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Abstract 

Ever since Woods's "What's in a Link" paper, there 
has been a growing concern for formalization in the 
study of  knowledge representation. Several arguments 
have been made that frame representation languages and 
semantic-network languages are syntactic variants of the 
ftrst-order predicate calculus (FOPC). The typical 
argument proceeds by showing how any given frame or 
network representation can be mapped to a logically 
isomorphic FOPC representation. For the past two years 
we have been studying the formalization of knowledge 
retrievers as well as the representation languages that 
they operate on. This paper presents a representation 
language in the notation of FOPC whose form facilitates 
the design of a semantic-network-like retriever. 

I. Introduction 

We are engaged in a long-term project to construct a 
system that can partake in extended English dialogues 
on some reasonably well specified range of topics. A 
major part of  this effort so far has been the specification 
of  a knowledge representation. Because of the wide 
range of  issues that we are trying to capture, which 
includes the representation of plans, actions, time, and 
individuals' beliefs and intentions, it is crucial to work 
within a framework general enough to accommodate 
each issue. Thus, we began developing our 
representation within the first-order predicate calculus. 
So far, this has presented no problems, and we aim to 
continue within this framework until some problem 
forces us to do otherwise. 

Given this framework, we need to be able to build 
reasonably efficient systems for use in the project. In 
particular, the knowledge representation must be able to 
support the natural language understanding task. This 
requires that certain forms of inference must be made. 

~'~ Within  a general theorem-proving framework, however, 
those inferences desired would be lost within a wide 
range of  undesired inferences. Thus we have spent 
considerable effort in constructing a specialized 
inference component that can support the language 
understanding task. 

Before such a component could be built, we needed 
to identify what inferences were desired. Not 
surprisingly, much of the behavior we desire can be 
found within existing semantic network systems used for 
natural language understanding. Thus the question 
"What inferences do we need?" can be answered by 
answering the question "What's in a semantic network?" 

Ever since Woods's [1975] "What's in a Link" paper, 
there has been a growing concern for formalization in 
the study of  knowledge representation. Several 
arguments have been made that frame representation 
languages and semantic-network languages are syntactic 
variants of  the f~st-order predicate calculus (FOPC). 
The typical argument (e.g., [Hayes, 1979; Nilsson, 1980; 

Charniak, 1981a]) proceeds by showing how any given 
frame or network representation can be mapped to a 
logically isomorphic (i.e., logically equivalent when the 
mapping between the two notations is accounted for) 
FOPC representation. We emphasize the term "logically 
isomorphic" because these arguments have primarily 
dealt with the content (semantics) of the representations 
rather than their forms (syntax). Though these 
arguments are valid and scientifically important, they do 
not answer our question. 

Semantic networks not only represent information 
but facilitate the retrieval of relevant facts. For instance, 
all the facts about the object JOHN are stored with a 
pointer directly to one node representing JOHN (e.g., 
see the papers in [Findler, 1979]). Another example 
concerns the inheritance of properties. Given a fact such 
as "All canaries are yellow," most network systems 
would automatically conclude that "Tweety is yellow," 
given that Tweety is a canary. This is typically 
implemented within the network matcher or retriever. 

We have demonstrated elsewhere [Frisch and Allen, 
1982] the utility of viewing a knowledge retriever as a 
specialized inference engine (theorem prover). A 
specialized inference engine is tailored to treat certain 
predicate, function, and constant symbols differently 
than others. This is done by building into the inference 
engine certain true sentences involving these symbols 
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and the control needed to handle with these sentences. 
The inference engine must also be able to recognize 
when it is able to use its specialized machinery. That is, 
its specialized knowledge must be coupled to the form of 
the situations that it can deal with. 

