The Use of Qbject-Specific Knowledge in Natural Language Processing

Mark H. Burstein
Department of Computer Science, Yale University

1. INTAODUCTION

It is widely recogni zed that the process of
understanding natural language texts cannot be
accomplisned without accessing mundane knowledgze about
the worid (2, 4, 6, 7). Tnat is, in order to resolve
ambiguities, form expectations, and make causal
connections Detween events, we must make use of all
sorts of episodic, stereotypic and factual knowledge.

In this paper, we are concerned with the way functjonal
knowledge of objects, and associations between objects
can be exploited in an understanding system.

Consider the sentence

(1) John opened the bottle so he could pour the wine.
Anyone reading this sentence makes assumptions about
what happened which gzo far beyond what is stated. For
example, we assume without hesitation that the wine
being poured came from inside the bottle. Although this
seems quite obvious, there are many other
interpretations which are equally valid. John could be
filling the pottle rather than emptying the wine out of
it. In fact, it need not be true that the wine ever
contacted the bottle. There may have been some other
reason John had to open the bottle first. Yet, in the
absence of a larger context, some causal inference
mechanisa forces us (as human understanders) to find the
common interpretation in the process of connecting these
two events causally.

In interpreting this sentence, we also rely on an
understanding of what it means for a bottle to be
"open". Only by using knowledge of what 1is possible
when a bottle is open are able we understand wny John

had to open the bottle to pour
Strong
these connections.

the wine out of it,
associations are at work here helping us to make
A sentence such as

(2) John closed the bottle and poured the wine.

appears to be self contradictory only because we assume
that the wine was in the bottle before applying our
knowledge of open and closed bottles to the situation.
Only then do we realize that closing the bottle makes it
impossible to pour the wine,

Now consider the sentence

(3) John turned on the faucet and filled his glass.
When reading this, we Iimmediately assume that John
filled nhis glass with water from the faucet. Yet, not
only i3 water never mentioned in the sentence, there is
nothing there to explicitly relate turning on the faucet
and filling the glass. The glass could conceivably be
filled with milk from a carton. However, in the absence
of some greater context which forces a different
interpretation on us, we immediately assume that the
glass is being filled with water from the faucet.

Understanding each of these sentences requires that we
make use of associations we have {n memory between
objects and actions commonly involving those objects, as

*This worik was supported in part by the Advanced
Research Projects Agency of the Department of Defense
and monitored by the Office of Naval Research under

contrazt NOOO14-75-C-1111,

53

well as relatjons between several different objects.

This paper describes a computer program, OPUS (Object
Primitive Understanding System) which constructs a
representation of the meanings of sentences such as
those above, including assumptions that a human
understander would normally make, by accessing these
types of associative memory structures. This

stereotypic knowledge of physical objects is captured in
OPUS using Object Primitives (5]. Object Primitives
(OP) were designed to act in conjunction with Schank's
conceptual dependency representational system [11]). The
processes developed to perform conceptuai analysis in
QPUS 1involved the integration of a conceptual analyzer
similar to Riesbeck's ELL {9] with demon-like procedurss
for memory interaction and the introduction of
object-related inferences.

2. ORJECT PRIMITIVES

The primary focus in this research has been on the
development of processes which utilize information
provided by Object Primjitives to facilitate the
"comprehension” of natural language texts by computer.
That {s, we were primarily concerned with the
introduction of stereotypic knowledge of objects into
the conceptual analysis of text. By encoding
information in OP descriptions, we were able to increase
the interpretive power of the analyzer in order to
handle sentences of the sort discussed earlier.

What follows is a brief description of the seven Object
Primitives. A more thorough discussion can be found in
[(5]. For those unfamiliar with the primitive acts of
Schank's conceptual dependency theory, discussions of
wnich can be found in [10,11].

The Object Primitive CONNECTOR is used to indicate
classes of actions (described jin terms of Schank's
primitives acts) which are normally enabled by the
object being described. In particular, a CONNECTOR
enables actions between two spatial regions. For
example, a window and a door are both CONNECTORsS which
enable motion (PTRANS) of objects through them when they

are open. In addition, a window is a CONNECTOR which
enables the action ATTEND eyes (see) or MTRANS
(acquisition of information) by the instrumental action
ATTEND eyes. These actions are enabled regardless of
whether the window is open or closed. That i1s, one can
see through a window, and therefore read or observe
things on the other 3ide, even when the window is
closed. In the examples discussed above, the open
bottle is given a CONNECTOR description. This will be

discussed further later.

