SLATE: A Super-Lightweight Annotation Tool for Experts

Jonathan K. Kummerfeld
Computer Science & Engineering
University of Michigan
Ann Arbor, MI, USA
jkummerf@umich.edu

Abstract

Many annotation tools have been developed,
covering a wide variety of tasks and pro-
viding features like user management, pre-
processing, and automatic labeling. However,
all of these tools use Graphical User Inter-
faces, and often require substantial effort to
install and configure. This paper presents a
new annotation tool that is designed to fill the
niche of a lightweight interface for users with
a terminal-based workflow. SLATE supports
annotation at different scales (spans of char-
acters, tokens, and lines, or a document) and
of different types (free text, labels, and links),
with easily customisable keybindings, and uni-
code support. In a user study comparing with
other tools it was consistently the easiest to in-
stall and use. SLATE fills a need not met by
existing systems, and has already been used to
annotate two corpora, one of which involved
over 250 hours of annotation effort.

1 Introduction

Specialised text annotation software improves ef-
ficiency and consistency by constraining user ac-
tions and providing an effective interface. While
current annotation tools vary in the types of an-
notation supported and other features, they are all
built with direct manipulation via a Graphical User
Interface (GUI). This approach has the advantage
that it is easy for users who are not computer ex-
perts, but also shapes the design of tools to be-
come large, complex pieces of software that are
time-consuming to set up and difficult to modify.
We present a lightweight alternative that is not
intended to cover all use-cases, but rather fills
a specific niche: annotation in a terminal-based
workflow. This goal guided the design to differ
from prior systems in several ways. First, we use
a text-based interface that uses almost the entire
screen to display documents. This focuses atten-
tion on the data and means the interface can easily
scale to assist vision-impaired annotators. Second,

7

we minimise the time cost of installation by imple-
menting the entire system in Python using built-in
libraries. Third, we follow the Unix Tools Philos-
ophy (Raymond, 2003) to write programs that do
one thing well, with flat text formats. In our case,
(1) the tool only does annotation, not tokenisation,
automatic labeling, file management, etc, which
are covered by other tools, and (2) data is stored in
a format that both people and command line tools
like grep can easily read.

SLATE supports annotation of items that are
continuous spans of either characters, tokens,
lines, or documents. For all item types there are
three forms of annotation: labeling items with cat-
egories, writing free-text labels, or linking pairs
of items. Category labels are easily customisable,
with no limit on the total number and the option
to display a legend for reference. All keybindings
are customisable, and additional commands can be
defined with relatively little code. There is also an
adjudication mode in which disagreements are dis-
played and resolved.

To compare with other tools we conducted a
user study in which participants installed tools and
completed a verb tagging task in a 623 word doc-
ument. When using SLATE, participants finished
the task in 13 minutes on average, with more than
half spending 3 minutes or less on setup.

Two research projects have used SLATE for an-
notation: token-level classification of 25,624 to-
kens of cybercriminal web forum data (Portnoff
et al., 2017), and line-level linking of 77,563 mes-
sages of chat data (Kummerfeld et al., 2019).

2 System Description

Rather than specifying a task, such as named en-
tity recognition, SLATE is designed to flexibly sup-
port any annotation that can be formulated as one
of three annotation types: applying categorical la-
bels, writing free text, or linking portions of text.
These can be applied to items that are single docu-

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 7-12
Florence, Italy, July 28 - August 2, 2019. (©2019 Association for Computational Linguistics

ece 1.uma2: «esearchisats (Python)

-LSB- H -RSB- -LSB- W —RSB-
I got like $.

