
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 155–161
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

155

From brain space to distributional space:
the perilous journeys of fMRI decoding

Gosse Minnema and Aurélie Herbelot
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Abstract

Recent work in cognitive neuroscience has
introduced models for predicting distribu-
tional word meaning representations from
brain imaging data. Such models have great
potential, but the quality of their predictions
has not yet been thoroughly evaluated from a
computational linguistics point of view. Due
to the limited size of available brain imaging
datasets, standard quality metrics (e.g. similar-
ity judgments and analogies) cannot be used.
Instead, we investigate the use of several al-
ternative measures for evaluating the predicted
distributional space against a corpus-derived
distributional space. We show that a state-
of-the-art decoder, while performing impres-
sively on metrics that are commonly used
in cognitive neuroscience, performs unexpect-
edly poorly on our metrics. To address this, we
propose strategies for improving the model’s
performance. Despite returning promising re-
sults, our experiments also demonstrate that
much work remains to be done before distribu-
tional representations can reliably be predicted
from brain data.

1 Introduction

Over the last decade, there has been a growing
body of research on the relationship between neu-
ral and distributional representations of seman-
tics (e.g., Mitchell et al., 2008; Anderson et al.,
2013; Xu et al., 2016). This type of research is
relevant for cognitive neuroscientists interested in
how semantic information is represented in the
brain, as well as to computational linguists in-
terested in the cognitive plausibility of distribu-
tional models (Murphy et al., 2012). So far, most
studies investigated the correlation between neu-
ral and distributional representations either by pre-
dicting brain activity patterns from distributional
representations (Mitchell et al., 2008; Abnar et al.,
2018), or by using more direct correlation analyses

like Representational Similarity Analysis (RSA;
introduced in Kriegeskorte et al. 2008) or simi-
lar techniques (Anderson et al., 2013; Xu et al.,
2016). Recently, however, a new model has been
proposed (Pereira et al., 2018) for decoding distri-
butional representations from brain images.

This new approach is different from the earlier
approaches in a number of interesting ways. First
of all, whereas predicting brain images from dis-
tributional vectors tells us something about how
much neurally relevant information is present in
distributional representations, doing the predic-
tion in the opposite way could tell us something
about how much of the textual co-occurrence in-
formation that distributional models are based on
is present in the brain. Brain decoding is also in-
teresting from an NLP point of view: the output of
the model is a word embedding that could, at least
in principle, be used in downstream tasks. Ulti-
mately, a sufficiently accurate model for predict-
ing distributional representations would amount to
a sophisticated ‘mind reading’ device with numer-
ous theoretical and practical applications.

Interestingly, despite being an early model and
being trained on a (for NLP standards) very small
dataset, Pereira et al. (2018) already report im-
pressively high accuracy scores for their decoder.
However, despite these positive results, there are
reasons to doubt whether it is really possible to de-
code distributional representations from brain im-
ages. Given the high-dimensional nature of both
neural and distributional representations, it is rea-
sonable to expect that the mapping function be-
tween the two spaces, if it indeed exists, is po-
tentially very complicated, and, given the inher-
ent noisiness of fMRI data, could be very hard to
learn, especially from a small dataset.

Moreover, we believe that the evaluation met-
rics used in Pereira et al. (2018) are too limited.
Both of these metrics, pairwise accuracy and rank
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Figure 1: Hypothetical example where the predicted
word embeddings (cat’, apple’, . . . ) are relatively close
to their corresponding target word embeddings (cat, ap-
ple, . . . ), but are far from their correct position in abso-
lute terms and have the wrong nearest neighbours.

accuracy, measure a predicted word embeddings’s
distance to its corresponding target word embed-
ding, relative to its distance to other target word
embeddings; for example, the prediction for cat is
‘good’ if it is closer to the target word embedding
of cat than to the target word embedding of truck
(see 3.1 for more details). Such metrics are useful
for evaluating how well the original word labels
can be reconstructed from the model’s predictions,
but do not say much about the overall quality of
the predicted space. As shown in Figure 1, a bad
mapping that fails to capture the similarity struc-
ture of the gold space could still get a high accu-
racy score. Scenarios like this are quite plausible
given that cross-space mappings are known to be
prone to over-fitting (and hence, poor generaliza-
tion) and often suffer from ‘hubness’, a distortion
of similarity structure caused by a lack of variabil-
ity in the predicted space (Lazaridou et al., 2015).