A SEPARATOR disenables a transfer between two
regions. A closed door
SEPARATORs which ‘disenable
spatial regions they adjoin. In addition, a closed door
is a SEPARATOR which disenables the acts MTRANS by
ATTEND eyes (unless the door is transparent) or ears.
That is, one {3 normally prevented from seeing or
hearing through a closed door. Similarly, a closed
window is a SEPARATOR which disenables MTRANS with
instrument ATTEND ears, although, as mentioned adove,
one can still see through a closed window to the other
side. A closed bottle is another example of an object
with a SEPARATOR description. :

spatial
and a closed window are both
the aotion Dbetween the

It should be clear by now that objects described using
Object Primitives are not generally described by a
single primitive. In fact, not one but several sets of

primitive descriptjons may be required. This is
illustrated above by the combination of CONNECTOR and
SEPARATOR descriptions required for a closed window,
wnile a somewhat different set is required for an open

window. Thesa sets of descriptions fora a small set of
"states" which the object may be in, each state
corresponding to a set of inferences and associations

approriate to the object in that condition.

A SOURCE description indicates that a aajor function of
the object desacribed is to provide the user of that
object with some other object. Thus a faucet is a
SOURCE of water, a wine bottle is a SOURCE of wine, and
a lamp is a SOURCE of the phenomenon called light.
SOURCEs often require some sort of activation. Faucets
must be turned on, wins bottles must Dbe opened, and
lasps are either turned on or lit depending on whether
or not they are electric.

The Object Primitive CONSUMER is used to describe
objects whose primary function is to consume other
objects. A trash can is a CONSUMER of waste paper, a
drain 1is a CONSUMER of 1liquids, and a mailbox is a
CONSUMER of mail. Some objects are both SOURCEs and
CONSUMERs. A pipe i3 a CONSUMER of tobacco and a SOURCE
of smoke. An ice cube tray is a CONSUMER of water and a
SOURCE of ice cubes.

Many objects can be dsscribed in part by relationships
that they assuze with some other objects. These
relations are described using the Object Primitive
RELATIONAL. Containers, such as bottles, rooms, cars,
etc., have as part of their descriptions a contajnment
relation, which may specify defaults for the typs of
object contained. Objects, such as tables and chairs,
which are commonly used to support other objects will be
described with a support relation.

Objects such as buildings, cars, airplanes,
etc., are all things which can contain people. As such,
they are often distinguished by the activities which
people in those places engage in. One important way of
encoding those activities is by referring to the scripts
which describe them. The Object Primitive SETTING is
used to capture the associations between a place and any
seript-like activities that normally occur there, It
can also be used to jndicate other, related SETTINGs
which the object may be a part of. For example, a
dining car has a SETTING description with a link both to
the restaurant script and to the SETTING for passenger
train. This information is important for the
establisnment of relevant contexts, giving access to
many domain specific expectations which will
subsequently be available to guide processing bvoth
during conceptual analysis of lexical input and when
making inferences at higher levels of cognitive
processing.

stores,

The final Object Primitive,
cnaracterize objects wnhich have recognizable, and
separable, subparts. ~ Trains, hi-fl systeas, and
kitchens, all evoke images of objects characterizable by
describing their subparts, and the way that those
subparts relate to form the whole. The Object Primitive
GESTALT is used to capture this type of description.

GESTALT, s used to

Using this set of primitives as the foundation for a
memory representation, we can construct a mors general
bi-directional associative memory by introducing some
associative links axternal to object primitive
decompositions. For example, the conceptual description
of a wine dottle will include a SOURCZ description for a
bottle where the SOURCE output is specified as wine.
This amounts to an associative link from the concept of
a wine pottle to the concept of wine. But how can we
construct an associative link from wine back to wine
bottles? Wine doss not have "an object primitive
decomposition wnich involves wine bottles, so we amust

54

resort to some construction wnich is external to object
primitive decompositions.

Four associative links have been proposed (5], sach of
winich points to a particular object primitive
description. For the problem of wine and wine bottles,
an associative OUTPUTFROM link is directed from wine to
the SOURCE description of a wine bottle. This external
1ink provides us with an associative link from wine to
wine bottles.

