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1 Motivation and Objectives

Cross-lingual word representations offer an elegant
and language-pair independent way to represent
content across different languages. They enable
us to reason about word meaning in multilingual
contexts and serve as an integral source of knowl-
edge for multilingual applications such as machine
translation (Artetxe et al., 2018d; Qi et al., 2018;
Lample et al., 2018b) or multilingual search and
question answering (Vulić and Moens, 2015). In
addition, they are a key facilitator of cross-lingual
transfer and joint multilingual training, offering
support to NLP applications in a large spectrum
of languages (Søgaard et al., 2015; Ammar et al.,
2016a). While NLP is increasingly more embedded
into a variety of products related to, e.g., translation,
conversational or search tasks, resources such as an-
notated training data are still lacking or insufficient
to induce satisfying models for many resource-poor
languages. There are often no trained linguistic
annotators for these languages, and markets may
be too small or premature to invest in such train-
ing. This is a major challenge, but cross-lingual
modelling and transfer can help by exploiting ob-
servable correlations between major languages and
low-resource languages.

Recent work has already verified the usefulness
of cross-lingual word representations in a wide va-
riety of downstream tasks, and has provided exten-
sive model classifications in several survey papers
(Upadhyay et al., 2016; Ruder et al., 2018b). They
cluster supervised cross-lingual word representa-
tion models according to the bilingual supervision
required to induce such shared cross-lingual se-
mantic spaces, covering models based on word
alignments and readily available bilingual dictio-
naries (Mikolov et al., 2013; Smith et al., 2017),
sentence-aligned parallel data (Gouws et al., 2015),
document-aligned data (Søgaard et al., 2015; Vulić

and Moens, 2016), or even image tags and cap-
tions (Rotman et al., 2018). The current trend (or
rather ‘obsession’) in cross-lingual word embed-
ding learning, however, concerns models that re-
quire a tiny amount of supervision (i.e., weakly-
supervised alignment models that require only
dozens of word translation pairs) or no supervision
at all (fully unsupervised models).1 Such resource-
light unsupervised methods are based on the as-
sumption that monolingual word vector spaces are
approximately isomorphic (Conneau et al., 2018a).
Therefore, they require only monolingual data and
hold promise to enable cross-lingual NLP model-
ing in the absence of any bilingual resources. As
a consequence, they offer support to a wider ar-
ray of language pairs than supervised models, and
promise to deliver language technology to truly
resource-poor languages and dialects. However,
due to the strong assumption on the similarity of
space topology, these models often diverge to non-
optimal solutions, and their robustness is one of
the crucial research questions at present (Søgaard
et al., 2018).

In this tutorial, we provide a comprehensive
survey of the exciting recent work on cutting-
edge weakly-supervised and unsupervised cross-
lingual word representations. After providing
a brief history of supervised cross-lingual word
representations, we focus on: 1) how to induce
weakly-supervised and unsupervised cross-lingual
word representations in truly resource-poor settings
where bilingual supervision cannot be guaranteed;
2) critical examinations of different training condi-
tions and requirements under which unsupervised
algorithms can and cannot work effectively; 3)
more robust methods for distant language pairs that

1Learning unsupervised cross-lingual models has indeed
taken the field by storm: there are 10+ papers on this very
topic published in EMNLP 2018 proceedings alone, with even
more papers available on arXiv.
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can mitigate instability issues and low performance
for distant language pairs; 4) how to comprehen-
sively evaluate such representations; and 5) diverse
applications that benefit from cross-lingual word
representations (e.g., MT, dialogue, cross-lingual
sequence labeling and structured prediction appli-
cations, cross-lingual IR).

We will introduce researchers to state-of-the-
art methods for constructing resource-light cross-
lingual word representations and discuss their ap-
plicability in a broad range of downstream NLP
applications, covering bilingual lexicon induction,
machine translation (both neural and phrase-based),
dialogue, and information retrieval tasks. We will
deliver a detailed survey of the current cutting-
edge methods, discuss best training and evaluation
practices and use-cases, and provide links to pub-
licly available implementations, datasets, and pre-
trained models and word embedding collections.2

2 Tutorial Overview

Part I: Introduction We first present an
overview of cross-lingual NLP research, situating
the current work on unsupervised cross-lingual rep-
resentation learning, and motivating the need for
multilingual training and cross-lingual transfer for
resource-poor languages with weak supervision or
no bilingual supervision at all. We also present key
downstream applications for cross-lingual word
representations, such as bilingual lexicon induc-
tion and unsupervised MT (Lample et al., 2018b).
These tasks will be used throughout the tutorial to
analyze the performance of different methods.