In this paper, we fill a gap in the literature by
proposing a thorough evaluation of Pereira et al.
(2018), using previously untried evaluation met-
rics. Based on our findings, we identify possi-
ble weaknesses in the model and propose several
strategies for overcoming these.

2 Related work

Our work is largely built on top of Pereira et al.
(2018), which to date is the most extensive at-
tempt at decoding meaning representations from
brain imaging data. In this study (Experiment 1),
fMRI images of 180 different content words were
collected for 16 participants. The stimulus words
were presented in three different ways: the writ-
ten word plus an image representing the word, the
word in a word cloud, and the word in a sentence.
Thus, the dataset consists of 180×3 = 540 images

per participant. Additionally, a combined repre-
sentation was created for each word by averag-
ing the images from the three stimulus presenta-
tion paradigms. Note that data for different partic-
ipants cannot be directly combined due to differ-
ences in brain organization;1 decoders are always
trained for each participant individually.

The vocabulary was selected by clustering a
pre-trained GloVe space (Pennington et al., 2014)2

consisting of 30,000 words into regions, and then
manually selecting a word from each region, yield-
ing a set of 180 content words that include nouns
(both concrete and abstract), verbs, and adjectives.
Next, for every participant, a vector space was cre-
ated whose dimensions are voxel activation values
in that participant’s brain scan.3 This (approxi-
mately) 200,000-dimensional space can be option-
ally reduced to 5,000 dimensions using a complex
feature selection process. Finally, for every par-
ticipant, a ridge regression model was trained for
mapping this brain space to the GloVe space. Cru-
cially, this model predicts each of the 300 GloVe
dimensions separately, the authors’ hypothesis be-
ing that variation in each dimension of semantic
space corresponds to specific brain activation pat-
terns.

The literature relating distributional semantics
to neural data started with Mitchell et al. (2008),
who predicted fMRI brain activity patterns from
distributional representations for 60 hand-picked
nouns from 12 different semantic categories (e.g.
‘animals’, ‘vegetables’, etc.). Many later stud-
ies built on top of this; for example, Sudre et al.
(2012) was a similar experiment using MEG, an-
other neuroimaging technique. Other studies (e.g.,
Xu et al. 2016) reused Mitchell et al. (2008)’s orig-
inal dataset but experimented with different word
embedding models, including distributional mod-
els such as word2vec (Mikolov et al., 2013) or
GloVe, perceptual models (Anderson et al., 2013;
Abnar et al., 2018) and dependency-based mod-
els (Abnar et al., 2018). Similarly, Gauthier and
Ivanova (2018) reused Pereira et al. (2018)’s data
and regression model but tested it on alternative
sentence embedding models.

1Techniques like hyperalignment do allow for this, but
they require very large datasets (Van Uden et al., 2018).

2Version 42B.300d, obtained from https://nlp.
stanford.edu/projects/glove/.

3A voxel is a 3D pixel representing the blood oxygenation
level of a small part of the brain.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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3 Methods

Our work builds on top of Experiment 1 in Pereira
et al. (2018) (described above) and uses the same
datasets and experimental pipeline. In this section,
we introduce our evaluation experiments (3.1) and
our model improvement experiments (3.2).4 Un-
less indicated otherwise, our models were trained
on averaged fMRI images, which Pereira et al.
showed to work better than using images from any
of the individual stimulus presentation paradigms.

3.1 Evaluation experiments

Our evaluation experiments consist of two parts: a
re-implementation of the pairwise and rank-based
accuracy scores methods used in Pereira et al.
(2018) and the introduction of additional evalua-
tion metrics.