IHE PRQGRAM

I will now describe the processing of two sentences very
similar to those discussed earlier. The coamputer
program (OPUS) which performs the following analyses was
developed using a conceptual anal yzer written dy Larry
Birnbaum (1). OPUS was then extended to include a
capacity for setting up and firing "demons* or
vtriggers” as they are called in KAL {3l. The
functioning of these demons will be illustrated below.

3.

3.1 THE INITIAL ANALYSIS

In the processing of the sentence "John opened the
pottls so he could pour the wine," the phrase "John

opened the bottle,” is analyzed to produce the following
representation:

®John® <z> #DO*
#hottle® ﬂ

7HUMO <a> PTRANS <~ 7084 <-{:

result
CONNECTOR
ENABLES
> %

< (INSIDE SELF)
(or)
> (INSIDE SELF)
7HUMO <=> PTRANS <~ ?0BJ <-{:
< 7Y
(or)
> ?0BJ®
2HUMO <z> ATTEND <~ ?SENSE <7{:
<
¢ (wnere ?08J is inside SELF)

Here SELF refers to the object being described (the
pottle) and ?--- indicates an unfilled slot. “®John®
here stands for the internal memory representation for a
person with the name John. Memory tokens for John and
the bottle are constructed by a general demon which 1s
triggered during conceptual analysis whenever a PP (the
internal representation for an object) is introduced.
OP descriptions are attached to each object token.

This diagra:m represents the assertion that Jonn did
something which caused the bottle to assume a state
where its CONNECTOR description applied. The CONNECTOR
description indicates that something can be removed from
the bottle, put into the bdottle, or its contents can be
smelled, looked at, or generally examined by some sense
sodality. Tnis CONNECTOR description is not part of the
definition of the word 'open’. It is specific knowledge
that people have about what it means to say that a
pottle is open.

in arriving at the above representation, the program
gust retrieve from memory this OP description of what it

means for a bottle to bde open. This information |is
stored Deneath its prototype for bottles. Presumably,
there 1is also soript-like information about the

different methods for opening bottles, the different
types of caps (corxs, twist-off, ...), and which method
is appropriate for which cap. However, for the purpose
of understanding a text which does not refer to 3
specific type of bottle, cap, or opening procedurs, what
is important is the information about how the bottle can

then be wused once it is opened. This is the kind of
knowledge that Object Primitives were designed to
capture,

When the analyzer dbuilds the state description of the
bottle, a general demon associated with new state
descriptions is triggered. This demon i3 responsible
for updating memory by adding the new state information
to the token in the ACTOR slot of the state description.
Thus the bottle token is updated to include the given
CONNECTOR description. For the purposes of this
program, the bottle is then considered to be an "open"
bottle. A second function of this demon is to set up
explicit expectations for future actions based on the
new information. In this case, templates for three
actions the program might expect to see described can be

constructed from the three partially specified
conceptual izations shown above in the CONNECTOR
description of the open bottle, These templates are
attached to the state description as possible

consequences of that state, for use when attempting
infer the causal connections between events.

to

3.2 CONCEPT DRIVEN INFERENCES

The phrase "so he could pour the wine." is analyzed as

JH enable > X
%John® <f> PTRANS <~ Swine® (-{:
< (INSIDE ?CONTAINER)

Wnen this representation is bujlt by the analyzer, we do
not know that the the wine being poured came from the
previously mentioned bottle., This inference is made in
the program by a slot-filling demon called the
CONTAINER-FINDER, attached to the primitive act PTRANS,
The demon, triggered when a PTRANS from inside an
unspecified container is built, looks on the list of
active tokens (a part of short term memory) for any
containers that might be expected to contain the
substance moved, in this case wine. This 1is done by
applying two tests to the objects in short term memory.
The first, the DEFAULT-CONTAINMENT test, looks for
objects described by the RELATIONAL primitive,
indicating that they are containers (link =z INSIDE) with

default object contained being wine. The second, the
COMMON~SOURCE test, looks for known SOURCEs of wine by
following the associative OUTPUTFROM link from wine. If
either of these tests succeed, then the object found 1is

inferred to be the container poured from.

