
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 117–122
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

117

OpenKiwi: An Open Source Framework for Quality Estimation
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Abstract

We introduce OpenKiwi, a PyTorch-based
open source framework for translation qual-
ity estimation. OpenKiwi supports training
and testing of word-level and sentence-level
quality estimation systems, implementing the
winning systems of the WMT 2015–18 qual-
ity estimation campaigns. We benchmark
OpenKiwi on two datasets from WMT 2018
(English-German SMT and NMT), yielding
state-of-the-art performance on the word-level
tasks and near state-of-the-art in the sentence-
level tasks.

1 Introduction

Quality estimation (QE) provides the missing
link between machine and human translation: its
goal is to evaluate a translation system’s quality
without access to reference translations (Specia
et al., 2018b). Among its potential usages are: in-
forming an end user about the reliability of auto-
matically translated content; deciding if a transla-
tion is ready for publishing or if it requires human
post-editing; and highlighting the words that need
to be post-edited.

While there has been tremendous progress in
QE in the last years (Martins et al., 2016, 2017;
Kim et al., 2017; Wang et al., 2018), the ability of
researchers to reproduce state-of-the-art systems
has been hampered by the fact that these are either
based on complex ensemble systems, complicated
architectures, or require not well-documented pre-
training and fine-tuning of some components. Ex-
isting open-source frameworks such as WCE-LIG
(Servan et al., 2015), QuEST++ (Specia et al.,
2015), Marmot (Logacheva et al., 2016), or Deep-
Quest (Ive et al., 2018), while helpful, are cur-
rently behind the recent best systems in WMT
QE shared tasks. To address the shortcoming

∗ Work done during an internship at Unbabel in 2018.

above, this paper presents OpenKiwi,1 a new open
source framework for QE that implements the best
QE systems from WMT 2015–18 shared tasks,
making it easy to combine and modify their key
components, while experimenting under the same
framework.

The main features of OpenKiwi are:

• Implementation of four QE systems: QUETCH
(Kreutzer et al., 2015), NUQE (Martins et al.,
2016, 2017), Predictor-Estimator (Kim et al.,
2017; Wang et al., 2018), and a stacked ensem-
ble with a linear system (Martins et al., 2016,
2017);

• Easy to use API: can be imported as a package
in other projects or run from the command line;

• Implementation in Python using PyTorch as the
deep learning framework;

• Ability to train new QE models on new data;

• Ability to run pre-trained QE models on data
from the WMT 2018 campaign;

• Easy to track and reproduce experiments
via YAML configuration files and (optionally)
MLflow;

• Open-source license (Affero GPL).

This project is hosted at https://github.
com/Unbabel/OpenKiwi. We welcome and
encourage contributions from the research com-
munity.2

2 Quality Estimation

The goal of word-level QE (Figure 1) is to as-
sign quality labels (OK or BAD) to each machine-
translated word, as well as to gaps between words

1https://unbabel.github.io/OpenKiwi.
2See https://unbabel.github.io/

OpenKiwi/contributing.html for instructions
for contributors.

https://github.com/Unbabel/OpenKiwi
https://github.com/Unbabel/OpenKiwi
https://unbabel.github.io/OpenKiwi
https://unbabel.github.io/OpenKiwi/contributing.html
https://unbabel.github.io/OpenKiwi/contributing.html
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Figure 1: Example from the WMT 2018 word-level QE training set. Shown are the English source sentence
(top), the German machine translated text (bottom), and its manual post-edition (middle). We show also the three
types of word-level quality tags: MT (or target) tags account for words that are replaced or deleted, gap tags
account for words that need to be inserted, and source tags indicate what are the source words that were omitted or
mistranslated. For this example, the HTER sentence-level score (number of edit operations to produce PE from MT
normalized by the length of PE) is 8/12 = 66.7%, corresponding to 4 insertions, 1 deletion, and 3 replacements
out of 12 reference words.

(to account for context that needs to be inserted),
and source words (to denote words in the origi-
nal sentence that have been mistranslated or omit-
ted in the target). In the last years, the most ac-
curate systems that have been developed for this
task combine linear and neural models (Kreutzer
et al., 2015; Martins et al., 2016), use automatic
post-editing as an intermediate step (Martins et al.,
2017), or develop specialized neural architectures
(Kim et al., 2017; Wang et al., 2018).