For illustration, consider an instance of the 
ubiquitous type hierarchies of semantic networks: 

FORDS 

I subtype 

MUSTANGS 

l type 

OLD-BLACK 

By mapping the types AUTOS and MUSTANGS to be 
predicates which are true only of automobiles and 
mustangs respectively, the following two FOPC 
sentences are logically isomorphic to the network: 

(1.1) V x MUSTANGS(x) --) FORDS(x) 

(1.2) MUSTANGS(OLD-BLACK1) 

However, these two sentences have not captured the 
form of the network, and furthermore, not doing so is 
problematic to the design of a retriever. The subtype and 
type links have been built into the network language 
because the network retriever has been built to handle 
them specially. That is, the retriever does not view a 
subtype link as an arbitrary implication such as (1.1) and 
it does not view a type link as an arbitrary atomic 
sentence such as (1.2). 

In our representation language we capture the form 
as wetl as the content of  the network. By introducing 
two predicates, TYPE and SUBTYPE, we capture the 
meaning of  the type and subtype links. TYPE(~O is true 
iff the individual i is a member of the type (set of 
objects) t, and SUBTYPE(tl, t 2) is true iff the type t I is 
a subtype (subset) of the type t 2. Thus, in our language, 
the following two sentences would be used to represent 
what was intended by the network: 

(2.1) SUBTYPE(FORDS,MUSTANGS) 

(2.2) TYPE(OLD-BLACK1,FORDS) 

It is now easy to build a retriever that recognizes 
subtype and type assertions by matching predicate 

names. Contrast this to the case where the representation 
language used (1.1) and (1.2) and the retriever would 
have to recognize these as sentences to be handled in a 
special manner. 

But what must the retriever know about the 
SUBTYPE and TYPE predicates in order that it can 
reason (make inferences) with them? There are two 
assertions, (A.1) and (A.2), such that {(1.1),(1.2)} is 
logically isomorphic to {(2.1),(2.2),(A.1),(A.2)}. (Note: 
throughout this paper, axioms that define the retriever's 
capabilities will be referred to as built-in axioms and 
specially labeled A.1, A.2, etc.) 

(A.1) v tl,t2,t 3 SUBTYPE(tl,t2) A SUBTYPE(t2,t3) 
--, SUBTYPE(tl,t3) 

(SUBTYPE is transitive.) 

(A.2) v O,tl,t 2 TYPE(o,tl) A SUBTYPE(tl,t2) 
TYPE(o,t2) 

(Every member of a given type is a member of 
its supertypes.) 

The retriever will also need to know how to control 
inferences with these axioms, but this issue is considered 
only briefly in this paper. 

The design of  a semantic-network language often 
continues by introducing new kinds of nodes and links 
into the language. This process may terminate with a 
fixed set of  node and link types that are the knowledge- 
structuring primitives out of which all representations 
are built. Others have referred to these knowledge- 
structuring primitives as epistemological primitives 
[Brachman, 1979], structural relations [Shapiro, 1979], 
and system relations [Shapiro, 1971]. If a fLxed set of 
knowledge-structuring primitives is used in the language, 
then a retriever can be built that knows how to deal with 
all of  them. 

The design of  our representation language very 
much mimics this approach. Our knowledge-structuring 
primitives include a fixed set of predicate names and 
terms denoting three kinds of elements in the domain. 
We give meaning to these primitives by writing domain- 
independent axioms involving them. Thus far in this 
paper we have introduced two predicates (TYPE and 
SUBTYPE'), two kinds of elements (individuals and 
types), and two axioms ((A.1) and (A.2)). We shall name 
types in uppercase and individuals in uppercase letters 
followed by at least one digit. 

Considering the above analysis, a retrieval now is 
viewed as an attempt to prove some queried fact 
logically follows from the base facts (e.g., (2.1), (2.2)) and 
the built-in axioms (such as A.1 and A.2). For the 
purposes of  this paper, we can consider aa~ t~ase facts to 
be atomic formulae (i.e., they contain no logical 
operators except negation). While compound formulae 
such as disjunctions can be represented, they are of little 
use to the semantic network retrieval facility, and so will 
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not be considered in this paper. We have implemented a 
retriever along these lines and it is currently being used 
in the Rochester Dialogue System [Allen, 1982]. 