I need it exchanged to on rate .
Pm me .

filel1 /1

|
example_label SPACE+q |
Current: have |

(a) Annotation of a cybercriminal forum post. The under-
lined token is the one currently selected. The mapping from
colours to labels and the keys to apply them are indicated by
the legend at the bottom. Two extra labels were added for this
picture, to show how the legend will wrap as needed. The in-
formation about progress, the legend, and the current item
can be hidden if desired.

ece 1. umaz: ~rssarhisats (Pytbon)
[19:58] <wafflejock> corba, well depends on where on the local disk you're
trying to save, if it's your home folder should be fine

[19:58] <corba> MWM, i tried with NTFS and ext4

[19:58] <wafflejock> corba, someone here suggests thunar-shares-plugin but
from 2010 https://ubuntuforums.org/showthread.php?t=1582665

[19:59] <MWM> oh wait... heard you wrong. You are booted to xubuntu and
are trying to get to windows right? how did you set up samba?

[19:59] <corba> wafflejock, nope, its a separate disk

[19:59] <corba> wafflejock, ill look into that thanks

[20:01] <MwWM> oh jeeze: I keep crossing what you are saying iun my head. I
got it mixed up again and was right the first time. I dont know how to get
Windows from xubuntu... only xubuntu from windows. sorry

[20:02] <corba> no prob :)

=== nicomach2s is now known as nicomachus

[20:04] <corba> ive done it a thousand times in cinnamon but this is an
old computer and i have to use xfce or lxde, i dont know if i can run
mate...

[20:04] <wafflejock> ah yeah the shares plugin appears to be for adding
shared folders, might be useful but not for this issue

[20:05] <corba> not only that, im having problems downloading it form the

(b) Adjudication of a linking task annotating reply-to rela-
tions on IRC. The current message in green, an antecedent
that is agreed on is dark blue, one that is not agreed on is
light blue, other messages with disagreements are red, and
the underline indicates a message that is being considered for
linking to the green message (incorrectly in this case).

Figure 1: Screenshots of terminal windows with SLATE running. We have intentionally used two different font
sizes to show how the user interface can scale, which is helpful for visually impaired users.

ments, lines, tokens, or characters, and continuous
spans of lines, tokens, and characters. For exam-
ple, from this perspective, NER is a task with cat-
egorical labels over continuous token spans.

The tool also supports adjudication of annota-
tion disagreements. Multiple sets of annotations
are read in and compared to determine disagree-
ments to be displayed to the user, which can then
be resolved, producing a new annotation file.

In the process of describing the tool, we will
refer to two datasets that it was used to annotate:

(1) Portnoff et al. (2017) studied cybercriminal
web forums. Experts in computer security and
NLP collaborated to label posts in which the user
is trying to exchange money from one form into
another. For each post, we labeled tokens that ex-
pressed what was being offered, what was being
requested, and the rate. Three annotators labeled a
set of 600 posts containing 25,624 tokens. 200 of
the posts were triple annotated and disagreements
were adjudicated using the tool.

(2) Kummerfeld et al. (2019) developed a new
conversation disentanglement dataset an order
of magnitude larger than all previously released
datasets combined. 77,563 messages were an-
notated with links indicating the message(s) they
were a response to. For 11,100 messages, multi-
ple annotations were collected and adjudicated us-
ing the tool. Annotations took 7 to 11 seconds per

! No formal user satisfaction surveys were conducted, but
the tool received positive feedback on both projects.

message depending on the complexity of the dis-
cussion, and adjudication took 5 seconds per mes-
sage (lower because many messages did not have a
disagreement, but not extremely low because those
that did were the difficult cases). Overall, annota-
tors spent approximately 240 hours on annotation
and 15 hours on adjudication.

Display The interface is text-based and contained
entirely within a terminal window. By default, the
entire terminal area displays the text being anno-
tated, as shown in Figure 1b. There are also op-
tions to use space to display information about the
current annotations, as shown in Figure 1a.

Colour is used to indicate annotations. For cat-
egorical labels a different colour is used for each
label, and a special colour is used to indicate when
multiple labels have been assigned to the same
item. For linking, one colour is used to indicate
the item being linked, another is used to indicate
what items are currently linked to it, and a third is
used to indicate any item that has a link.

The most frequently needed visual customisa-
tion is changing the colours used to indicate la-
bels when assigning categories. These colours
are specified in a simple text file. More substan-
tial changes, such as a different colour to indi-
cate disagreements, requires changing the code,
but colours for each situation are defined in one
place with intuitive names.