Sentence-level QE, on the other hand, aims to
predict the quality of the whole translated sen-
tence, for example based on the time it takes for
a human to post-edit it, or on how many edit oper-
ations are required to fix it, in terms of HTER (Hu-
man Translation Error Rate) (Specia et al., 2018b).
The most successful approaches to sentence-level
QE to date are based on conversions from word-
level predictions (Martins et al., 2017) or joint
training with multi-task learning (Kim et al., 2017;
Wang et al., 2018).

3 Implemented Systems

OpenKiwi implements four popular systems that
have been proposed in the last years, which we
now describe briefly.

QUETCH. The “QUality Estimation from
scraTCH” system (Kreutzer et al., 2015) is de-
signed as a multilayer perceptron with one hidden
layer, non-linear tanh activation functions and a
lookup-table layer mapping words to continuous
dense vectors. For each position in the MT, a
window of fixed size surrounding that position,

as well as a windowed representation of aligned
words from the source text, are concatenated as
model input.3 The output layer scores OK/BAD

probabilities for each word with a softmax
activation. The model is trained independently
to predict source tags, gap tags, and target tags.
QUETCH is a very simple model and does not
rely on any kind of external auxiliary data for
training, only the shared task datasets.

NuQE. OpenKiwi also implements the NeUral
Quality Estimation system proposed by Martins
et al. (2016). Its architecture consists of a lookup
layer containing embeddings for target words and
their source-aligned words, in the same fashion
as QUETCH. These embeddings are concatenated
and fed into two consecutive sets of two feed-
forward layers and a bi-directional GRU layer.
The output contains a softmax layer that produces
the final OK/BAD decisions. Like QUETCH, train-
ing is also carried independently for source tags,
gap tags, and target tags. NuQE is also a blackbox
system, meaning it is trained with the shared task
data only (i.e., no auxiliary parallel or roundtrip
data).

Predictor-Estimator. Our implementation fol-
lows closely the architecture proposed by Kim
et al. (2017), which consists of two modules:

• a predictor, which is trained to predict each to-
ken of the target sentence given the source and

3The alignments are provided by the shared task orga-
nizers, which are computed with fast align (Dyer et al.,
2013).
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the left and right context of the target sentence;

• an estimator, which takes features produced by
the predictor and uses them to classify each
word as OK or BAD.

Our predictor uses a bidirectional LSTM to en-
code the source, and two unidirectional LSTMs
processing the target in left-to-right (LSTM-L2R)
and right-to-left (LSTM-R2L) order. For each tar-
get token ti, the representations of its left and right
context are concatenated and used as query to an
attention module before a final softmax layer. It
is trained on the large parallel corpora provided as
additional data by the WMT shared task organiz-
ers. The estimator takes as input a sequence of
features: for each target token ti, the final layer
before the softmax (before processing ti), and the
concatenation of the i-th hidden state of LSTM-
L2R and LSTM-R2L (after processing ti). In ad-
dition, we train this system with a multi-task ar-
chitecture that allows us to predict sentence-level
HTER scores. Overall, this system is capable to
predict sentence-level scores and all word-level la-
bels (for MT words, gaps, and source words)—the
source word labels are produced by training a pre-
dictor in the reverse direction.

Stacked Ensemble. The systems above can be
ensembled by using a stacked architecture with a
feature-based linear system, as described by Mar-
tins et al. (2017). The features are the ones de-
scribed there, including lexical and part-of-speech
tags from words, their contexts, and their aligned
words and contexts, as well as syntactic features
and features provided by a language model (as
provided by the shared task organizers). This sys-
tem is only used to produce word-level labels for
MT words.

4 Design, Implementation and Usage

OpenKiwi is designed and implemented in a way
that allows new models to be easily added and run,
without requiring much concern about input data
processing and output generation and evaluation.
That means the focus can be almost exclusively
put in adding or changing a torch.nn.Module
based class. If new flags or options are required,
all that is needed is to add them to the CLI parsing
module.

