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A b s t r a c t  

Questioning texts represented in semantic 
relations I requires the recognition that synonyms, 
instances, and hyponyms may all satisfy a questioned 
term. A basic procedure for accomplishing such loose 
matching using inheritance from a taxonomic 
organization of the dictionary is defined in analogy with 
the unification a!gorithm used for theorem proving, and 
the costs of its application are analyzed. It is concluded 
tl,at inherit,~nce logic can profitably be ixiclu.'ted in the 
basic questioning procedure. 

AI  H a n d b o o k  S t u d y  
In studying the pro-.~ss of answering questions 

from fifty pages of the AI tlandbook, it is striking that 
such subsections as those describing problem 
representations are organized so as to define conceptual 
dictionary entries for the terms. First, class definitions 
are offered and their terms defined; then examples are 
given and the computational terms of the definitions are 
instantiated. Finally the technique described is applied 
to examples and redel'ined mathematical!y. Organizing 
these texts (by hand) into coherent hierarchic structures 
of discourse results in very usable conceptual dictionary 
definitions that are related by taxonomic and partitive 
relations, leaving gaps only for non-technical terms. For 
example, in "give snapshots of the state of the problem 
at various stages in its solution," terms such as "state ' ,  
'p roblem' ,  and "solution" are defined by the text. while 
• give' ,  "snapshots',  and "stages = are not. 

Our first studies in representing and questioning 
this text have used semantic networks with a minimal 
number of case arcs to represent the sentences and 
Super:~et/Instance and *Of/llas arcs to represent, 
respectively, taxonomic and partitive relations between 
concepts. Equivalence arcs are also used to represent 
certain relations sig~fified by uses of "is" and apposition 
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and *AND and *OR arcs represent conjunction. Since 
June 1982, eight question-answering systems have been'  
written, some in procedural logic and some in compilable 
EIJSP. Although we have so far studied questioning and 
data manipulation operations on about 40 pages of the 
text, the detailed study of inheritance costs discussed in 
this paper was based on 170 semantic relations (SRs), 
represented by 733 binary relations each composed of a 
node-arc-node triple. In this study the only inference 
rules used were those needed to obtain transitive closure 
for inheritance, but in other studies of this text a great 
deal of power is gained by using general inference rules 
for paraphrasing the question into the terms given by an 
answering text. The use of paraphrastie inference rules is 
computationally expensive and is discussed elsewhere 
[Simmons 1083]. 

The text-knowledge base is constructed either as 
a set of triples using subscripted words, or by establishing 
node-numbers whose values are the complete SR and 
indexing these by the first element of every SR. The 
latter form, shown in Figure 1, occupies only about a 
third of the space that the triples require and neither 
form is clearly computationally better than the other. 

The first experiments with this text-knowledge 
base showed that the cost of following inheritance ares, 
i.e. obtaining taxonomic closures for concepts, was very 
high; some questions required as much as a minute of 
central processor time. As a result it was necessary to 
analyze the process and to develop an understanding that 
would minimize any redundant computation. Our 
current system for questioning this fragment knowledge 
base has reduced the computation time to the range of 
1/2 to less than 15 seconds per question in uncompiled 
ELISP on a DEC 2060. 

I believe the approach taken in this study is of 
particular interest to researchers who plan to use the 
taxonomic structure of ordinary dictionaries in support of 
natural language processing operations. Beginning with 
studies made in 1075 [Simmons and Chester, 1077] it was 
apparent to us that question-answering could be viewed 
profitably as a specialized form of theorem proving that 
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Example SR representation for a sen tence :  

(C100 A STATE-SPACE REPRESENTATION OF A PROBLEM EMPLEYS TWO 
KINDS OF ENTITIES: STATES, WHICH ARE DATA STRUCIURES GMNG 
• SNAPSHOTS" OF THE CONDITION OF THE PROBLEM AT EACH STAGE OF ITS 
SOLUTION, AND OPERATORS. WHICH ARE ~Y_ANS FOR TRANSFORMING THE 
PROBLEM FROM ONE STATE TO ANOTHER) 