Input All interaction occurs via the keyboard.
Commands are designed to be intuitive, e.g. arrow

Annotation Adjud- External Programming User
System Types ication Dependencies Language Interface
SLATE Classity, Link Yes - Python Terminal
brat (Stenetorp et al., 2012) Classify, Link Yes apache Python, Javascript GUI
GATE (Bontcheva et al., 2013) Classify, Link Yes - Java GUI
YEDDA (Yang et al., 2018) Classify - - Python GUI
ANALEC (Landragin et al., 2012) Classify, Link - - Java GUI
Anafora (Chen and Styler, 2013) Classify, Link Yes - Python GUI
CAT (Lenzi et al., 2012) Classify - apache Java GUI
Chooser (Koeva et al., 2008) Classify, Link - - C++, Python, Perl GUI
CorA (Bollmann et al., 2014) Classify - - PHP, JavaScript GUI
Djangology (Apostolova et al., 2010) Classify Yes Django Python GUI
eHost (South et al., 2012) Classify, Link Yes - Java GUI
Glozz (Widlocher and Mathet, 2012) Classify, Link Yes - Java GUI
GraphAnno (Gast et al., 2015) Classify, Link - - Ruby GUI
Inforex (Marcinczuk et al., 2012) Classify, Link - - JavaScript GUI
Knowtator (Ogren, 2006) Classity, Link Yes Protégé Java GUI
MAE and MALI (Stubbs, 2011) Classify, Link Yes - Java GUI
MMAX?2 (Miiller and Strube, 2006) Classify, Link - - Java GUI
PALinkA (Orasan, 2003) Classify, Link - - Java GUI
SAWT (Samih et al., 2016) Classify - - Python, PHP GUI
SYNC3 (Petasis, 2012) Classify Yes Ellogon C GUI
Stanford (Lee, 2004) Classify - - Java GUI
UAM (O’Donnell, 2008) Classify Yes - Java GUI
WAT-SL (Kiesel et al., 2017) Classify Yes apache Java GUI
WebAnno (Yimam et al., 2013) Classify, Link Yes - Java GUI
WordFreak (Morton and LaCivita, 2003) Classify, Link Yes - Java GUI

Table 1: A comparison of annotation tools in terms of properties of interest (in some cases tools support extra
types of annotation, e.g. syntax, that we do not consider here).

keys change which item is selected. Keybindings
can be modified to suit user preferences and multi-
key commands can be defined, like the labels in
Figure la (e.g. SPACE+a), providing flexibility
and an unlimited set of combinations.

Basic commands cover selecting a span, assign-
ing an annotation, and undoing annotations. Ex-
act string search is included, which was used in
the disentanglement project to search for previ-
ous messages by a given user. Typing a number
before a command will apply the command that
many times. A range of commands exist to toggle
properties of the view, including line numbering,
the legend, showing the label for the selected item,
and progress through a set of files.

Data Items in annotations are represented by tu-
ples of integers and labels are represented as
strings. Tokens are defined by splitting on whites-
pace, and characters are counted with separate
numbering for each token. This makes the annota-
tions easy to read in and interpret.

Externally, annotations are saved in stand-off
files, with one annotation per line. This makes
them easy to process with command line tools, e.g.
using wc to count the number of annotations.

Extension The system is written with a modular
design intended to be easily modifiable. For exam-

ple, at one point in the disentanglement project we
wanted to go back and check messages that started
conversations. This involved adding 21 lines of
code, extending the existing search commands to
jump to the next line that started a conversation.
Internal Architecture The system is written in
2,300 lines of Python, with extensive use of the
standard built-in curses library for input and dis-
play handling. Setting up the tool involves down-
loading and unzipping the code. The tool can then
be run from anywhere, does not require adminis-
trator privileges, and will only make modifications
to the local directory it is being run from.
Dependencies On macOS and all Linux distribu-
tions we are aware of, there is nothing else to in-
stall: Python and the relevant libraries are already
installed. On Windows, Python (either 2 or 3) and
the curses library need to be installed.

