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Abstract

This paper introduces STRASS: Summariza-
tion by TRAnsformation Selection and Scor-
ing. It is an extractive text summarization
method which leverages the semantic infor-
mation in existing sentence embedding spaces.
Our method creates an extractive summary by
selecting the sentences with the closest embed-
dings to the document embedding. The model
learns a transformation of the document em-
bedding to minimize the similarity between
the extractive summary and the ground truth
summary. As the transformation is only com-
posed of a dense layer, the training can be
done on CPU, therefore, inexpensive. More-
over, inference time is short and linear ac-
cording to the number of sentences. As a
second contribution, we introduce the French
CASS dataset, composed of judgments from
the French Court of cassation and their corre-
sponding summaries. On this dataset, our re-
sults show that our method performs similarly
to the state of the art extractive methods with
effective training and inferring time.

1 Introduction

Summarization remains a field of interest as
numerous industries are faced with a growing
amount of textual data that they need to process.
Creating summary by hand is a costly and time-
demanding task, thus automatic methods to gen-
erate them are necessary. There are two ways of
summarizing a document: abstractive and extrac-
tive summarization.

In abstractive summarization, the goal is to cre-
ate new textual elements to summarize the text.
Summarization can be modeled as a sequence-
to-sequence problem. For instance, Rush et al.
(2015) tried to generate a headline from an article.
However, when the system generates longer sum-
maries, redundancy can be a problem. See et al.

(2017) introduce a pointer-generator model (PGN)
that generates summaries by copying words from
the text or generating new words. Moreover, they
added a coverage loss as they noticed that other
models made repetitions on long summaries. Even
if it provides state of the art results, the PGN is
slow to learn and generate. Paulus et al. (2017)
added a layer of reinforcement learning on an
encoder-decoder architecture but their results can
present fluency issues.

In extractive summarization, the goal is to ex-
tract part of the text to create a summary. There
are two standard ways to do that: a sequence la-
beling task, where the goal is to select the sen-
tences labeled as being part of the summary, and
a ranking task, where the most salient sentences
are ranked first. It is hard to find datasets for
these tasks as most summaries written by humans
are abstractive.Nallapati et al. (2016a) introduce
a way to train an extractive summarization model
without labels by applying a Recurrent Neural
Network (RNN) and using a greedy matching ap-
proach based on ROUGE. Recently, Narayan et al.
(2018b) combined reinforcement learning (to ex-
tract sentences) and an encoder-decoder architec-
ture (to select the sentences).

Some models combine extractive and abstrac-
tive summarization, using an extractor to select
sentences and then an abstractor to rewrite them
(Chen and Bansal, 2018; Cao et al., 2018; Hsu
etal., 2018). They are generally faster than models
using only abstractors as they filter the input while
maintaining or even improving the quality of the
summaries.

This paper presents two main contributions.
First, we propose an inexpensive, scalable, CPU-
trainable and efficient method of extractive text
summarization based on the use of sentence em-
beddings. Our idea is that similar embeddings
are semantically similar, and so by looking at the
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Figure 1: Training of the model. The blocks present steps of the analysis. All the elements above the blocks are
inputs (document embedding, sentences embeddings, threshold, real summary embedding, trade-off).

proximity of the embeddings it is possible to rank
the sentences. Secondly, we introduce the French
CASS dataset (section 4.1), composed of 129,445
judgments with their corresponding summaries.

2 Related Work

In our model, STRASS, it is possible to use an
embedding function ! trained with state of the art
methods.

Word2vec is a classical method used to trans-
form a word into a vector (Mikolov et al., 2013a).
Methods like word2vec keep information about
semantics (Mikolov et al., 2013b). Sent2vec
(Pagliardini et al., 2017) create embedding of sen-
tences. It has state-of-the-art results on datasets
for unsupervised sentence similarity evaluation.

EmbedRank (Bennani-Smires et al., 2018) ap-
plies sent2vec to extract keyphrases from a docu-
ment in an unsupervised fashion. It hypothesizes
that keyphrases that have an embedding close to
the embedding of the entire document should rep-
resent this document well.

We adapt this idea to select sentences for sum-
maries (section 4.2). We suppose that sentences
close to the document share some meaning with
the document and are sentences that summarize
well the text. We go further by proposing a su-
pervised method where we learn a transformation
of the document embedding to an embedding of
the same dimension, but closer to sentences that
summarize the text.