Almost all of the work on unsupervised cross-
lingual representation learning fall into the cate-
gory of mapping-based approaches (Ruder et al.,
2018b). Such approaches to cross-lingual learn-
ing learn mapping functions between pretrained
monolingual word embedding spaces; this is in
contrast with approaches based on joint learning,
data augmentation, or grounding. We show that
such approaches to cross-lingual learning, while
so far unexplored, can also be unsupervised. We
will put focus on a standardized two-step mapping-
based framework (Artetxe et al., 2018a) that gener-
alizes all mapping-based approaches, and analyze
the importance of each component of the frame-
work. The two-step framework decomposes unsu-
pervised cross-lingual representation learning into

2Slides of the tutorial are available at https://
tinyurl.com/xlingual.

initial seed induction and iterative supervised boot-
strapping.

Part II: Unsupervised and Weakly Supervised
Alignment as Initial Seed Induction + Iterative
Supervised Alignment We will analyze the im-
pact of seed bilingual lexicon size and quality (e.g.,
cognates, named entities, or shared numerals) on
the quality of weakly supervised cross-lingual word
representations. Unsupervised and weakly super-
vised approaches can be directly compared by com-
pared the quality of the learned dictionary seeds
(Parts III and IV) to using cognates, named entities,
etc.

Part III: Adversarial Seed Induction The un-
derlying modus operandi of all adversarial meth-
ods will be demonstrated on the example of the
MUSE architecture (Conneau et al., 2018a); this
is by far the most cited adversarial seed induction
method. We will then present similar adversarial
methods and discuss their modeling choices, imple-
mentation tricks, and various trade-offs. We will
also present our own direct comparisons of various
GAN algorithms (e.g., WGAN, GP-WGAN, and
CT-GAN) within the MUSE framework.

Part IV: Non-Adversarial Seed Induction In
the next part, we will present several non-
adversarial alternatives for unsupervised seed in-
duction based on convex relaxations, point set reg-
istration methods, and evolutionary strategies. We
will again dissect all components of the unsuper-
vised methods and point to minor, but important
implementation tricks and hyper-parameters that of-
ten slip under the radar (e.g., vocabulary size, post-
mapping refinements, preprocessing steps such as
mean centering and unit length normalisation, se-
lected semantic similarity measures, hubness re-
duction mechanisms). We will also introduce the
newest research that extends these methods from
bilingual settings to multilingual settings (with
more than 2 languages represented in the same
shared space).

Part V: Stochastic Dictionary Induction im-
proves Iterative Alignment We will then dis-
cuss stochastic approaches to improve the iterative
refinement of the dictionary. Stochastic dictionary
induction was introduced in Artetxe et al. (2018b),
and we show that this bootstrapping technique im-
proves performance and robustness, and is the main
reason Artetxe et al. (2018b) achieves state-of-the-

https://tinyurl.com/xlingual
https://tinyurl.com/xlingual
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art performance for many language pairs. This
part of our tutorial explores variation of stochastic
dictionary induction.

Part VI: Robustness and (In)stability Unsu-
pervised methods rely on the assumption that mono-
lingual word vector spaces are approximately iso-
morphic and there exists a linear mapping between
the two spaces. This assumption is not true for
many cases, which leads to degenerate or subopti-
mal solutions. The efficacy and stability of unsu-
pervised methods relies on multiple factors such
as: monolingual representation models, domain
(dis)similarity, language pair proximity and other
typological properties, chosen hyper-parameters,
etc. In this part, we will analyze the current
problems with robustness and stability of weakly-
supervised and unsupervised alignment methods
in relation to all these factors, and introduce latest
solutions to alleviate these problems. We will pro-
vide advice on how to approach weakly-supervised
and unsupervised training based on a series of em-
pirical observations available in recent literature
(Søgaard et al., 2018; Hartmann et al., 2018). We
will also discuss the (im)possibility of learning non-
linear mappings using either non-linear generators
or locally linear maps (Nakashole, 2018).

We will conclude by providing publicly avail-
able software packages and implementations, as
well as available training datasets and evaluation
protocols and systems. We will also list cur-
rent state-of-the-art results on standard evaluation
datasets, and sketch future research paths.

3 Outline

Part I: Introduction: Motivating and situating
cross-lingual word representation learning; presen-
tation of mapping-based approaches (30 minutes)

• Current challenges in cross-lingual NLP. NLP
for resource-poor languages.

• Bilingual data and cross-lingual supervision.
Why do we need weakly supervised and un-
supervised cross-lingual representation learn-
ing?

• Bilingual supervision and typology of super-
vised cross-lingual representation models.

• Learning with word-level supervision:
mapping-based approaches.

Part II: Unsupervised and Weakly Supervised
Alignment as Initial Seed Induction + Iterative
Supervised Alignment (30 minutes)

• A general framework for mapping-based ap-
proaches.

• Importance of seed bilingual lexicons.

• Learning alignment with weak supervision:
small seed lexicons, shared words, numerals.

Part III: Adversarial Seed Induction (30 min-
utes)

• Fully unsupervised models using adversarial
training; MUSE and related approaches.

Part IV: Non-Adversarial Seed Induction (25
minutes)

• Fully unsupervised models using optimal
transport, Wasserstein distance, Sinkhorn dis-
tance, and other alternatives.