3 Related Work

Table 1 presents a comparison of a range of an-
notation tools.> Note that all prior work has fo-
cused on graphical user interfaces. The top section
shows the tools we consider in our user study, cho-

% Non-academic tools also focus on GUISs, including open
source tools (e.g. DocAnno, Flat), and commercial tools (e.g.
TagTog, Prodigy, MAT, LightTag, DataTurks).

https://github.com/chakki-works/doccano
https://github.com/proycon/flat
https://www.tagtog.net/
https://prodi.gy/
http://mat-annotation.sourceforge.net/
https://www.lighttag.io/
https://dataturks.com/

sen because they are widely used (brat and GATE)
or have a similar design motivation (YEDDA).
brat (Stenetorp et al., 2012), is a synchronous
web-based system with a central server that users
connect to using a web browser. The tool sup-
ports annotation of spans of text and relations be-
tween them, either binary relations, equivalence
classes, or n-ary associations. It provides a search
mechanism, automatic validation, tagging with ex-
ternal tools, multi-lingual processing, and a com-
parison mode that places two annotations side-by-
side. The tool has been used to annotate a range
of datasets, particularly for information extraction
from biomedical documents.

GATE (Bontcheva et al., 2013), is both a desk-
top application and a web-based system. It is de-
signed to support the entire lifecycle of a project,
including data preparation, schema creation, an-
notation, adjudication, data storage and use. To
achieve this, it contains a wide array of compo-
nents, covering various annotation types and tools
to define workflows that determine the stages of
annotation of a document. The system has been
used in a range of projects in both academic and
commercial settings, including with users who did
not have a computer science background.
YEDDA (Yang et al., 2018), is a desktop appli-
cation that supports annotation of character spans
with up to 8 categories using a GUI. It is designed
to be lightweight, with no external dependencies,
though it only supports Python 2. It has a built-
in recommendation system that automatically pro-
poses labels based on annotations so far, which
Yang et al. (2018) found decreased named entity
recognition annotation time by 16%. For input,
the tool supports both selection with the mouse
and specifying a sequence of character-level anno-
tations with the keyboard, e.g. 2c3b to assign the
label c to the next two characters and b to the three
after that. The tool also has an analysis component
that produces a LaTeX document comparing a pair
of annotations of a document, or F-scores for all
pairs of annotations. It does not support annota-
tion of links or adjudication of disagreements.

4 User Study

We conducted a user study? to investigate the ef-
fort required to install and use four tools. For each
tool, participants had 25 minutes to install the tool
and use it to identify verbs in a 623 word news

3 Approved by the Michigan IRB, ID: HUMO00155689.

10

Time (minutes)

Tool Ubuntu macOS
SLATE 10 16
YEDDA 14 14
GATE 21 22
brat - -

Table 2: Average time for users to set up the tool and
identify verbs in a 623 word news article. Only one
participant managed to install and use brat, taking 18
minutes on Ubuntu. The differences between GATE
and either SLATE or YEDDA are significant at the 0.01
level according to a t-test.

article.* We measured how long they took to in-
stall the tool and to finish the task. After each tool,
participants completed a survey asking about their
experience installing and using the tool.

We set up the study to simulate a real usage
scenario as closely as possible. Participants were
computer science graduate students and all but one
used their own computer. Four participants used
macOS and four used Ubuntu. Every participant
used all four tools. To reduce bias due to fa-
tigue (which could make later tools appear slower)
and familiarity with the news article (which could
make later tools appear faster), the order of tools
varied so that each one occurred 1st, 2nd, 3rd, and
4th once for each operating system.

Table 2 presents the time required to install
each tool and complete the first annotation task.
We combined these two because some participants
read usage instructions while installing the tool,
while others went back and forth during initial an-
notations. SLATE and YEDDA are comparable in
effort, which fits with their common design as sim-
ple tools with minimal dependencies. Participants
had great difficulty with brat, with only two man-
aging to install it, one just as their time finished.