At different times, either the DEFAULT-CONTAINMENT test

or the COMMON-SOURCE test may be necessary in order to
establish probable containment. For example, it is
reasonable to expect a vase to contain water since the

RELATIONAL description of a vase has default containment
slots for water and flowers. But we do not always
expect water to come from vases since there is no
OUTPUTFROM 1link from water to a SOURCE description of a
vase. If we heard "Water spilled when John bumped the
vase,"” containment would be established by the
DEFAULT-CONTAINMENT test. Associative links are not
always bi-directional (vase ---> water, but water -/->
vase) and we need separate mechanisms to trace links
with different orientations. In our wine example, the
COMMON-SOURCE test 1is responsible for establishing
containment, since wine is known to be OUTPUTFROM
pottles but bottles are not always assumed to hold wine.

Another jinference made during the initial analysis finds
the contents of the bottle mentioned in the first clause
of the sentence., This expectation was set up by a demon

called the CONTENTS-FINDER when the description of the
open pbottle, a SOURCE with unspecified output, was
built. The demon causes a search of STM for an object

which 2ould be QUTPUT-FROM a bottle, and the token for

55

this particular bottle is then marked as being a SOURCE
of that object. The description of this particular
bottle as a SOURCE of wine is equivalent, in Object
Primitive terms, to saying that the bottle is a wine
bottle.

3.3 CAUsAL VERIFICATION

Once the requests trying. to fill slots not filled during
the initial analysis have been considered, the process
which attempts to find causal connections between
conceptual izations is activated. In this particular
case, the analyzer has already indicated that the
appropriate causal link is enablement. In general,
however, the lexical information which caused the
analyzer to build this causal link is only an indication
that some enabling relation exists between the two
actions (opening the bottle and pouring the wine). In
fact, a long causal cnain may be required to connect the
two acts, with an enablement link being only one link in

that chain. Furthermore, one cannot always rely on the
text to indicate where causal relationsnips exist. The
sentence "John opened the bottle and poured the wine."

must ultimately be interpreted as virtually synonymous
with (1) above.

The causal verification process first looks for a match
between the conceptual representation of the enabled
action (pouring the wine), and one of the potentially
enabled acts derived earlier from the OP description of
the opened oottle. In this exanple, a match is
immediately found between the action of pouring from the
bottle and the expected action generated from the
CONNECTOR description of the open bottle (PTRANS FROM
(INSIDE PART SELE)). Other Object Primitives may also
lead to expectations for actions, as we snall see later.

Wwhen a mateh §is found, further conceptual checks are
made on the enabled act to ensure that the action
described "makes sense" with the particular objects
currently filling the slots in tnat acts description.
Wnen the match 1s based on expectations derived from the
CONNECTOR description of a container, the check is a
"contajner/contents check," which atteampts to ensure
that the object found in the container may reasonably be
expected to be found there. The sentence "John opened
the bottle so0 he could pull out the elephant", is
pecul iar because we no associations exist which would
lead us to expect that elephants are ever found in
bottles. The strangeness of this sentence can only be
explained by the application of stereotypic Knowledge

about what we expect and don't expect to find inside a
bottle.
The container/contents check i3 similar to the test

described above in connection with the CONTAINER-FINDER
demon. That is, the bottle i3 checked by both the
DEFAULT-CONTAINMENT test and the COMMON-SQURCE test for

known links relating wine and botles. When this check
succeeds, the enable link has been verified by matching
an expected action, and Dby checking restrictions on
related objects appearing inthe slots of that action.
The two CD acts that matched are then mergzed.

The merging process accomplishes several things. First,
it completes the linking of the causal chain between the
avents described in the sentence. Second, it causes the

£111ing of empty slots appearing in either the enabled
act or in the enabling act, wherever one left a slot
unspecified, and the other had that slot filled. These
newly filled slots can propagate back along the causal
chain, as we shall see in the example of the next
section.

3.4 CAUSAL CHAIN CONSTRUCTION
In processing the sentence

(4) John turned on the faucet so he could drink.

the causal chain cannot be built by a direct match with
an expected event. Additional inferences must be made
to complete the chain between the actions described in
the sentence, The representation produced by the
conceptual analyzer for "John turned on the faucet," is

#John® LDel]

<z>

ﬂresul t
#*faucet® (SOURCE with OUTPUT = *water?®)
As with the bdottle in the previous example, the
description of the faucet as an active SOURCE of water
is Dbased on information found beneath the prototype for
faucet, describing the "on" state for that object. The
principle expectation for SOURCE objects is that the
person who "turned on" the SOURCE object wants to take
control of (and ultimately make use of) whatever it is
that is output from that SOURCE. In CD, this ({s
expressed by a template for an ATRANS (abstract
transfer) of the output object, in this case, water. An
important side effect of the construction of this
expectation is that a token for some water (s created,
which can be used by a slot-filling inference later.