'In this paper, ‘embedding function’, ‘embedding space’
and ‘embedding’ will refer to the function that takes a textual

element as input and outputs a vector, the vector space, and
the vectors.

3 Model

The aim is to construct an extractive summary.
Our approach, STRASS, uses embeddings to se-
lect a subset of sentences from a document.

We apply sent2vec to the document, to the sen-
tences of the document, and to the summary. We
suppose that, if we have a document with an em-
bedding? d and a set S with all the embeddings
of the sentences of the document, and a reference
summary with an embedding ref_sum, there is a
subset of sentences E'g C .S forming the reference
summary. Our target is to find an affine function
f(-): R™ — IR™, such that:

ifse Eg

otherwise

sim(s, f(d)) >t
sim(s, f(d)) < t,

Where ¢ is a threshold, and sim is a similarity
function between two embeddings.

The training of the model is based on four main
steps (shown in Figure 1):

o (1) Transform the document embedding by
applying an affine function learned by a neu-
ral network (section 3.1);

e (2) Extract a subset of sentences to form a
summary (section 3.2);

e (3) Approximate the embedding of the ex-
tractive summary formed by the selected sen-
tences (section 3.3);

?Scalars are lowercased, vectors/embeddings are lower-
cased and in bold, sets are uppercased and matrices are up-
percased and in bold.
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e (4) Score the embedding of the resulting sum-
mary approximation with respect to the em-
bedding of the real summary (section 3.4).

To generate the summary, only the first two
steps are used. The selected sentences are the
output. Approximation and scoring are only nec-
essary during the training phase when computing
loss function.

3.1 Transformation

To learn an affine function in the embedding space,
the model uses a simple neural network. A single
fully-connected feed-forward layer. f(-): R" —
R™:

f(d)=Wxd+b

with W the weight matrix of the hidden layer and
b the bias vector. Optimization is only conducted
on these two elements.

3.2 Sentence Extraction

Inspired by EmbedRank (Bennani-Smires et al.,
2018) our proposed approach is based on embed-
dings similarities. Instead of selecting the top n
elements, our approach uses a threshold. All the
sentences with a score above this threshold are se-
lected. As in Pagliardini et al. (2017), our simi-
larity score is the cosine similarity. Selection of
sentences is the first element:

sel(s,d, S, t) =
sigmoid(ncos™ (s, f(d), S) —t)

with sigmoid the sigmoid function and ncos™ a
normalized cosine similarity explained in section
3.5. A sigmoid function is used instead of a hard
threshold as all the functions need to be differen-
tiable to make the back-propagation. Sel outputs
a number between 0 and 1. 1 indicates that a sen-
tence should be selected and O that it should not.
With this function, we select a subset of sentences
from the text that forms our generated summary.

3.3 Approximation

As we want to compare the embedding of our gen-
erated extractive summary and the embedding of
the reference summary, the model approximates
the embedding of the proposed summary. As the
system uses sent2vec, the approximation is the av-
erage of the sentences weighted by the number of
words in each sentence. We have to apply this ap-
proximation to the sentences extracted with sel,

245

which compose our generated summary. The ap-
proximation is:

app(d, S,t) = Zs x nb_w(s) x sel(s,d, S, t)
seS

where, nb_w(s) is the number of words in the sen-
tence corresponding to the embedding s.

3.4 Scoring

The quality of our generated summary is scored by
comparing its embedding with the reference sum-
mary embedding. Here, the compression ratio is
added to the score in order to force the model to
output shorter summaries. The compression ratio
is the number of words in the summary divided by
the number of words in the document.

nb_w(gen_sum)
nb_w(d)
(1 = X) x cos_sim(gen_sum, ref_sum)

loss = A\ x

with A a trade-off between the similarity and the
compression ratio, cos_sim(x,y), x,y € IR" the
cosine similarity and gen_sum = app(d, S,t).
The user should note that A is also useful to change
the trade-off between the proximity of the sum-
maries and the length of the generated one. A
higher A results in a shorter summary.