2. The Basic Representation: Objects, Events, and 
Relations 

An important property of a natural language system 
is that it often has only partial information about the 
individuals (objects, events, and relations) that are talked 
about. Unless one assumes that the original linguistic 
analysis can resolve all these uncertainties and 
ambiguities, one needs to be able to represent partial 
knowledge. Furthermore, the things talked about do not 
necessarily correspond to the world: objects are 
described that don't exist, and events are described that 
do not occur. 

In order to be able to capture such issues we will 
need to include in the domain all conceivable 
individuals (cf. all conceivable concepts [Brachman, 
1979]). We will then need predicates that describe how 
these concepts correspond to reality. The class, of 
individuals in the world is subcategorized into three 
major classes: objects, events, and relations. We consider 
each in turn. 

2.1 Objects 

Objects include all conceivable physical objects as 
well as abstract objects such as ideas, numbers, etc. The 
most important knowledge about any object is its type. 
Mechanisms for capturing this were outlined above. 
Properties of objects are inherited from statements 
involving universal quantification over the members of a 
type. The fact that a physical object, o, actually exists in 
the world will be asserted as 1S-REAL(o). 

2.2 Events 

The problems inherent in representing events and 
actions are well described by Davidson [1967]. He 
proposes introducing events as elements in the domain 
and introducing predicates that modify an event 
description by adding a role (e.g., agent, object) or by 
modifying the manner in which the event occurred. The 
same approach has been used in virtually all semantic 
network- and frame-based systems [Charniak, 1981b], 
most of which use a case grammar [Fillmore, 1968] to 
influence the choice of role names. This approach also 
enables quantification over events and their components 
such as in the sentence, "For each event, the actor of the 
event causes that event." Thus, rather than representing 
the assertion that the ball fell by a sentence such as 

(try-l) FALL(BALL1), 

the more appropriate form is 

(try-2) 3 e TYPE(e,FALL-EVENTS) A 
OBJECT-ROLE(e,BALL1). 

This formalism, however, does not allow us to make 
assertions about roles in general, or to assert that an 
object plays some role in an event. For example, there is 
no way to express "Role fillers are unique" or "There is 
an event in which John played a role." Because we do 
not restrict ourselves to binary relations, we can 
generalize our representation by introducing the 
predicate ROLE and making rolenames into individuals 
in the domain. ROLE(o, r, v) asserts that individual o has 
a role named r that is filled with individual v. To 
distinguish rolenames from types and individuals, we 
shall use italics for rolenames. 

Finally, so that we can discuss events that did not 
occur (as opposed to saying that such an event doesn't 
exis0, we need to add the predicate OCCUR. 
OCCUR(e) asserts that event e actually occurred. Thus, 
finally, the assertion that the ball fell is expressed as 

(3) 3 e TYPE(e,FALL-EVENTS) A 
ROLE(e,OBJECT, BALL1) A 
OCCUR(e). 

Roles are associated with an event type by asserting 
that every individual of that type has the desired role. 
To assert that every event has an OBJECT role, we state 

(4) v e 3 r TYPE(e, EVENTS) 
--. ROLE(e, OBJECT, r). 

Given this formulation, we could now represent that 
"some event occurred involving John" by 

(5) a e, rolename TYPE(e,EVENTS) A 
ROLE(e, rolename, JOHN1) A 
OCCUR(e) 

By querying fact (5) in our retriever, we can find all 
events involving John. 

One of the most important aspects of roles is that 
they are functional, e.g., each event has exactly one 
object role, etc. Since this is important in designing an 
efficient retriever, it is introduced as a built-in axiom: 

(A.3) v r,o,vl,v2 ROLE(o,r, vl) A ROLE(o,r,v2) 
--, (vl = v2). 

2.3 Relations 

The final major type that needs discussing is the 
class of  relations. The same problems that arise in 
representing events arise in representing relations, l:or 
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instance, often the analysis of a simple noun-noun 
phrase such as "the book cook" initially may be only 
understood to the extent that some relationship holds 
between "book" and "cook." If we" want to represent 
this, we need to be able to partially describe relations. 
This problem is addressed in semantic networks by 
describing relations along the same lines as events. 