The representation for "he could drink® 1is partially
described by an INGEST with an unspecified liquid in the
OBJECT slot. A special request to look for the missing
liquid is set up by a demon on the act INGEST, similar
to the one on the PTRANS in the previous example. This

request finds the token for water placed in the short
term memory when the expectation that someone would
ATRANS control of some water was generated.
#faycet? j:? (SQURCE with OUTPUT = %water#)
[l
" (possible enabled action)
n
n > 7HUMO
?HUMO <a3> ATRANS <~ ®vwater?® <-{:
<
The causal chain completion that occurs for this
sentence is somewhat more complicated than it was for
the previous case, As we have seen, the only
expectation set up by the SOURCE description of the

faucet was for an ATRANS of water from the faucet.

However, the action that is described here is an INGEST
with instrumental PTRANS. When the chain connector
fajls to find a match between the ATRANS and either the

INGEST or its instrumental PTRANS, infersnce procedures
are called to zenerate any obvicus intermediate states
that mignt connect these two acts.

The first inference rule that 1is applied is the
resultative inference (3] that an ATRANS of an object TO
someone results in a state wnere the object is possessed
by (POSS-BY) that person. Once this state has been
generated, it is matched against the INGEST in the same
way the ATRANS was. Wnen this match fails, no further
forward inferences are generated, since possession of
water can lead to a wide range of new actions, no one of
which i3 strongly expected.

The vackward c¢haining inferencer 13 then called to
generate any known preconditions for the act INGEST.
The primary precondition (causative 1inference) for
drinking is that the person doing the drinking has the
liquid which he or she is about to drink. This inferred
enadling state is then found to match the state (someone
possesses water) inferred from the expected ATRANS., The
match completes the causal chain, causing the merging of

56

the matched concepts. In this case, the mergzing process

causes the program to infer that it was probapbly John
who took (ATRANSed) the water from the faucet, in
addition to turning it on., Had the sentence read "John

turned on the faucet so Mary could drink.", the prograa
would infer that Mary took the water from the faucet.

#faucet® (SOURCE with OUTPUT = Swater®)
enable
7HUMO <> ATRANS <=« %water® TQ ?7HUMO
result
S*water® (POSS=-BY 7HUMO)

match?
yes...infer ?HUMO =z *John*

r—¥vater?t
backward
inference enable

L ~~%John® <¥> INGEST <- ?LIQUID

Tinst

<3> PTRANS <~ ?LIQUID

(POSS-BY %John?)

*Jonnt

One should note here that tne additional inferences used
to c¢omplete the causal c¢hain were very dbasic. The
primary connections came directly from object-specific

expectations derived from the Object Primitive
descriptions of the objects involved.
4. CONCLUSIONS

It is important to understand how OPUS differs from
previous inference strategies in natural language
processing. To emphasize the original coatributions of
OPUS we will compare it to Rieger's early work on
inference and causal chain construction. Since Rieger's
research 1is closely related to OPUS, a comparison of
this system to Rieger's program will jllustrate which
aspects of OPUS are novel, and which aspects have been
inherited.

There is a great deal of similarity between the types of
inferences used in OPUS and those used by Rieger in nis
description of MEMORY (8], The ocausative and
resultative inferences used to complete the causal chain
in our last example came directly from that work. In

addition, the demons used by OPUS are similar in flavor
to the forward inferences and specification
(slot-filling) inferences described by Rieger.

Expectations are explicitly represented heres as they
wers there, allowing them to be used in more than one
way, 83 in the case where water is inferred to be the
INGESTed 1liquid solely from its presence in a previous
expectation.

There are, however, two ways in which OPUS departs froa
the inference strategies of MEMORY in significant ways.
(1) On one the level of computer implementation there is
a reorganization of process control in OPUS, and (2) on
a theoretical 1level OPUS exploits an additional
representational system which allows infersnce
generation to be more strongly directed and controlled.

