ was an unrecognized word in the surface
position where 'enrol’ should have been.

For a final example. let us examine an extragrammatical input
that involves continuations at several different flexibility levels:
Transfer Smith from Corapter Science 101 Economics 203

The problems here are that 'Computer’ has been misspelt and the
preposition 'to’ is missing from before 'Economics’. The example
is similar to the first one in that RecognizeAnyEntity is able to
identify a top-level entity to be recognized top-down, in this case,
TransferCommand. Like EnrolCommand, TransferCommand is an
imperative case frame, and so the task of recognizing it is handled
by the tmperativeCaseframe strategy. This strategy can find the
preposition 'from’, and so can initiate the appropriate recognitions
for filiers of the OntOfCourse and Student cases. The recognition
for the student case succeerls without trouble, but the recognition
for the OutOfCourse case requires a spelling correction.

2We assume we have a compiete listing of students and so can index from their
names.

216

Whenever a top-down parsing strategy fails to verify that an
input word is in a specific lexical class, there is the possibility that

the word that failed is a misspelling of a word that would have
succeeded. In such cases, the lexical lookup mechanism

executes a split statement.®* A zero increment branch fails
immediately, but a second branch with a small positive increment
tries spelling correction against the words in the predicted lexical
class. If the correction fails, this second branch fails, but if the
correction succeeds, the branch succeeds also. In our example,
the continuation involving the second branch of the lexical lookup
is highest on the agenda after the primary branch has failed. In
particular, it is higher than the second branch of
RecognizeAnyEntity described in the previous example, since the
flexibility level increment for spelling correction is small. This
means that the lexical lookup is continued with a spelling
correction, thus resolving the problem. Note also that since the
spelling correction is only attempted within the context of
recognizing a CollegeCourse — the filler of QutOfCourse — the
target words are limited to course names. This means spelling
correction is much more accurate and efficient than if correction
were attempted against the whole dictionary.

After the OutOfCourse and Student cases have been
successfully filled, the ImperativeCaseFrame strategy can do no
more without a flexibility level increment. But it has not filled all
the required cases of TransferCommand, and it has not used up
all the input it was given, so it splits and fails at the zero-level
flexibility increment. However, in a continuation with a positive
flexibility level increment, it is able to attempt recognition of cases
without their marking prepositions. Assuming the sum of this
increment and the spelling correction increment are still less than
the increment associated with the second branch of
RecognizeAnyEntity, this continuation would be the next one run.
In this continuation, the ImperativeCaseFrameRecognizer
attempts to match unparsed segments of the input against unfilled
cases. There is only one of each, and the resuiting attempt to
recognize 'Economics 203" as the filler of IntoCourse succeeds
straightforwardly. Now all required cases are filled and all input is
accounted for, so the ImperativeCaseFrame strategy and hence
the whole parse succeeds with the correct result.

For the example just presented, obtaining the ideal behaviour
depends on careful choice of the flexibility level increments.
There is a danger here that the performance of the parser as a
whole will be dependent on iterative tuning of these increments,
and may become unstable with even small changes in the
increments. Itis too early yet to say how easy it will be to manage
this problem, but we plan to pay close attention to it as the parser
comes into operation.

3This refativety fine distinction between EnrolCommand and

WithdrawCommand, based on the appropriateness of the preposition 'in', is
probiematical in that it assumes that the flexibility level would be incremented in
very fine grained steps. If that was impractical. the final outcome of the parse
would be ambiguous between an EnroiCommand and a WithdrawCommand and
the user would have to be asked o make the discrimination.

4" this causes too many splits, an aiternative is only to do the split when the
input word in question is not in the system's lexicon at all.

5. Conclusion

Entity-oriented parsing has several advantages as a basis for
language recognition in restricted domain natural language
inte;faces. Like techniques baced on semantic grammar, it
expluils limited dorain semantics through a series of domain-
specific entity types. However, because of its suitability for
fragmentary recogniiicn and its ability to accommodate multible
censtruction-specific parsing strategies, it has the potential for
greaier robustness in the tace ot extragrammalical input than the
usuzl semantic grammar technigues. tn this way, it more closely
resembles conceplual or cuase-frame parsing technigues.
Moreover, entity-oricnted parsing offurs advantages tor lanquage
delinition becauss of the integration of structura! and surlace
representation information and the ability to reprc sent surtace
information in the form most convenient to drive construction-
specific recognition strategies directly.

A pilot implementation of an enlity-oriented parser has been
completed and provides preliminary support for our claims.
However, a more rigorous lest of the entity-uriented approach
must wait tor the more complete implementation currently being
undertaken. The agenda-style control structure we pan to use in
ihis implementation is described above, aiong with some parsing
stralegies it will employ and some worked oxamples of the
strategies and control structure in action.

Ackrniowledgements

The ideas in this paper benefited considerably from discussions
with other membors of the Multipar group at Carnegie-Melon
Coraputer Science Department, particularly Jaime Carbonel!, Jill
Fain, and Steve Minton. Steve Minton was a co-designer of the
control structuie sresented above, and also found an efficient woy
to implement the split function described in connection with that
control structure.

References

1. Brown, J. S. and Burton. R. R. Multiple Representations of
Knowledge far Tutorini Reasoning. In Represantation and
Understancing, Bobrow, D. G. and Collins, A, ££d.,Academic
Press, New York, 1975, pp. 311-349.

2. Burton, R. R. Semantic Grummar: An Engineering Technique
for Constructing Natural Larguag2 Understanding Systems, BBN
Feport 3453, Bolt, Beranck, and Mewinan, inc., Cambridge, Mass.,
Decernber, 1976.

3. Carbonell, J. G., Bogys, W. M., Mauldin, M. L.., and Anick, P. G.
The XCALIBUR Pioject: A Natural Language Interface to Expert
Systems. Proc. Eigirth Int. Jt. Cond. on Artificial Intelligence,
Karlsrube, August, 1083.

4. Carbonell, J. G. and Hayes, P. J. "Recovery Strategies for
Parsing Extragrammatical Language.” Computational Linguistics
10 (1984).

5. Carbonell, J. G. and Hayes, P. J. Robust Parsing Using
Muhiple Construction-Specific Strategics. In Natural Language
Parsing Systems, L. Bolc, Ed.,Springer-Verlag, 1984,

6. Grosz, B. J. TEAM: A Transportable Matural Language
Interface System. Proc. Conf. on Applied Natural Language
Processing, Santa Monica, February, 1983.

217

7. Hayes P. J. A Construction Specific Approach to Focused
Interaction in Flexible Parsing. Proc. of 18th Annual Meeting of
the Assoc. for Comput. Ling., Stanford University, June, 1981, pp.
149-152.

8. Hayes, P.J). and Carbonell, J. G. Multi-Strategy Parsing and its
Role in Robust Man-Machine Communication. Carnegie-Mellon
University Computer Scicnice Department, May, 1981,

9. Hendrix, G. G. Human Engineering for Applied Natural
Language Processing. Proc. Fifth int. Jt. Conf. on Arlificial
Intzlligenca, T, 1977, pp. 183-191.

10, Fhiesieck, C. K. and Schank, R. C. Comprehension by
Compuier: Fxpeciation-Based Anulysis of Sentences in Context.
fech. Ruptl. 78, Computer Science Dept., Yzle Universit, , 1976.

11. Wikks, Y. A, Preference Semantics. In Formal Semantics of
Matural Language, Keenan, kdl. Cambridye University Pross, 1975,