Design. As a general architecture example, the
training pipeline follows these steps:

• Each input data, like source text and MT text,
is defined as a Field, which holds information
about how data should be tokenized, how the
inner vocabulary is built, how the mapping to
IDs is done, and how a list of samples is padded
into a tensor;

• A Dataset holds a set of input and out-
put fields, and builds minibatches of samples,
each containing their respective input and out-
put data;

• A training loop iterates over epochs and steps,
calling the model with each minibatch, com-
puting the loss, backpropagating, evaluating on
the validation set, and saving snapshots as re-
quested;

• By default, the best model is kept and predic-
tions on the validation set are saved as probabil-
ities.

The flow rarely needs to be changed for the QE
task, so all that is needed for quick experimenta-
tion is changing configuration parameters (check
the Usage part below) or the model class.

Implementation. OpenKiwi supports Python
3.5 and later. Since reproducibility is important,
it uses Poetry4 for deterministic dependency man-
agement. To decrease the risk of introducing
breaking changes with new code, a set of tests
are also implemented and currently provide a code
coverage close to 80%.

OpenKiwi offers support for tracking experi-
ments with MLflow,5 which allows comparing dif-
ferent runs and searching for specific metrics and
parameters.

Usage. Training an OpenKiwi model is as sim-
ple as running the following command:

$ python kiwi train --config
config.yml↪→

where config.yml is a configuration file with
training and model options.

OpenKiwi can also be installed as a
Python package by running pip install
openkiwi. In this case, the above command can
be switched by

$ kiwi train --config config.yml

4https://poetry.eustace.io/
5https://mlflow.org/

https://poetry.eustace.io/
https://mlflow.org/
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Figure 2: Interactive visualization of the system output. Words tagged as BAD as shown in red, and BAD gaps
are denoted as red underscores (“ ”). The Jupyter Notebook producing this output is available at https://
github.com/Unbabel/OpenKiwi/blob/master/demo/KiwiViz.ipynb.

If used inside another Python project, OpenKiwi
can be easily used like the following:

import kiwi

config = 'config.yml'
run_info = kiwi.train(config)

After training, predicting on new data can be
performed by simply calling

model = kiwi.load_model(
run_info.model_path

)
source = [

'the Sharpen tool sharpens '
'areas in an image .'

]
target = [

'der Schärfen-Werkezug '
'Bereiche in einem Bild '
'schärfer erscheint .'

]
examples = [{

'source': source,
'target': target

}]
out = model.predict(examples)

Figure 2 shows an example of QE predictions
using the framework.

5 Benchmark Experiments

Datasets. To benchmark OpenKiwi, we use the
following datasets from the WMT 2018 quality es-
timation shared task, all English-German (En-De):

• Two quality estimation datasets of sentence
triplets, each consisting of a source sentence

(SRC), its machine translation (MT) and a hu-
man post-edition (PE) of the machine transla-
tion: a larger dataset of 26,273 training and
1,000 development triplets, where the MT is
generated by a phrase-based statistical machine
translation (SMT); and a smaller dataset of
13,442 training and 1,000 development triplets,
where the MT is generated by a neural ma-
chine translation system (NMT). The data also
contains word-level quality labels and sentence-
level scores that are obtained from the post-
editions using TERCOM (Snover et al., 2006).

• A corpus of 526,368 artificially generated sen-
tence triplets, obtained by first cross-entropy fil-
tering a much larger monolingual corpus for in-
domain sentences, then using round-trip trans-
lation and a final stratified sampling step.

• A parallel dataset of 3,396,364 in-domain sen-
tences used for pre-training of the predictor-
estimator model.

Systems. In addition to the models that are part
of OpenKiwi, in the experiments below, we also
use Automatic Post-Editing (APE) adapted for QE
(APE-QE). APE-QE has been used by Martins
et al. (2017) as an intermediate step for qual-
ity estimation, where an APE system is trained
on the human post-edits and its outputs are used
as pseudo-post-editions to generate word-level
quality labels and sentence-level scores in the
same way that the original labels were created.
Since OpenKiwi’s focus is not on implementing
a sequence-to-sequence model, we used an exter-
nal software, OpenNMT-py (Klein et al., 2017), to
train two separate translation models:

• SRC → PE: trained first on the in-domain cor-
pus provided, then fine-tuned on the shared task
data.