For example, rather than expressing "John is 10" as 

(6) AGE-OF(JOHN1,10) 

we use the TYPE and ROLE predicates introduced 
above to get 

(7) 3 p TYPE(p,AGE-RELATIONS) A 
ROLE(p, OBJECT, JOHN1) A 
ROLE(p, VALUE,10). 

This, of course, mirrors a semantic network such as 

AGE-RE~.ATIONS 

I type 

P1 

o b j e c t s  ~ , . ~ a l u e  

JOHN1 10 

As with events, describing a relation should not entail 
that the relation holds. If this were the case, it would be 
difficult to represent non-atomic sentences such as a 
disjunction, since in describing one of the disjuncts, we 
would be asserting that the disjunct holds. We assert that 
a relation, r, is true with HOLDS(r). Thus the assertion 
that "John is 10" would involve (7) conjoined with 
HOLDS(p), i.e., 

(8) ] p TYPE(p,AGE-RELATIONS) A 
ROLE(p, OBJECT, JOHN1) A 
ROLE(p, VALUE, IO) ^ 
HOLDS(p) 

The assertion "John is not 10" is not the negation of (8), 
but is (7) conjoined with -HOLDS(p), i.e., 

(9) ] p TYPE(p,AGE-RELATIONS) A 
ROLE(p, OBJECT;JOHN1) A 
ROLF(p, VALUE, IO) A 

-HOLDS(p). 

We could also handle negation by introducing the 
type NO'I'-REIATIONS, which takes one rd .  ~,.,,, is 
filled by another relation. To assert the above, we woutd 
construct an individual N1, of type NOT-RELATIONS, 
with its role filled with p, and assert that N1 holds. We 
see no advantage to this approach, however, since 
negation "moves through" the HOLDS predicate. In 

other words, the relation "not p" holding is equivalent to 
the relation "p" not holding. Disjunction and 
conjunction are treated in a similar manner. 

3. Making Types Work for You 

The system described so far, though simple, is close 
to providing us with one of the most characteristic 
inferences made by semantic networks, namely 
inheritance. For example, we might have the following 
sort of  information in our network: 

(10) SUBTYPE(MAMMALS,ANIMALS) 
(11) S UBTYPE(2-LEGGED-ANIMALS,ANIMALS) 
(12) SUBTYPE(PERSONS,MAMMALS) 
(13) SUBTYPE(PERSONS,2-LEGGED-ANIMALS) 
(14) SUBTYPE(DOGS,MAMMALS) 
(15) TYPE(GEORGE1,PERSONS) 

In a notation like in [Hendrix, 1979], these facts would 
be represented as: 

ANIMALS 

2-LE MAMMALS 

PERSONS DOGS 

T 
GEORGE1 

In addition, let us assume we know that all instances of 
2-LEGGED-ANIMALS have two legs and that all 
instances of MAMMALS are warm-blooded: 

(16) v x TYPE(x,2-LEGGF_.D-ANIMALS) 
HAS-2-LEGS(x) 

(17) v y TYPE(y,MAMMALS) . 
-~ WARM-BLOODED(y) 

These would be captured in the Hendrix formalism 
using his delineation mechanism. 

Note that relations such as "WARM-BLOODED" 
and "HAS-2-LEGS" should themselves be described as 
relations with roles, but that is not necessary for this 
example. Given these facts, and axioms (A.1) to (A.3), 
we can prove that "George has two legs" by using axiom 
(A.2) on (13) and (15) to conclude 

(18) TYPE(GEORGE1,2-LEGGED-ANIMALS) 
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and then using (18) with (16) to conclude 

(19) HAS-2-LEGS(GEORGE1). 