3.5 Normalization

To use a single selection threshold on all our doc-
uments, a normalization is applied on the similar-
ities to have the same distribution for the similari-
ties on all the documents. First, we transform the
cosine similarity from (R",R") — [-1,1] to
(R™",R") — [0, 1]:

cos_sim(x,y) + 1
2

cos™(

X,y) =

Then as in Mori and Sasaki (2002) the function
is reduced and centered in 0.5:

rcost(x,y,X) =

cost(x,y) — p (cos™(xk,y))
0.5+ (x“i)z )
CcOS X
XkUEX k)Y

where y is an embedding, X is a set of embed-
dings, x € X, p and o are the mean and standard
deviation.



A threshold is applied to select the closest sen-
tences on this normalized cosine similarity. In or-
der to always select at least one sentence, we re-
stricted our similarity measure in (—oo, 1], where,
for each document, the closest sentence has a sim-
ilarity of 1:

reost(x,y, X)

+ X) =
ncos (X7 Yy, ) max (TCOS+ (Xk7 Y, X))
x€EX

4 Experiments

4.1 Datasets

To evaluate our approach, two datasets were used
with different intrinsic document and summary
structures which are presented in this section.
More detailed information is available in the ap-
pendices (table 3, figure 3 and figure 4).

We introduce a new dataset for text summa-
rization, the CASS dataset®. This dataset is com-
posed of 129,445 judgments given by the French
Court of cassation between 1842 and 2016 and
their summaries (one summary by original docu-
ment). Those summaries are written by lawyers
and explain in a short way the main points of
the judgments. As multiple lawyers have writ-
ten summaries, there are different types of sum-
mary ranging from purely extractive to purely ab-
stractive. This dataset is maintained up-to-date by
the French Government and new data are regularly
added. Our version of the dataset is composed of
129,445 judgements.

The CNN/DailyMail dataset (Hermann et al.,
2015; Nallapati et al., 2016b) is composed of
312,084 couples containing a news article and its
highlights. The highlights show the key points of
an article. We use the split created by Nallapati
et al. (2016b) and refined by See et al. (2017).

4.2 Baseline

An unsupervised version of our approach is to use
the document embedding as an approximation for
the position in the embedding space used to select
the sentences of the summary. It is the application
of EmbedRank (Bennani-Smires et al., 2018) on
the extractive summarization task. This approach
is used as a baseline for our model

3The dataset is available here:
com/euranova/CASS—dataset

https://github.
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4.3 Oracles

We introduce two oracles. Even if these models do
not output the best possible results for extractive
summarization, they show good results.

The first model, called Oracle, is the same as
the baseline, but instead of taking the document
embedding, the model takes the embedding of the
summary and then extracts the closest sentences.

The second model, called Oraclesent, extracts
the closest sentence to each sentence of the sum-
mary. This is an adaptation of the idea that Nallap-
ati et al. (2016a) and Chen and Bansal (2018) used
to create their reference extractive summaries.

4.4 Evaluation details

ROUGE (Lin, 2004) is a widely used set of metrics
to evaluate summaries. The three main metrics in
this set are ROUGE-1 and ROUGE-2, which com-
pare the 1-grams and 2-grams of the generated and
reference summaries, and ROUGE-L, which mea-
sures the longest sub-sequence between the two
summaries. ROUGE is the standard measure for
summarization, especially because more sophisti-
cated ones like METEOR (Denkowski and Lavie,
2014) require resources not available for many
languages.

Our results are compared with the unsupervised
system TextRank (Mihalcea and Tarau, 2004; Bar-
rios et al., 2016) and with the supervised systems
Pointer-Generator Network (See et al., 2017) and
rnn — ext (Chen and Bansal, 2018). The Pointer-
Generator Network is an abstractive model and
rnn — ext is extractive.

For all datasets, a sent2vec embedding of di-
mension 700 was trained on the training split. To
choose the hyperparameters, a grid search was
computed on the validation set. Then the set of
hyperparameters with the highest ROUGE-L were
used on the test set. The selected hyperparameters
are available in appendix A.3.