Pairwise accuracy is calculated by consider-
ing all possible pairs of words (u, v) in the vo-
cabulary and computing the similarity between
the predictions (pu, pv) for these words and
their corresponding target word embeddings (gu,
gv). Accuracy is then defined as the fraction
of pairs where ‘the highest correlation was be-
tween a decoded vector and the corresponding
text semantic vector’ (Pereira et al., 2018, p.
11). Unfortunately, the original code for com-
puting the scores was not published, but we in-
terpret this as meaning that a pair is considered
to be ‘correct’ iff max(r(pu, gu), r(pv, gv)) >
max(r(pu, pv), r(pv, pu)), where r(x, y) is the
Pearson correlation between two vectors. That is,
for each pair of words, all four possible combi-
nations of the two predictions and the two golds
should be considered, and the highest of the four
correlations should be either between pu and gu or
between pv and gv.

Rank accuracy is calculated by calculating the
correlation, for every word in the vocabulary, be-
tween the predicted word embedding for that word
and all of the target word embeddings, and then
ranking the target word embeddings accordingly.
The accuracy score for that word is then defined
as 1 − rank−1

|V |−1 , where rank is the rank of the cor-
rect target word embedding (Pereira et al., 2018,
p. 11). This accuracy score is then averaged over
all words in the vocabulary. Rank accuracy is very
similar to pairwise accuracy but is slightly stricter.

4A software toolkit for reproducing all of our ex-
periments can be found at https://gitlab.com/
gosseminnema/ds-brain-decoding.

Under pairwise evaluation, it is sufficient if, for
any word pair under consideration (say, cat and
dog), only one of the predicted vectors is ‘good’:
as long as the correlation between pcat and gcat is
higher than the other correlations, the pair counts
as ‘correct’, even if the prediction for dog is far off.
Suppose that dog were the only badly predicted
word in the dataset, then one could theoretically
still get a pairwise accuracy score of 100%. By
contrast, under rank evaluation a bad prediction
for dog would not be ‘forgiven’ and the low rank
of dog would affect the overall accuracy score, no
matter how good the other predictions were.

In order to evaluate the quality of the pre-
dicted word embeddings more thoroughly, one
would ideally use standard metrics such as seman-
tic relatedness judgement tasks, analogy tasks, etc.
(Baroni et al., 2014). However, this is not possible
due to the limited vocabulary sizes of the available
brain datasets. Instead, we test under four addi-
tional metrics that are based on well-established
analysis tools in distributional semantics and else-
where but have not yet been applied to our prob-
lem. The first two of these measure directly how
close the predicted vectors are in semantic space
relative to there expected location, whereas the last
two measure how well the similarity structure of
the semantic space is preserved.

Cosine (Cos) scores are a direct way of mea-
suring how far each prediction is from ‘where it
should be’, using cosine similarity as this is a
standard metric in distributional semantics. Given
a vocabulary V and predicted word embeddings
(pw) and target word embeddings (gw) for every
word w ∈ V , we define the cosine score for a
given model as

∑
w∈V sim(pw,gw)

|V | (i.e., the cosine
similarity between each prediction and its corre-
sponding target word embedding, averaged over
the entire vocabulary).

R2 scores are a standard metric for evaluat-
ing regression models, and are useful for test-
ing how well the value of each individual dimen-
sions is predicted (recall that the ridge regres-
sion model predicts every dimension separately)
and how much of their variation is explain by the
model. We use the definition of R2 scores from
the scikit-learn Python package (Pedregosa
et al., 2011), which defines it as the total squared
distance between the predicted values and the true
values relative to the total squared distance of each

https://gitlab.com/gosseminnema/ds-brain-decoding
https://gitlab.com/gosseminnema/ds-brain-decoding
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prediction to the mean true value:

R2(y, ŷ) = 1−
∑n−1

i=0 (yi − ŷi)
2∑n−1

i=0 (yi − ȳ)2

where y is an array of true values and ŷ is an array
of predicted values. Note that R2 is defined over
single dimensions; in order to obtain a score for
the whole prediction matrix, we take the average
R2 score over all dimensions. Scores normally lie
between 0 and 1 but can be negative if the model
does worse than a constant model that always pre-
dicts the same value regardless of input data.