In order to build a retriever that can perform these 
inferences automatically, we must be able to distinguish 
facts like (16) and (17) from arbitrary facts involving 
implications, for we cannot allow arbitrary chaining and 
retain efficiency. This could be done by checking for 
implications where the antecedent is composed entirely 
of  type restrictions, but this is difficult to specify. The 
route we take follows the same technique described 
above when we introduced the TYPE and SUBTYPE 
predicates. We introduce new notation into the language 
that explicitly captures these cases. The new form is 
simply a version of  the typed FOPC, where variables 
may be restricted by the type they range over. Thus, (16) 
and (17) become 

(20) v x:2-LEGGED-ANIMAI.S HAS-2-LEGS(x) 

(21) V y:MAMMALS WARM-BLOODED(y), 

The retriever now can be implemented as a typed 
theorem prover that operates only on atomic base facts 
(now including (20) and (21)) and axioms (A.1) to (A.3). 

We now can deduce that GEORGE1 has two legs 
and that he is warm-blooded. Note that objects can be of 
many different types as well as types being subtypes of 
different types. Thus, we could have done the above 
without the type PERSONS, by making GEORGE1 of 
type 2-LEGGED-ANIMALS and MAMMALS. 

4. Making Roles Work for You 

In the previous section we saw how properties could 
be inherited. This inheritance applies to role assertions 
as well. For example, given a type EVILNTS that has an 
OBJECT role. i.e., 

(22) SUBTYPE(EVENTS,INDIVIDUALS) 

(23) v x:EVENTS 
3 y:PHYS-OBJS ROLE(x, OBJECT, y). 

Then if ACTIONS are a subtype of events, i.e., 

(24) SUBTYPE(ACTIONS,EVENTS), 

it follows from (A.2), (23), and (24) that for every action 
there is something that fills its OBJECT role, i.e., 

(25) v x:ACTIONS 
3 y:PHYS-OBJS ROLE(x,OBJECT;y). 

Note that the definition of the type ACTIONS could 
further specify the type of the values of its OMI".CT 
role, but it could not contradict fact (25). Thus 

(26) V x:ACTIONS 
3 y:PERSONS ROLE(x, OBJECT, y), 

further restricts the value of the OBJECT role for all 
individuals of  type ACTIONS to be .of type PERSONS. 

Another common technique used in semantic 
network systems is to introduce more specific types of a 
given type by specifying one (or more) of the role 
values. For instance, one might introduce a subtype of 
ACTION called ACTION-BY-JACK, i.e., 

(27) 

(28) 

SUBTYPE(ACTION-BY-JACK,ACTIONS) 

¥ abj:ACTION-BY-JACK 
ROLE(abj,ACTOR,JACK). 

Then we could encode the general fact that all actions by 
Jack are violent by something like 

(29) v abj:ACTION-BY-JACK 
VIOLENT(abj). 

This is possible in our logic, but there is a more flexible 
and convenient way of capturing such information. Fact 
(29), given (27) and (28), is equivalent to 

(30) v a:ACTIONS 
(ROLE a ACTOR JACK) 

• --, VIOLENT(a). 

If we can put this into a form that is recognizable to the 
retriever, then we could assert such facts directly without 
having to introduce arbitrary new types. 

The extension we make this time is from what we 
called a type logic to a role logic. This allows quantified 
variables to be restricted by role values as well as type. 
Thus, in this new notation, (30) would be expressed as 

(31) v a:ACH'IONS [ACTOR JACK] 
VIOLENT(a). 

In general, a formula of the form 

v a:T [R1V1]...[RnVn] Pa 

is equivalent to 

v a (TYPE(a,T) A 
ROLE(a,R1,V1) A . . .  A ROLE(a,Rn,Vn)) 

• -* Pa. 
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Correspondingly, an existentially cluantitied formula 
such as 

3 a:T [R1V1]...[RnVn] Pa 

is equivalent to 

3 a TYPE(a,T) A 
ROLE(a, R1,V1) A . . .  ^ ROLE(a,Rn,V n) ^ 
Pa. 

The retriever recognizes these new forms and fully 
reasons about the role restrictions. It is important to 
remember that each of these notation changes is an 
extension onto the original simple language. Everything 
that could be stated previously can still be stated. The 
new notation, besides often being more concise and 
convenient, is necessary only i f  the semantic network 
retrieval facilities are desired. 