5 Results

Tables 1 and 2 present the results for the CASS and
the CNN/DailyMail datasets. As expected, the su-
pervised model performs better than the unsuper-
vised one. On the three datasets, the supervision
has improved the score in terms of ROUGE-2 and
ROUGE-L. In the same way, our oracles are al-
ways better than the learned models, proving that
there is still room for improvements. Information
concerning the length of the generated summaries


https://github.com/euranova/CASS-dataset
https://github.com/euranova/CASS-dataset

R1F1 | R2F1 | RLF1

Baseline 39.57 | 22.11 | 29.71
TextRank | 39.30 | 23.49 | 31.45
PGN 53.25 | 40.25 | 45.58
rnn-ext 53.05 | 38.21 | 44.62
STRASS | 52.68 | 38.87 | 44.72
Oracle 62.79 | 50.10 | 55.03
Oracle sent | 63.90 | 50.56 | 55.75

Table 1: Results of different models on the French
CASS dataset using ROUGE with 95% confidence.
The models of the first block are unsupervised, the
models of the second block are supervised and the
models of the last block are the oracles. F1 is the
F-measure. R1, R2 and RL stand for ROUGEI1,
ROUGE2, and ROUGE-L.

R1F1 | R2F1 | RLF1
Baseline 34,02 | 12.48 | 28.27
TextRank 30.83 | 13.02 | 27.39
PGN* 39.53 | 17.28 | 36.38
rnn-ext* 40.17 | 18.11 | 36.41
STRASS 33.99 | 14.18 | 30.04
Oracle 43.55 | 2243 | 3847
Oracle sent 46.21 | 25.81 | 42.47
Lead3 40.00 | 17.56 | 36.33
Lead3 - PGN* | 40.34 | 17.70 | 36.57
Table 2: Results of different models on the

CNN/DailyMail. The Lead3 - PGN is the lead 3 score
as reported in (See et al., 2017). The scores with *
are taken from the corresponding publications. F1 is
the F-measure. R1, R2 and RL stand for ROUGE]1,
ROUGE2, and ROUGE-L.
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Figure 2: Processing time of the summarization func-
tion (y-axis) by the number of lines of the text as input
(x-axis). Results computed on an 17-8550U.

and the position of the sentences taken are avail-
able in the appendices A.4.2.

On the French CASS dataset, our method per-
forms similarly to the rnn — ext. The PGN
performs a bit better (+0.13 ROUGE-1, +0.38
ROUGE-2, + 0.81 ROUGE-L compared to the
other models), which could be linked to the fact
that it can select elements smaller than sentences.

On the CNN/DailyMail dataset, our supervised
model performs poorly. We observe a significant
difference (+2.66 ROUGE-1, +3.38 ROUGE-2,
and +4.00 ROUGE-L) between the two oracles. It
could be explained by the fact that the summaries
are multi-topic and our models do not handle such
case. Therefore, as our loss doesn’t look at the
diversity, STRASS may miss some topics in the
generated summary.

A second limitation of our approach is that our
model doesn’t consider the position of the sen-
tences in the summary, information which presents
a high relevance in the CNN-Dailymail dataset.

STRASS has some advantages. First, it is train-
able on CPU and thus light to train and run. In-
deed, the neural network in our model is only com-
posed of one dense layer. The most recent ad-
vances in text summarization with neural networks
are all based on deep neural networks requiring
GPU to be learned efficiently. Second, the method
is scalable. The processing time is linear with the
number of lines of the documents (Figure 2). The
model is fast at inference time as sent2vec embed-
dings are fast to generate. Our model generated
the 13,095 summaries of the CASS dataset in less
than 3 minutes on an i7-8550U CPU.

6 Conclusion and Perspectives

To conclude, we proposed here a simple, cost-
effective and scalable extractive summarization
method. STRASS creates an extractive summary
by selecting the sentences with the closest em-
beddings to the projected document embedding.
The model learns a transformation of the docu-
ment embedding to maximize the similarity be-
tween the extractive summary and the ground truth
summary. We showed that our approach obtains
similar results than other extractive methods in an
effective way.

There are several perspectives to our work.
First, we would like to use the sentence embed-
dings as an input of our model, as this should in-
crease the accuracy. Additionally, we want to in-
vestigate the effect of using other sent2vec embed-
ding spaces (especially more generalist ones) or



other embedding functions like doc2vec (Le and
Mikolov, 2014) or BERT (Devlin et al., 2019).

For now, we have only worked on sentences but
this model can use any embeddings, so we could
try to build summaries with smaller textual ele-
ments than sentences such as key-phrases, noun
phrases... Likewise, to apply our model on multi-
topic texts, we could try to create clusters of sen-
tences, where each cluster is a topic, and then ex-
tract one sentence by cluster.