We also had an additional participant try using
the tools in Windows. They were able to install
and use SLATE and GATE, but did not complete
the task on either. GATE had the easiest set up pro-
cess, with a provided installer. SLATE required the
curses package to be installed. They experienced
difficulty with YEDDA because it is not Python
3 compatible, and rewriting the code to make it
compatible led to other issues. brat only supports
Windows via the use of a virtual machine.

* We also considered having participants do a linking task,
specifying the antecedents of pronouns, but found there was
not enough time (also, linking is not supported by YEDDA).

4.1 Feedback Summary

brat Participants got stuck on various issues
during installation and generally commented that
they wanted more information in the documen-
tation. The two most common issues were be-
ing unable to get the system to communicate with
apache, and being unable to load files to annotate.

GATE Participants often had to try more than
one installation method. Six participants com-
mented on lag or missed clicks during annotation,
and six commented that the documentation was
not helpful for the process of installing the tool
and understanding the user interface.

YEDDA All participants found installation easy,
though three commented that it required familiar-
ity with git, and one recommended adding it to
the python package index. Every participant com-
mented that the recommendation mode produced
many false positives, making it inconvenient. Four
commented that the way labels appear during an-
notation shifted the text in a way that made them
lose their place or made it hard to read. All Ubuntu
participants commented that the system scrolled to
the top of the document after each annotation.

SLATE All participants found installation easy,
though one recommended adding it to the python
package index. One participant commented that
they wished they could use their cursor as well,
one suggested adding an explicit indication that
saving was successful, one found the selected span
hard to see, and one was surprised that pressing the
down arrow selected the same position on the next
line in terms of tokens, rather than visually.

Each of these tools has strengths and weak-
nesses, and this study was designed to test the spe-
cific gap our tool was designed to address. For
projects with annotators who are not computer ex-
perts, we expect GUIs, and in particular web in-
terfaces like the one provided by brat, will remain
dominant. However, the results demonstrate that
SLATE effectively fills the gap of an easy to use
and efficient terminal-based tool.

5 Future Development

There are many directions in which we hope to de-
velop SLATE further, by collaborating with other
researchers and the open-source community. The
system is designed to be simple to modify and ex-
tend, with some possible next steps including:

11

Multi-lingual Support The tool can already dis-
play arange of scripts given Python’s unicode sup-
port, but to properly support annotation would re-
quire modifications. For example, changing the
direction of script writing would involve adjusting
the visual display module, while adding support
for selecting parts of glyphs would require modi-
fying the data representation.

Accessibility For users who require large fonts (or
prefer small ones) the tool is extremely flexible
and convenient. However, the extensive use of
colour could be a problem for colour-blind users.
The colours can be modified by editing a simple
configuration file, or colour could be avoided en-
tirely by modifying the display code to display in-
line labels.

Data Formats Support for additional data for-
mats, such as CoNLL-U, and ISO 24612:2012.
Mouse Input While the motivation for this tool
was to make a text-based interface controlled
by the keyboard, the curses library does process
mouse inputs, making it possible to add support
for the mouse in the future.

6 Conclusion

A wide range of effective annotation tools already
exist, but they all use a GUI and many involve
substantial effort to set up. SLATE is designed for
terminal-users who want a fast, easy to install, and
flexible annotation tool. It supports a range of an-
notation types, and adjudication of disagreements
in annotations. The code is publicly available’ un-
der a permissive open-source license. The tool has
already been used in two research projects, includ-
ing one that involved over 250 hours of annotation.

Acknowledgements

Thank you to Will Radford and the anonymous re-
viewers for helpful suggestions. Also thanks to
the study participants, and to the annotators who
have used the tool. This material is based in part
on work supported by IBM as part of the Sapphire
Project at the University of Michigan, and by ONR
under MURI grant N0O00140911081. Any opin-
ions, findings, conclusions or recommendations
expressed above are those of the author and do not
necessarily reflect the views of the sponsors.

Shttp://jkk.name/slate/

http://jkk.name/slate/

References

Emilia Apostolova, Sean Neilan, Gary An, Noriko To-
muro, and Steven Lytinen. 2010. Djangology: A
light-weight web-based tool for distributed collabo-
rative text annotation. In Proceedings of LREC.