Note also that we can now define the inverse of (28), 
and state that all actions with actor JACK are necessarily 
of type ACTION-BY-JACK. This can be expressed as 

(32) v a:ACTIONS [ACTOR JACK] 
TYPE(a, ACTION-BY-JACK). 

5. Equality 

One Of the crucial facilities needed by natural 
language systems is the ability to reason about whether 
individuals are equal. This issue is often finessed in 
semantic networks by assuming that each node 
represents a different individual, or that every type in 
the type hierarchy is disjoint. This assumption has been 
called E-saturation by [Reiter, 1980]. A natural language 
understanding system using such a representation must 
decide on the referent of each description as the 
meaning representation is constructed, since if it creates 
a new individual as the referent, that individual will then 
be distinct from all previously known individuals. Since 
in actual discourse the referent of a description is not 
always recognized until a few sentences later, this 
approach lacks generality. 

One approach to this problem is to introduce full 
reasoning about equality into the representation, but this 
rapidly produces a combinatorially, prohibitive search 
space. Thus other more specialized techniques are 
desired. We shall consider mechanisms for proving 
inequality f'trst, and then methods for proving equality. 

Hendrix [1979] introduced some mechanisms that 
enable inequality to be proven. In his system, mere are 
two forms of subtype links, and two forms of instance 
links. This can be viewed in our system as follows: the 
SUBTYPE and TYPE predicates discussed above make 

no commitment regarding equality. However, a new 
relation, DSUBTYPE(tl,t2) , asserts that t 1 is a 
SUBTYPE of t 2, and also that the elements of t 1 are 
distinct from all other elements of other DSUBTYPES 
o f t  2. This is captured by the axioms 

(A.4) v t, tl,t2,il,i2 
(DSUBTYPE(tl,t) A DSUBTYPE(t2,t) A 
TYPE(il,tl) A TYPE(i2,t 2) A 
~IDENTICAL(tl,t2)) 

--, (i 1 * i 2) 

(A.5) v tl,t DSUBTYPE(tl,t) ---, SUBTYPE(tl,t) 

We cannot express (A.4) in the current logic because the 
predicate IDFA',ITICAL operates on the syntactic form of 
its arguments rather than their referents. Two terms are 
IDENTICAL only if they are lexicaUy the same. To do 
this formally, we have to be able to refer to the syntactic 
form of terms. This can be done by introducing 
quotation into the logic along the lines of [Perlis, 1981], 
but is not important for the point of this paper. 

A similar trick is done with elements of a single type. 
The predicate DTYPE(i,t) asserts that i is an instance of 
type t, and also is distinct from any other instances of t 
where the DTYPE holds. Thus we need 

(A.6) v il,i2,t (DTYPE(il,t) A DTYPE(i2,t) A 
~ IDENTICAL(il,i2) ) 

• --, (i 1 * i 2) 

(A.7) vi, t DTYPE(i,t) ---, TYPE(i,t) 

Another extremely useful categorization of objects is 
the partitioning of a type into a set of subtypes, i.e., each 
element of the type is a member of exactly one subtype. 
This can be defined in a similar manner as above. 

Turning to methods for proving equality, [Tarjan, 
1975] describes an efficient method for computing 
relations that form an equivalence class. This is adapted 
to support full equality reasoning on ground terms. Of 
course it cannot effectively handle conditional assertions 
of equality, but it covers many of the typical cases. 

Another technique for proving equality exploits 
knowledge about types. Many types are such that their 
instances are completely defined by their roles. For such 
a type T, if two instances I1 and 12 of T agree on all 
their respective rc!~ then they are equal. If I1 and I2 
have a role where their values are not equal, then I I and 
I2 are not equal. If we finally add the assumption that 
every instance of T can be characterized by its set of role 
values, then we can enumerate the instances of type T 
using a function (say t) that has an argument for each 
role value. 
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For example, consider the type AGE-RELS of age 
properties, which takes two roles, an OBJECT and a 
VALUE. Thus, the property P1 that captures the 
assertion "John is 10" would be described as follows: 

(33) TYPE(P1,AGE-RELS) A 
ROLE(PI,OBJECT, JOHN1) A 
ROLE(P1, VALUE, IO). 