(N137 
(N138 
(N140 
(N142 
(N143 
(N144 
(N146 
(N145 
(N147 
(N141 
(N148 
(N149 
(N l~  
(N i~  

(REPRESENTATION SUP N101 HAS N138 EG N139 SNT C100)) 
(ENTITY NBR PL QTY 2. INST N140 INST N141SNT C100)) 
(STATE NBR PL ~ N142 SNT CI00)) 
(STRUCTURE *OF DATA INSTR* N143 SNT C100)) 
(GIVE TNS PRES INSTR N142AE N144 vAT N145 SNT CLOG)) 
(SNAPSI~3T NBR PL *OF N146 SNT C100)) 
(PROBLEM NBR SING HAS N145 SUP N79 SNT C100)) 
(STAGE NBR PL IDENT VARI~J3 *OF N147 SNT C100)) 
(SOLUTION NBR SING SNT C100)) 
(OPERATOR NBR PLEQUIV* N148 SNT C100)) 
(PROCEDURE NBR PL INSTR* N149 SNT C100)) 
(TRANSFORM TNS PRESAE N146 *FROM N164 *TO N165 SNT C100)) 
(STATE NBR SING IDENT ONE 5~JP N140 SNT C100)) 
(STATE NBR SING IDENT ANOTHER SUP N140 SNT CI00)) 

Example of SR representation of the question, =How many entities 
are used in the state-space representation of a problem? = 

(REPRESENTATION *OF (STATE-SPACE *OF PROBLE24) HAS (ENTITY CITY YO) 

Figure 1. Representation of S e m ~ t l c  Relations 

Query Triple: 
Match Candid. 

AR B 
+ + + + means a match by unlficatlon. 
++ C (CLOSABCB) 
+ + C (CLOSCF R C B) 
+ R1 + (SYNONYM R R1) 
B R1 A (CO~ R R1) 
C + ÷ (CLOSAB C A) 

where CLOSAB stands for Abstractive Closure and is defined in 
procedural logic (where the symbol < is shorthand for the reversed 
implication sign <--, i.e. P < Q S is equivalent to Q " S --> P): 

(CLOSAB NI N2) < (OR CINST NI N2) (SUP N1 N2)) 
(INST N1 N2) < (OR (NI INST N2) (N1 ~ *  N2)) 
(INST N1N2) < (INST N1X)(INSTX N2) 
(SUP Ni N2) < (OR (Ni E~U£V N2)(Ni SUP N2)) 
(SUP NI N2) < (SUP NI X)(SUPX N2) 

CLOSCP stands for Complex Product Closure and is defined as 

(CLOSCP R N1N2) < (TRANSITIVE R)(NI R N2) 
=N1R N2 is the new A R B" 

(CLOSCP R N1N2) < (NI ~OF N2)*~ 
(CLOSCF R N1N2) < (NI LOC N2)** 
(CLOSCF R NI N2) < (NI *AND N2) 
(CLOSCP R N1N2) < (NI *OR N2) 

** These two relations turn out not to be universally true complex 
products; they only give answers that are possibly true, so they 
have been dropped for most question answering applications. 

Figure 2. Conditions for MatchLug Question and Candidate Triples 
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used taxonomic connections to recognize synonymic 
terms in a question and a candidate answer. A 
procedural logic question-answerer was later developed 
and specialized to understanding a story about the flight 
of a rocket [Simmons 1084, Simmons and Chester, 1982, 
Levine 1980]. Although it was effective in answering a 
wide range c,f ordinary questions, we were disturbed at 
the m,~gnitude of computation that was sometimes 
required. This led us to the challenge of developing a 
system that would work effectively with large bodies of 
text, particularly the AI Iiandbook. The choice of this 
text proved fortunate in that it provided experience with 
m~my taxonomic and partitive relations that were 
essential to an.~wering a test sample of questions. 