https://github.com/Unbabel/OpenKiwi/blob/master/demo/KiwiViz.ipynb
https://github.com/Unbabel/OpenKiwi/blob/master/demo/KiwiViz.ipynb
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Model
En-De SMT En-De NMT

MT gaps source r ρ MT gaps source r ρ

QUETCH 39.90 17.10 36.10 48.32 51.31 29.18 13.26 28.91 42.84 49.59
NUQE 50.04 35.53 42.08 59.62 60.89 32.49 15.01 30.19 43.41 50.87
PRED-EST 57.29 43.68 33.02 70.95 74.49 39.25 21.54 29.52 50.18 55.66
APE-QE 55.12 47.04 51.11 58.01 60.58 37.60 21.78 34.46 35.23 38.88

ENSEMBLED 61.33 53.05 51.11 72.89 76.37 43.04 24.74 34.46 52.34 56.98
STACKED 62.40 – – – – 43.88 – – – –

Table 1: Benchmarking of the different models implemented in OpenKiwi on the WMT 2018 development set,
along with an ensembled system (ENSEMBLED) that averages the predictions of the NUQE, APE-QE, and PRED-
EST systems, as well as a stacked architecture (STACKED) which stacks their predictions into a linear feature-based
model, as described by Martins et al. (2017). For each system, we report the five official scores used in WMT
2018: word-level Fmult

1 for MT, gaps, and source tokens, and sentence-level Pearson’s r and Spearman’s ρ rank
correlations.

Model
En-De SMT En-De NMT

MT gaps source r ρ MT gaps source r ρ

deepQUEST 42.98 28.24 33.97 48.72 50.97 30.31 11.93 28.59 38.08 48.00
UNQE – – – 70.00 72.44 – – – 51.29 60.52
QE Brain 62.46 49.99 – 73.97 75.43 43.61 – – 50.12 60.49

OpenKiwi 62.70 52.14 48.88 71.08 72.70 44.77 22.89 36.53 46.72 58.51

Table 2: Final results on the WMT 2018 test set. The first three systems are the official WMT18-QE winners
(underlined): deepQUEST is the open source system developed by Ive et al. (2018), UNQE is the unpublished
system from Jiangxi Normal University, described by Specia et al. (2018a), and QE Brain is the system from
Alibaba described by Wang et al. (2018). Reported numbers for the OpenKiwi system correspond to best models
in the development set: the STACKED model for prediction of MT tags, and the ENSEMBLED model for the rest.

• MT → PE: trained on the concatenation of the
corpus of artificially created sentence triplets
and the shared task data oversampled by a factor
of 20.

These predictions are then combined in the ensem-
ble and stacked systems as explained below.

Experiments. We show benchmark numbers on
the two English-German WMT 2018 datasets. In
Table 1, we compare different configurations of
OpenKiwi on the development datasets. For the
single systems, we can see that the predictor-
estimator has the best performance, except for pre-
dicting the source and the gap word-level tags,
where APE-QE is superior. Overall, ensembled
versions of these systems perform the best, with a
stacked architecture being very effective for pre-
dicting word-level MT labels, confirming the find-
ings of Martins et al. (2017).

Finally, in Table 2, we report numbers on
the official test set. We compare OpenKiwi

against the best systems in WMT 2018 (Specia
et al., 2018a) and another existing open-source
tool, deepQuest (Ive et al., 2018). Overall,
OpenKiwi outperforms deepQuest for all word-
level and sentence-level tasks, and attains the best
results for all the word-level tasks.

6 Conclusions

We presented OpenKiwi, a new open source
framework for QE. OpenKiwi is implemented in
PyTorch and supports training of word-level and
sentence-level QE systems on new data. It out-
performs other open source toolkits on both word-
level and sentence-level, and yields new state-of-
the-art word-level QE results.

Since its release, OpenKiwi was adopted as the
baseline system for the WMT 2019 QE shared
task6, Moreover, all the winning systems of the
word-, sentence- and document-level tasks of the

6More specifically, the NuQE model: http://www.
statmt.org/wmt19/qe-task.html

http://www.statmt.org/wmt19/qe-task.html
http://www.statmt.org/wmt19/qe-task.html
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WMT 2019 QE shared task7 (Kepler et al., 2019)
used OpenKiwi as their building foundation.
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