The type AGE-RELS satisfies the above properties, 
so any individual of type AGE-RELS with OBJECT 
role JOHN1 and VALUE role 10 is equal to P1. The 
retriever encodes such knowledge in a preprocessing 
stage that assigns each individual of type AGE-RELS to 
a canonical name. The canonical name for P1 would 
simply be "age-rels(JOHNl,10)". 

Once a representation has equality, it can capture 
some of  the distinctions made by perspectives in KRL. 
The same object viewed from two different perspectives 
is captured by two nodes, each with its own type, roles, 
and relations, that are asserted to be equal. 

Note that one cannot expect more sophisticated 
reasoning about equality than the above from the 
retriever itself. Identifying two objects as equal is 
typically not a logical inference. Rather, it is a plausible 
inference by some specialized program such as the 
reference component of a natural language system which 
has to identify noun phrases. While the facts represented 
here would assist such a component in identifying 
possible referencts for a noun phrase given its 
description, it is unlikely that they would logically imply 
what the referent is. 

6. Associations and Partitions 

Semantic networks are useful because they structure 
information so that it is easy to retrieve relevant facts, or 
facts about certain objects. Objects are represented only 
once in the network, and thus there is one place where 
one can find all relations involving that object (by 
following back over incoming ROLE arcs). While we 
need to be able to capture such an ability in our system, 
we should note that this is often not a very useful ability, 
for much of one's knowledge about an object will ,lot be 
attached to that object but will be acquired from the 
inheritance hierarchy. In a spreading activation type of 
framework, a considerable amount of irrelevant network 
will be searched before some fact high up in the type 
hierarchy is found. In addition, it is very seldom that 
one wants to be able to access all facts involving an 
object; it is much more likely that a subset of relations is 
relevant. 

I f  desired, such associative links between objects can 
be simulated in our system. One could find all properties 
of an object ol  (including those by inheritance) by 
retrieving all bindings of x in the query 

3x,r ROLE(x,r,ol). 

The ease of access provided by the links in a semantic 
network is effectively simulated simply by using a 
hashing scheme on the structure of all ROLE predicates. 
While the ability to hash on structures to find facts is 
crucial to an efficient implementation, the details are not 
central to our point here. 

Another important form of indexing is found in 
Hendrix where his partition mechanism is used to 
provide a focus of attention for inference processes 
[Grosz, 1977]. This is just one of the uses of partitions. 
Another, which we did not need, provided a facility for 
scoping facts within logical operators, similar to the use 
of parentheses in FOPC. Such a focus mechanism 
appears in our system as an extra argument on the main 
predicates (e.g., HOLDS, OCCURS, etc.). 

Since contexts are introduced as a new class of 
objects in the language, we can quantify over them and 
otherwise talk about them. In particular, we can organize 
contexts into a lattice-like structure (corresponding to 
Hendrix's vistas for partitions) by introducing a 
transitive relation SUBCONTEXT. 

(A.8) v c,cl,c2 SUBCONTEXT(c,cl) A 
SUBCONTEXT(cl,c2) 

SUBCONTEXT(c,c2) 

To relate contexts to the HOLDS predicate, a 
proposition p holds in a context c only if it is known to 
hold in c explicitly, or it holds in a super context of c. 

(A.9) v p,t,c,c' SUBCONTEXT(c,c,)A 
HOt.DS(p,c') 

--, HOLDS(p,c), 

As with the SUBTYPE relation, this axiom would defy 
an efficient implementation if the contexts were not 
organized in a finite lattice structure. Of course, we need 
axioms similar to (A,9) for the OCCURS and IS-RF_.AL 
predicates. 

7. Discussion 

We have argued that the appropriate way to design 
knowledge representations is to identify those inferences 
that one wishes to facilitate. Once these are identified, 
one can then design a specialized limited inference 
mechanism that can operate on a data base of first order 
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facts. In this fashion, one obtains a highly expressive 
representation language (namely FOPC), as well as a 
well-defined and extendable retriever. 