This hrief paper offers an initial description of a 
basic proccs.~ for questioning such a text and an analysis 
of the cost of using such a procedure. It is clear that the 
technique and analysis apply to any use of the English 
dictionary where definitions are encoded in semantic 
ne{ works. 

Relaxed Unification for Matching  Semantlc  
Relat ions 

In the unification algorithm, two n-tuples, nl  and 
n °, unify if Ari ty(nl)  ~ Arity(n2) and if every element in 
nl  matches an element in n2. Two elements el  and e2 
match if el  or e2 is a variable, or if e l  ~-- e2, or in the 
case that e l  and e2 are lists of the same length, each of 
the elements of el  matches a corresponding element of 
e2. 

Since semantic relations (SRs) are unordered lists 
of binary relations that vary in length and since a 
question representation (SRq) can be answered by a 
sentence candidate (SRc) that  includes more information 
than the question specified, the Arity constraint i~ revised 
to Arity(SRq} Less/Equal Arity(SRc}. 

The primitive elements of SRs include words, 
arcnames, variables and constants. Arcnames and words 
are organized taxonomically, and words are further 
organized by the discourse structures in which they 

occur. One or more element 6f taxonomic or discourse 
structure may imply others. Words in general can be 
viewed as restricted variables whose values can be any 
other word on an acceptable inference path (usually 
taxonomic) that joins them. The matching constraints of 
unification can thus be relaxed by allowing two terms to 
match if one implies the other in a taxonomic closure. 

The matching procedure is further adapted to 
read SRs effectively as unordered lists of triples and to 
seek for each triple ill SRq a corresponding one in SRc. 

The two SRs below match because Head matches Head, 
Arc l  matches Arcl ,  Vai l  matches Vall ,  etc. even though 
they are not given in the same order. 

SRq (Head Arc l  Vail ,  Arc2 Val2, ..., Arcn Vain) 
SRc (Head Arc2 Val2, Arc l  Vail ,  ..., Arch Vain) 

The SR may be represented (actually or virtually) as a 
list of triples as follows: 

SRq ((Head Arc l  Vai l)  
(Head Arc2 Val2) ..., (Head Arcn Vain}) 

Two triples match in Relaxed Unification according (at 
least) to the conditions shown in Figure 2. The query 
triple, A R B may match the candidate giving + + + to 
signify that all three elements unified. If the first two 
elements match, the third may be matched using the 
procedures CLOSAB or CLOSCP to relate the .non- 
matching C with the question term B by discovering that 
B is either in the abstractive closure or the complex 
product closure of C. The abstractive closure of an 
element is the set of all triples that can be reached by 
following separately the SUP and EQUIV arcs and the 
INST and EQUIV* arcs. The complex product closure is 
the set of triples that  can be reached by following a set of 
generally transitive arcs (not including the abstractive 
ones). The arc of the question may have a synonym or a 
converse and so develop alternative questions, and 
additional questions may be derived by asking such terms 

as C R B that include the question term A in their 
• abstractive closure. Both closure procedures should be 
limited to n-step paths where n is a value between 3 and 
6. 

Computa t iona l  Cost  
In the above recursive definition the cost is not 

immediately obvious. If it is mapped onto a g r a p h i c  
representation in semantic network form, it is possible to 
see some of its implications. Essentially the procedure 
first seeks a direct match between a question term and a 
candidate answer; if the match fails, the abstractive 
closure arcs, SUP, INST, EQUFv', and EQUIV* may lead. 
to a new candidate that does match. If these fail, then 
complex product arcs, *OF, HAS, LOC, AND, and OR 
may lead to a matching value. The graph below outlines 
the essence of the procedure. 
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A---R---B---SUP---Q 
i ---INST---{I 
i ---E~UlV---Q 
i ---E~JIV*---Q 
I ---*AND---el 
i ---*OR .... Cl 
I ---L0C---Q 
I ---*0F---Q 
I ---HAS---Q 