Moreover, currently, the loss of the system is
only composed of the proximity and the compres-
sion ratio. Other meaningful metrics for document
summarization such as diversity and representa-
tivity could be added into the loss. Especially,
submodular functions could (1) allow to obtain
near-optimal results and (2) allow to include ele-
ments like diversity (Lin and Bilmes, 2011). An-
other information we could add is the position of
the sentences in the documents like Narayan et al.
(2018a).

Finally, the approach could be extended to
query-based summarization (V.V.MuraliKrishna
et al., 2013). One could use the embedding func-
tion on the query and take the sentences that are
the closest to the embedding of the query.
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A Appendices
A.1 Datasets

The composition of the datasets and the splits are
available in table 3.

A.2 Preprocessing

On the French CASS dataset, we have deleted all
the accents of the texts and we have lower-cased
all the texts as some of them where entirely upper-
cased without any accent. To create the sum-
maries, all the ANA parts of the XML files pro-
vided in the original dataset where taken and con-
catenate to form a single summary for each doc-
ument. These summaries explain different key
points of the judgment. On the CNN/DailyMail,
the preprocessing of See et al. (2017) was used. As
an extra cleaning step, we deleted the documents
that had an empty story.

A.3 Hyperparameters

To obtain the embeddings functions for both
datasets we trained a sent2vec model of dimension
700 with unigrams on the train splits.

For the CASS dataset, the baseline model has
a threshold at 0.8, the oracle at 0.8 and STRASS
has a threshold at 0.8 and a A at 0.3. TextRank
was used with a ratio of 0.2. The PGN For the
CNN/DailyMail dataset, the baseline model has a
threshold at 1.0, the oracle at 0.9 and STRASS has
a threshold at 0.8 and a A\ at 0.4. TextRank was
used with a ratio of 0.15.

A.4 Results

A4.1 ROUGE Score

More detailed results are available in tables 4 and
5. High recall with low precision is generally syn-
onym of long summary.
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Dataset Sd Ss ta ts train val test
CASS 194 |1 1.6 | 894 | 114 | 103,434 | 12,916 | 13,095
CNN/DailyMail | 28.9 | 3.8 | 786 | 53 | 287,112 | 13,367 | 11,489

Table 3: Size information for the datasets, s; and s, are respectively the average number of sentences in the
document and in the summary, ¢4 and t; are respectively the number of tokens in the document and in the summary.
train, val and test are respectively the number of documents in the train, validation and test sets.

R1P | RIR | R1F1 | R2P | R2ZR | R2F1 | RLP | RLR | RLFI1
Baseline | 32.27 | 65.81 | 39.55 | 17.98 | 36.88 | 22.09 | 24.13 | 50.11 | 29.69
TextRank | 32.62 | 68.58 | 39.30 | 19.47 | 41.95 | 23.49 | 25.98 | 56.16 | 31.45
PGN 69.70 | 49.01 | 53.25 | 53.46 | 36.67 | 40.25 | 60.31 | 41.65 | 45.58
rnn-ext 49.54 | 69.62 | 53.12 | 35.94 | 50.00 | 38.30 | 42.03 | 58.43 | 44.77
STRASS | 56.23 | 62.55 | 52.68 | 41.97 | 45.71 | 38.87 | 48.05 | 52.93 | 44.72
Oracle 66.40 | 68.41 | 62.79 | 53.80 | 53.40 | 50.10 | 58.73 | 59.20 | 55.03

Oracle sent | 69.50 | 64.82 | 63.90 | 55.36 | 50.91 | 50.56 | 60.77 | 56.34 | 55.75

Table 4: Full results of different models on the French CASS dataset using ROUGE with 95% confidence. The
models in the first part are unsupervised models, then supervised models and the last part is the oracle. P is
precision, R is recall and F1 is the F-measure. R1, R2 and RL stand for ROUGE1, ROUGE2, and ROUGE-L.