We have demonstrated this approach by outlining a 
portion of  the representation used in ARGOT, the 
Rochester Dialogue System [Allen, 1982]. We are 
currently extending the context mechanism to handle 
time, belief contexts (based on a syntactic theory of 
belief [Haas, 1982]), simple hypothetical reasoning, and a 
representation of  plans. Because the matcher is defined 
by a set of  axioms, it is relatively simple to add new 

axioms that handle new features. 

For example, we are currently incorporating a model 
o f  temporal knowledge based on time intervals [Allen, 
1981a]. This is done by allowing any object, event, or 
relation to be qualified by a time interval as follows: for 
any untimed concept x, and any time interval t, there is 
a timed concept consisting of  x viewed during t which is 
expressed by the term 

(t-concept x t). 

This concept is of  type (TIMED Tx), where Tx is the 
type of  x. Thus we require a type hierarchy of timed 
concepts that mirrors the hierarchy of untimed concepts. 

Once this is done, we need to introduce new built-in 
axioms that extend the retriever. For instance, we define 
a predicate, 

DURING(a,b), 

that is true only if interval a is wholly contained in 
interval b. Now, if we want the retriever to automatically 
infer that if relation R holds during an interval t, then it 
holds in all subintervals of t, we need the following 
built-in axioms. First, DURING is transitive: 

(A.10) V a,b,c DURING(a,b) A DURING(b,c) 
--, DURING(a,c) 

Second, if P holds in interval t, it holds in all 
subintervals of t. 

(A.11) v p,t,t',c HOLDS(t-concept(p,t),c) A 
DURING(t '  ,t) 

---, HOLDS(t-concept(p,t'),c). 

Thus we have extended our representation to handle 
simple timed concepts with only a minimal amount of 
analysis. 

Unfortunately, we have not had the space to 
describe how to take the specification of the retriever 
(namely axioms (A.1) - (A.11)) and build an actual 

inference program out of it. A technique for building 
such a limited inference mechanism by moving to a 
meta-logic is described in [Frisch and Allen, 1982]. 

One of the more interesting consequences of this 
approach is that it has led to identifying various 
difference modes of retrieval that are necessary to 
support a natural language comprehension task, We 
have considered so far only one mode of retrieval, which 
we call provability mode. In this mode, the query must 
be shown to logically follow from the built-in axioms 
and the facts in the knowledge base. While this is the 
primary mode of  interaction, others are also important. 

In consistency mode, the query is checked to see if it 
is logically consistent with the facts in the knowledge 
base with respect to the limited inference mechanism. 
While consistency in general is undecidable, with respect 
to the limited inference mechanism it is computationally 
feasible. Note that, since the retriever is defined by a set 
of axioms rather than a program, consistency mode is 
easy to define. 

Another important mode is compatibility mode, 
which is very useful for determining the referents of 
description. A query in compatibility mode succeeds if 
there is a set of  equality and inequality assertions that 
can be assumed so that the query would succeed in 
provability mode. For instance, suppose someone refers 
to an event in which John hit someone with a hat. We 
would like to retrieve possible events that could be equal 
to this. Retrievals in compatibility mode are inherently 
expensive and so must be controlled using a context 
mechanism such as in [Grosz, 1977]. We are currently 
attempting to formalize this mode using Reiter's non- 
monotonic logic for default reasoning. 

We have implemented a version of this system in 
H O R N E  [Allen and Frisch, 1981], a LISP embedded 
logic programming language. In conjunction with this 
representation is a language which provides many 
abbreviations and facilities for system users. For 
instance, users can specify what context and times they 
are working with respect to, and then omit this 

information from their interactions with the system. 
Also, using the abbreviation conventions, the user can 
describe a relation and events without explicitly asserting 
the TYPE and ROLE assertions. Currently the system 
provides the inheritance hierarchy, simple equality 
reasoning, contexts, and temporal reasoning with the 
DURING hierarchy. 
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