This graph shows nine possible complex product paths to 
follow in seeking a match between B and Q. If we allow 
each path to extend N steps such that each step has the 
same number of possible paths, then the worst case 
computation, assuming each candidate SR has all the 
arcs, is of the order, 9 raised to the Nth. If the A term of 
the question also has these possibilities, and the R term 
has a synonym, then there appear to be 2*2*9**Nth 
possible candidates for answers. The first factor of 2 
reflects the converse by assigning the A term 9**N paths. 
Assuming only one synonym, each of two R terms might 
lead to a B via any of 9 paths, giving the second factor of 
2. If the query arc is also transitive, then the power 
factor 9 is increased by one. 

In fact, SRs representing ordinary text appear to 

h~ve less than an average of 3 possible-CP paths, so 
something like 2*3**Nth seems to be the average cost. So 
if N is limited to 3 there are about 2 '81=162 candidates 
to be examined for each subquestion. These are merely 
rough estimates, but if the question is composed of 5 
subquestions, we .might expect to examine something on 
the order of a thousand candidates in a complete search 
for the answer. Fortunately, this is accomplished in a few 
seconds of comphtation time. 

The length of tr£nsitive path is also of 
importance for two other reasons. First, most of the CP 
arcs lead only to probable inference. Even superset and 
instance are really only highly probable indicators of 
equivalence, while LOC, HAS, and *OF are even less 
certain. Thus if the probability of truth of match is less 
than one for each step, the number of steps that can 
reasonably be taken must be sharply limited. Second, it 
is the case empirically that the great majority of answers 
to questions are found with short paths of inference. In 
one all-answers version of the QA-system, we found a 
puzzling phenomem)n in that all of the answers were 
typically found in tlle first fifteen seconds of computation 
although the exploratior! continued for up to 50 seconds. 
Our current hypothesis is that the likelihood o f  
discovering an answer falls o f f  rapidly as the length of  
the inference path increases. 

Disusslon 
It is important to note that this experiment was 

solely concerned with the simple levels of inference 
concerned in inheritance from a taxonomic structure. It 
shows that this class of inference can be embedded 
profitably in a procedure for relaxed unification. In 
addition it allows us to state rules of inference in the 
form of semantic relations. 

For example we know that the commander of 
troops is responsible for the outcome of their battles. So 
if we know that Cornwallis commanded an army and the 
army lost a battle, then we can conclude correctly that 
Cornwallis lost the battle. An SR inference rule to this 
effect is shown below: 
Rule Axiom: 
((LOSE AGT X AE Y) < -  (SUP X COh/LMANDER) 

(SUP Y BATTLE) 
(COMMAND AGT X AE W) 
(SUP W MILITARY-GROUP) 
(LOSE AGT W AE Y)) 

Text Axioms: 
((COMMAND AGT CORNWALLIS 

AE (ARMY MOD BRITISH))) 
((LOSE AGT (AR/vfY MOD BRITISH) 

AE (BATTLE *OF YORKTOWN})) 
((CORNWALLIS SUP COMMANDER)) 
((ARMY SUP {MILITARY-GROUP))) 
((YORKTOWN SUP BATTLE)) 

Theorem: 
((LOSE AGT CORNWALLIS 

AE (BATTLE *OF YORKTOWN))) 

The relaxed unification procedure described earlier allows 
us to match the theorem with the consequent of the rule 
which is then proved if its antecedents are proved. It can 
be noticed that what is being accomplished is the 
definition of a theorem prover for the loosely ordered 
logic of semantic relations. We have used such rules for 
answering questions of the AI handbook text, but have 
not yet determined whether the cost of using such rules 
with relaxed unification can be justified (or whether some 
theoretically less appealing compilation is needed). 
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