Nearest neighbour (NN) scores evaluate how
well the similarity structure of the predicted se-
mantic space matches that of the original GloVe
space. For each word in V , we take its predicted
and target word embeddings, and then compare the
ten nearest neighbours of these vectors in their re-
spective spaces. The final score is the mean Jac-
card distance computed over all pairs of neighbour
lists:

∑
w∈V J(P10(pw),T10(tw))

|V | , where J(S, T ) =
|S∩T |
|S∪T | is the Jaccard distance between two sets
(Lescovec et al., 2014) and Pn(v) and Tn(v) de-
note the set of n nearest neighbours (computed
using cosine similarity) of a vector in the predic-
tion space and in the original GloVe space, respec-
tively.

Representational Similarity Analysis (RSA)
is a common method in neuroscience for com-
paring the similarity structures of two (neural or
stimulus) representations by computing the Pear-
son correlation between their respective similar-
ity matrices (Kriegeskorte et al., 2008). We use
it as an additional metric for evaluating how well
the model captures the similarity structure of the
GloVe space. This involves computing two simi-
larity matrices of size V ×V , one for the predicted
space and one for the target space, whose entries
are defined as Pi,j = r(pi, pj) and Ti,j = r(ti, tj),
respectively. Then, the representational similarity
score can be defined as the Pearson correlation be-
tween the two upper halves of each similarity ma-
trix: r(upper(P ), upper(T )), where upper(M) =
[M2,1,M3,1, . . . ,Mn,m−1] is the concatenation of
all entries Mi,j such that i > j.

3.2 Model improvement experiments

The second part of our work tries to improve on
the results of Pereira et al. (2018)’s model, using
three different strategies: (1) alternative regression

models, (2) data augmentation techniques, and (3)
combining predictions from different participants.

Ridge is the original ridge regression model
proposed in Pereira et al. (2018). Ridge regres-
sion is a variant on linear regression that tries to
avoid large weights (by minimizing the squared
sum of the parameters), which is similar to apply-
ing weight decay when training neural networks;
this is useful for data (like fMRI data) with a high
degree of correlation between many of the input
variables (Hastie et al., 2009). However, an im-
portant limitation is that, when there are multiple
output dimensions, the weights for each of these
dimensions are trained independently. This seems
inappropriate for predicting distributional repre-
sentations because values for individual dimen-
sions in such representations do not have much
inherent meaning; instead, it is the interplay be-
tween dimensions that encodes semantic informa-
tion, which we would like to capture this in our
regression model.

Perceptron is a simple single-layer, linear per-
ceptron model that is conceptually very similar to
Ridge, but uses gradient descent for finding the
weight matrix. A possible advantage of this ap-
proach is that the weights for all dimensions are
learned at the same time, which means that the
model should be able to capture relationships be-
tween dimensions. The choice for a linear model
is also in line with earlier work on cross-space
mapping functions (Lazaridou et al., 2015). Like
Ridge, Perceptron takes a flattened representation
of the 5000 ‘best’ voxels as input (see section 2).
Best results were found using a model using co-
sine similarity as the loss function, Adam for opti-
mization (Kingma and Ba, 2014), with a learning
rate and weight decay set to 0.001, trained for 10
epochs.

CNN is a convolutional model that takes as in-
put a 3D representation of the full fMRI image.
Our hypothesis is that brain images, like ordi-
nary photographs, contain strong correlations be-
tween spatially close pixels (or ‘voxels’, as they
are called in the MRI literature) and could thus
benefit from a convolutional approach. We kept
the CNN model as simple as possible and included
only a single sequence of a convolutional layer, a
max-pool layer, and a fully-connected layer (with
a ReLU activation function). Best results were
found with the same settings as for Perceptron, and
a convolutional kernel size of 3 and a pooling ker-
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Model Pair Rank Cos R2 NN RSA
IB IA A IB IA A IB IA A IB IA A IB IA A IB IA A