Marcel Bollmann, Florian Petran, Stefanie Dipper, and
Julia Krasselt. 2014. Cora: A web-based annotation
tool for historical and other non-standard language
data. In Proceedings of the LaTeCH Workshop.

Kalina Bontcheva, Hamish Cunningham, Ian Roberts,
Angus Roberts, Valentin Tablan, Niraj Aswani,
and Genevieve Gorrell. 2013. Gate teamware: a
web-based, collaborative text annotation framework.
Language Resources and Evaluation, 47(4):1007-
1029.

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of NAACL, Demos.

Volker Gast, Lennart Bierkandt, and Christoph Rzym-
ski. 2015. Creating and retrieving tense and aspect
annotations with graphanno, a lightweight tool for
multi-level annotation. In Proceedings of the ISA
Workshop.

ISO 24612:2012. 2012. Language resource man-
agement — Linguistic annotation framework (LAF).
Standard, International Organization for Standard-
ization.

Johannes Kiesel, Henning Wachsmuth, Khalid
Al Khatib, and Benno Stein. 2017. Wat-sl: A
customizable web annotation tool for segment
labeling. In Proceedings of EACL, Demos.

Svetla Koeva, Borislav Rizov, and Svetlozara Leseva.
2008. Chooser: a multi-task annotation tool. In Pro-
ceedings of LREC.

Jonathan K. Kummerfeld, Sai R. Gouravajhala, Joseph
Peper, Vignesh Athreya, Chulaka Gunasekara,
Jatin Ganhotra, Siva Sankalp Patel, Lazaros Poly-
menakos, and Walter S. Lasecki. 2019. A large-
scale corpus for conversation disentanglement. In
Proceedings of ACL.

Frederic Landragin, Thierry Poibeau, and Bernard Vic-
torri. 2012. Analec: a new tool for the dynamic an-
notation of textual data. In Proceedings of LREC.

Miler Lee. 2004. Annotator / stanford manual
annotation tool. http://nlp.stanford.
edu/software/stanford-manual—
annotation-too0l-2004-05-16.tar.gz.
Stanford University.

Valentina Bartalesi Lenzi, Giovanni Moretti, and
Rachele Sprugnoli. 2012. Cat: the celct annotation
tool. In Proceedings of LREC.

Michal Marcinczuk, Jan Kocon, and Bartosz Broda.
2012. Inforex — a web-based tool for text corpus
management and semantic annotation. In Proceed-
ings of LREC.

12

Thomas Morton and Jeremy LaCivita. 2003. Wordf-
reak: An open tool for linguistic annotation. In Pro-
ceedings of NAACL, Demos.

Christoph Miiller and Michael Strube. 2006. Multi-
level annotation of linguistic data with MMAX?2. In
Corpus Technology and Language Pedagogy: New
Resources, New Tools, New Methods. Peter Lang.

Mick O’Donnell. 2008. Demonstration of the UAM
CorpusTool for text and image annotation. In Pro-
ceedings of ACL, Demos.

Philip V. Ogren. 2006. Knowtator: A protégé plug-in
for annotated corpus construction. In Proceedings
of NAACL, Demos.

Constantin Orasan. 2003. PALinkA: A highly cus-
tomisable tool for discourse annotation. In Proceed-
ings of SIGdial.

Georgios Petasis. 2012. The sync3 collaborative anno-
tation tool. In Proceedings of LREC.

Rebecca S. Portnoff, Sadia Afroz, Greg Durrett,
Jonathan K. Kummerfeld, Taylor Berg-Kirkpatrick,
Damon McCoy, Kirill Levchenko, and Vern Paxson.
2017. Tools for automated analysis of cybercriminal
markets. In Proceedings of WWW.

Eric S. Raymond. 2003. Basics of the Unix Philosophy.
Addison-Wesley Professional.

Younes Samih, Wolfgang Maier, and Laura Kallmeyer.
2016. Sawt: Sequence annotation web tool. In Pro-
ceedings of the Second Workshop on Computational
Approaches to Code Switching.