R1IP | RIR |R1F1 | R2P | R2ZR | R2F1 | RLP | RLR | RLF1
Baseline 32.67 | 40.09 | 34.02 | 12.07 | 14.65 | 12.48 | 27.29 | 33.14 | 28.27
TextRank 2344 1 59.29 | 30.83 | 995 | 25.02 | 13.02 | 20.77 | 53.02 | 27.39

PGN* 39.53 17.28 36.38
rnn-ext* 40.17 18.11 36.41
STRASS 28.56 | 53.53 | 33.99 | 11.89 | 22.62 | 14.18 | 25.21 | 47.46 | 30.04

Oracle 4492 | 50.93 | 43.55 | 24.14 | 2547 | 22.43 | 3998 | 44.75 | 38.47

Oracle sent | 35.17 | 74.30 | 46.21 | 19.84 | 40.83 | 25.81 | 32.37 | 68.12 | 42.47

Lead3 33.89 | 53.35 | 40.00 | 14.84 | 23.59 | 17.56 | 30.80 | 48.43 | 36.33

Lead - PGN* 40.34 17.70 36.57

Table 5: Full results of different models on the CNN/DailyMail. The Lead3 - PGN is the lead 3 score as reported
in (See et al., 2017). The scores with * are taken from the corresponding publications. P is precision, R is recall
and F1 is the F-measure. R1, R2 and RL stand for ROUGE1, ROUGE?2, and ROUGE-L.
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Model s | w | w/s
Reference | 1.6 | 117 | 73.1
STRASS | 2.0 | 151 | 755
Oracle 1.7 | 138 | 81.2
Oraclesent | 1.5 | 112 | 74.7

(a) Size information for the generated summary on th

c

HEm STRASS
HEE oracle
Il oracle sent

e o o ©°

0751

Percentage taken in summaries

o
o
o
S
!

HFANNSTNON~NOOOANM
L N N |

Pos sentence

test split of the CASS dataset, s, w, w/s are respectively (b) Percentage of times that a sentence is taken in a gen-
the average number of sentences, the average number of erated summary in function of their position in the docu-
ment on the CASS dataset.

words and the average number of words per sentences.
Density of the number of sentences

2 0.5 BN STRASS
§ ' I oracle
o 0.4 I oracle sent
2 EE reference
£ 0.3
(]
()]
£0.21
c
Q
|9
o 0.11
a.

0.0 v T v r r

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Nb sentences

Density of the number of words

¥ 0.0125 1 Il STRASS
2 B oracle
2 0.0100 B oracle sent
2 Il reference
S
< 0.0075]
()
(o))
£ 0.00501
C
[0}
o
o 0.00251
[
0.0000 T T r
0 100 200 300 400
Nb words

(c) Density of the number of sentences in the generated (d) Density of the number of words in the generated sum-
summaries for several models and the reference on the maries for several models and the reference on the CASS
dataset.

CASS dataset.

Figure 3: Information about the length of the generated summaries for the CASS dataset.

A.4.2 Words and sentences

On the French CASS dataset the summaries gen-
erated by the models are generally close in terms
of length (number of words, number of sentences
and number of words per sentences (figure 3a, 3c,
3d)). All the tested extractive methods tend to se-
lect sentences at the beginning of the documents.
The first sentence make an exception to that rule
(figure 3b). We observe that this sentence can have
the list of the lawyers and judges that were present
at the case. STRASS tends to generate longer
summaries with more sentences. The discrepancy
in the average number of sentences between the
reference and Oraclesent is due to sentences that
are extracted multiple times.

On the CNN/DailyMail dataset, STRASS tends
to extract less sentences but longer ones compar-
ing to the Oraclesent (figure 4a, 4c, 4d). On
the figure 4b we can see that the three models
tend to extract different sentences. Oraclesent
which is the best performing model tends to ex-
tract the 4 first sentences, Oracle extracts more of-
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ten the fourth sentences than the first three and still
have better results than the Lead3, which means
that the fourth sentences could have some interest.
With STRASS the first three sentences have a dif-
ferent tendency than the rest of the text, showing
that the first three sentences may have a different
structure than the rest. Then, the farther a sentence
is in the text, the lower the probability to take it.



Model s | w | w/s
Reference | 3.9 | 55 | 14.1
STRASS |27 | 135 | 50

Oracle 1.5 | 84 56

Oracle sent | 3.5 | 137 | 39.1

Percentage taken in summaries

(a) Size information for the generated summary on the
test split of the CNN/DM dataset, s, w, w/s are respec-

tively the average number of sentences, the average num-
ber of words and the average number of words per sen-
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Figure 4: Information about the length of the generated summaries for the CNN/DM dataset.
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