In terms of implementation, oPUS integrates the
processes of conceptual analysis and aemory-based
inference processing. By using demons, inferences can
be made during oconceptual analysis, as the conceptual
memory representations are generated. This eliminates

much of the nesed for an inference discrimination
procedure acting on completely pre-analyzed
congeptualizations produced by a separate program
module. In MEMORY, the processes of conceptual analysis

and inference generation were sharply modularizea for
reasons which were more pragmatic than theoretical.
Enough 1is known about the interactions of analysis and
inference at this time for us to approach the two as

concurrent processes which share control and contribute
to each other in a very dynamic manner., Ideas from «RL
{3] were instrumental in designing an integration of
previously separate progessing modules.

On a more theoretical level, the inference processes
used for causal chain completion in OPUS are more highly
constrained than was possible in Rieger's system. In
MEMORY, all possible inferences were made for each new
conceptualjzation which was input to the program.
Initially, input consisted of concepts coming from the
parser. MEMORY then attempted to make inferences from
the conceptualizations which it {tself nhad produced,
repeating this cycle untjil no new inferences could be
generated. Causal chains were connected when matches
were found between inferred concepts and concepts
already stored in its memory. However, the inference
mechanisms used were in no way directed specifically to
the task of making connections between concepts found in
its jnput text. Tnis lead to a combinatorial explosion
in the number of inferences made from each new input.

In OPUS, forward expectations are based on specific
associations from the objects mentioned, and only when
the objects in the text are described in a manner that
indicates they are being used functionally. In
addition, no more than one or two levels of forward or
backward inferences are made before the procedure is
exhausted. The system stops once a match is made or it
runs out of highly probable inferences to make. Thus,
there is no chance for the kinds of combinatorial
explosion Rieger experienced. By strengthening the
representation, and exploiting an integrated processing

strategy, the combinatorial explosion problem can be
eliminated.

OPUS makes use of a well structured set of memory
associations for objects, the Object Primitives, to
encode information which can be used in a variety of
Rieger's Zeneral inference classes. Because this
information is directly assocjated with aemory
representations for the objects, rather than being
embodied in disconnected inference rules elsewhere,
appropriate inferences for the objects mentioned can be

found directly. By using this extended representational
system, we can begin to examine the kinds of associative
memory required to produce what appeared from Rieger's
model to be the "tremendous amount of ‘hidden’
computation" necessary for the processing of any natural
language text.

57

0l

(2]

(3]

(4]

(5]

(6]

(7}

(8}

[91

(10]

(1]

REFERENCES

Birnbaum, L., and Selfridge M. (1978). On
Conceptual Analysis. (unpublisnhed) Yale
University, New Haven, CT.

Bobrow, D. G., Kaplan, R. M., Kay, M., Norman,
D. A., Thompson, H., and Winograd, T. (1977).
GUS, a frame driven dialog system. Artificlal
Intellizence, Vol. 8, No. 1.

Bobrow, D. G., . and Winograd, T. {1977). An
overview of KRL, a knowledge representation
language. Cognitive Saience 1, no. 1

Charniak, E. (1972). Toward a model of childrens
story comprehension. AITR-266, Artificial

Intelligence Laboratory, MIT, Cambridge, MA.

Lehnert, W. G. (1978).
objects in aemory.
Dept. of Computer Science,
Haven, CT.

Representing physical
Technical Report #131.
Yale University, New

Minsky, M. (1975). A framework for representing
knowledge. In wWinston, P. H., ed., The Psychology
of Computar VYision, McGraw-Hill, New York, NY.

Norman, D. A., and Rumelhart, D. E., and the LNR
Research Group (1975) Explorations in Cognition.

W. H. Freeman and Co., San Fransisco.

Rieger, C. (1975). Conceptual memory. In

R. C. Schank, ed., Songeptual Information
Processing. North Holland, Amsterdam.
Riesbeck, C. and Schank, R, C. (1976).
Comprehension by computer: expectation-based

analysis of sentences in context. Technical Report
#78. Dept. of Computer Science, Yale University,
New Haven, CT.

Schank, R. C., (1975).
Theory. in Schank,
Information Processing.

Conceptual Dependency

R. C.(ed.), Conceptual
North Holland, Amsterdam.

Schank, R. C. and Abelson, R. P. (1977). Scripts,

Plans, Goals, and Understanding. Lawrence Erlbaum
Press, Hillsdale, NJ.