Brett South, Shuying Shen, Jianwei Leng, Tyler For-
bush, Scott DuVall, and Wendy Chapman. 2012. A
prototype tool set to support machine-assisted anno-
tation. In Proceedings of BioNLP.

Pontus Stenetorp, Sampo Pyysalo, Goran Topic,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for nlp-assisted text
annotation. In Proceedings of EACL, Demos.

Amber Stubbs. 2011. Mae and mai: Lightweight an-
notation and adjudication tools. In Proceedings of
LAW.

Antoine Widlocher and Yann Mathet. 2012. The glozz
platform: A corpus annotation and mining tool. In
Proceedings of the ACM Symposium on Document
Engineering.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018. Yedda: A lightweight collaborative text span
annotation tool. In Proceedings of ACL, Demos.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
Webanno: A flexible, web-based and visually
supported system for distributed annotations. In
Proceedings of ACL, Demos.

http://www.lrec-conf.org/proceedings/lrec2010/pdf/543_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/543_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/543_Paper.pdf
http://www.aclweb.org/anthology/W14-0612
http://www.aclweb.org/anthology/W14-0612
http://www.aclweb.org/anthology/W14-0612
http://www.jstor.org/stable/42636386
http://www.jstor.org/stable/42636386
http://www.aclweb.org/anthology/N13-3004
http://www.aclweb.org/anthology/N13-3004
http://aclweb.org/anthology/W/W15/W15-0203.pdf
http://aclweb.org/anthology/W/W15/W15-0203.pdf
http://aclweb.org/anthology/W/W15/W15-0203.pdf
https://www.iso.org/standard/37326.html
https://www.iso.org/standard/37326.html
http://aclweb.org/anthology/E17-3004
http://aclweb.org/anthology/E17-3004
http://aclweb.org/anthology/E17-3004
http://www.lrec-conf.org/proceedings/lrec2008/pdf/186_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/638_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/638_Paper.pdf
http://nlp.stanford.edu/software/stanford-manual-annotation-tool-2004-05-16.tar.gz
http://nlp.stanford.edu/software/stanford-manual-annotation-tool-2004-05-16.tar.gz
http://nlp.stanford.edu/software/stanford-manual-annotation-tool-2004-05-16.tar.gz
http://www.lrec-conf.org/proceedings/lrec2012/pdf/216_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/216_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/446_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/446_Paper.pdf
http://aclweb.org/anthology/N03-4009
http://aclweb.org/anthology/N03-4009
http://mmax2.net/mmaxpaper.pdf
http://mmax2.net/mmaxpaper.pdf
http://www.aclweb.org/anthology/P/P08/P08-4004
http://www.aclweb.org/anthology/P/P08/P08-4004
http://www.aclweb.org/anthology/N/N06/N06-4006
http://www.aclweb.org/anthology/N/N06/N06-4006
http://www.aclweb.org/anthology/W03-2120
http://www.aclweb.org/anthology/W03-2120
http://www.lrec-conf.org/proceedings/lrec2012/pdf/700_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/700_Paper.pdf
http://www.jkk.name/pub/www17forums.pdf
http://www.jkk.name/pub/www17forums.pdf
http://www.catb.org/~esr/writings/taoup/html/index.html
http://aclweb.org/anthology/W16-5808
http://www.aclweb.org/anthology/W12-2416
http://www.aclweb.org/anthology/W12-2416
http://www.aclweb.org/anthology/W12-2416
http://www.aclweb.org/anthology/E12-2021
http://www.aclweb.org/anthology/E12-2021
http://www.aclweb.org/anthology/W11-0416
http://www.aclweb.org/anthology/W11-0416
http://doi.acm.org/10.1145/2361354.2361394
http://doi.acm.org/10.1145/2361354.2361394
http://aclweb.org/anthology/P18-4006
http://aclweb.org/anthology/P18-4006
http://www.aclweb.org/anthology/P13-4001
http://www.aclweb.org/anthology/P13-4001