• Importance of minor technical “tricks”: pre-
mapping and post-mapping steps: length nor-
malisation, mean centering, whitening and de-
whitening, making the methods more robust

Part V: Stochastic Dictionary Induction im-
proves Iterative Alignment (15 minutes)

• An overview of methods to improve iterative
refinement of the dictionary.

Part VI: Robustness and (In)stability (35 min-
utes)

• Impact of language similarity and typological
properties.

• Impact of chosen monolingual models, do-
main similarity, and hyper-parameters.

• Convergence criteria, possible and impossible
setups for unsupervised methods.

• How to build more robust and more stable
unsupervised methods?

Discussion and Final Remarks (15 minutes)

• Towards cross-lingual contextualised word
embeddings.

• Publicly available software and training data.

• Publicly available evaluation systems.

• Concluding remarks, remaining challenges,
future work, a short discussion.
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4 Tutorial Breadth

Based on the representative set of papers listed in
the selected bibliography, we anticipate that the
75%-80% of the tutorial will cover other people’s
work, while the rest concerns the work where at
least one of the three presenters has been actively
involved in. Note that the three presenters have
been the main authors of the recent book on cross-
lingual word representations which aimed at mak-
ing a systematic overview of the field.

5 Prerequisites

• Machine Learning: Basic knowledge of com-
mon neural network components like word
embeddings, RNNs, CNNs, denoising autoen-
coders, and encoder-decoder models.

• Computational Linguistics: Familiarity with
standard NLP tasks such as machine transla-
tion.

6 Presenters
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7 Other Important Information

Previous Tutorial Editions The EMNLP 2017 tu-
torial on cross-lingual word embeddings presented
much of the earlier work from 2013-2016 that re-
quire large amounts of parallel data (i.e., supervised
cross-lingual representations). In contrast, this tu-
torial focuses on cutting-edge unsupervised and
weakly supervised approaches from the period of
2016-2018, which will be highly relevant to the
audience, and will provide a complete overview of
the current cutting-edge research in the field.
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between lexico-semantic relations with the special-
ization tensor model. In Proceedings of NAACL-
HLT, pages 181–187.

http://proceedings.mlr.press/v84/alvarez-melis18a.html
http://aclweb.org/anthology/Q16-1031
http://aclweb.org/anthology/Q16-1031
http://arxiv.org/abs/1602.01925
http://aclweb.org/anthology/D16-1250
http://aclweb.org/anthology/D16-1250
http://aclweb.org/anthology/P17-1042
http://aclweb.org/anthology/P17-1042
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16935
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16935
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16935
http://aclweb.org/anthology/P18-1073
http://aclweb.org/anthology/P18-1073
http://aclweb.org/anthology/P18-1073
http://aclweb.org/anthology/D18-1399
http://arxiv.org/abs/1710.11041
http://arxiv.org/abs/1710.11041
http://arxiv.org/pdf/1608.02996.pdf
http://arxiv.org/pdf/1608.02996.pdf
http://arxiv.org/pdf/1608.02996.pdf
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
https://doi.org/10.18653/v1/P17-2037
https://doi.org/10.18653/v1/P17-2037
http://www.aclweb.org/anthology/S17-2002
http://www.aclweb.org/anthology/S17-2002
http://www.aclweb.org/anthology/S17-2002
http://arxiv.org/abs/1810.03552
http://arxiv.org/abs/1810.03552
http://aclweb.org/anthology/D18-1024
http://aclweb.org/anthology/D18-1024
http://aclweb.org/anthology/D18-1025
http://aclweb.org/anthology/D18-1025
http://arxiv.org/abs/1710.04087
http://aclweb.org/anthology/D18-1269
http://aclweb.org/anthology/D18-1269
http://arxiv.org/abs/1412.6568
http://arxiv.org/abs/1412.6568
http://aclweb.org/anthology/D18-1062
http://aclweb.org/anthology/D18-1062
http://aclweb.org/anthology/D18-1027
http://aclweb.org/anthology/D18-1027
http://aclweb.org/anthology/D18-1027
http://arxiv.org/abs/1811.00586
http://arxiv.org/abs/1811.00586
http://aclweb.org/anthology/P18-1141
http://aclweb.org/anthology/P18-1141
https://doi.org/10.18653/v1/K15-1012
https://doi.org/10.18653/v1/K15-1012
http://aclweb.org/anthology/D16-1136
http://aclweb.org/anthology/D16-1136
http://aclweb.org/anthology/D12-1001
http://aclweb.org/anthology/D12-1001
http://aclweb.org/anthology/N18-2029
http://aclweb.org/anthology/N18-2029
http://aclweb.org/anthology/N18-2029


36
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Ivan Vulić and Anna Korhonen. 2016. On the role of
seed lexicons in learning bilingual word embeddings.
In Proceedings of ACL, pages 247–257.

Ivan Vulic and Marie-Francine Moens. 2013. A study
on bootstrapping bilingual vector spaces from non-
parallel data (and nothing else). In Proceedings of
EMNLP, pages 1613–1624.
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