Random 0.54 0.50 0.49 0.54 0.50 0.51 -0.04 -0.05 -0.05 -3.16 -3.19 -2.48 0.04 0.03 0.03 0.01 -0.00 -0.01
Ridge 0.86 0.76 0.93 0.84 0.73 0.91 0.14 0.09 0.22 -0.30 -0.46 -0.06 0.07 0.05 0.11 0.14 0.08 0.25
Ridge+exp2 0.89* 0.81* 0.94* 0.86* 0.79* 0.92* 0.16* 0.11* 0.23* -0.12* -0.25* -0.06* 0.09* 0.06* 0.12* 0.18* 0.13* 0.25*
Ridge+para 0.90 0.78 0.94 0.88 0.75 0.92 0.18 0.10 0.24 -0.16 -0.24 -0.05 0.09 0.05 0.12 0.20 0.11 0.26
Ridge+aug 0.87 0.77 0.94 0.86 0.75 0.91 0.16 0.10 0.24 -0.18 -0.26 -0.05 0.07 0.05 0.11 0.16 0.09 0.25
Perceptron 0.81 0.70 0.87 0.78 0.68 0.83 0.09 0.05 0.11 -0.75 -41.89 -2.64 0.05 0.04 0.07 0.09 0.05 0.16
CNN 0.72 0.59 0.76 0.70 0.60 0.76 0.07 0.04 0.12 -0.40 -1.02 -0.13 0.05 0.03 0.05 0.08 0.03 0.13

Table 1: Decoding performance of all models. IB : score of the best individual participant; IA: average score for
individual participants; A: score for the combined (averaged) predictions from all participants. ‘*’ indicates that
the model was tested on a subset of participants due to missing data.

nel size of 10.
We also propose several strategies for making

better use of available data. +exp2 adds com-
pletely new data points from Experiment 2 in
Pereira et al. (2018)’s study: fMRI scans of 8
participants (who also participated in Experiment
1) reading 284 sentences, and distributional vec-
tors for these sentences, obtained by summing the
GloVe vectors for the content words in each sen-
tence. By contrast, +para and +aug add extra data
for every word in the existing vocabulary, in or-
der to force the model to learn a mapping between
regions in the brain space and regions in the tar-
get space, rather than between single points. In
+para, the model is trained on four fMRI images
per word: one from each stimulus presentation
paradigm (i.e., the word plus a picture, the word
plus a word cloud or the word in a sentence, and
the average of these). By contrast, under the stan-
dard approach, the model is trained on only one
brain image for each word (either the image from
one of the three paradigms or the average image).
Finally, +aug adds data on the distributional side:
rather than mapping each brain image to just its
‘own’ GloVe vector (e.g. the image for dog to the
GloVe vector of dog), we map it to its own vector
plus the six nearest neighbours of that vector in the
full GloVe space (e.g. not only dog but also dogs,
puppy, pet, cat, cats, and puppies).

A final experiment does not aim at enhancing
the models’ training data, but rather changes how
the model’s predictions are processed. In the brain
decoding literature, models are usually trained and
evaluated for individual participants. However, to
make maximal use of limited training data, one
would like to combine brain images from differ-
ent participants, but as noted, this is not feasi-
ble for our dataset. Instead, we propose a sim-
ple alternative method for obtaining group-level
predictions: we average the predictions from all
of the models for individual participants to pro-

duce a single prediction for each stimulus word.
We hypothesize that this can help ‘smooth out’
flaws in individual participants’ models. To com-
pare individual-level and group-level predictions,
we calculate three different scores for each model:
the highest score for the predictions of any indi-
vidual participant (IB), the average score for the
predictions of all individual participants (IA), and
the score for the averaged predictions (A).

4 Results

The results of all models are summarized in Ta-
ble 1.5 All models beat a simple baseline model
that predicts vectors of random numbers (except
on the R2 metric, where Perceptron performs be-
low baseline). Performance on the Pair and Rank
scores is generally good, but performance on the
other metrics is much worse: Cos is very low and
R2 scores are negative, meaning that the predicted
word embeddings are very far in semantic space
from where they should be. Moreover, the low NN
and RSA scores indicate that the model captures
the similarity structure of the GloVe space only to
a very limited extent. On the model improvement
side, the alternative models Perceptron and CNN
fail to outperform Ridge, while the data augmen-
tation experiments do achieve slightly higher per-
formance. Finally, combining predictions seems
to be quite effective: the scores for the averaged
predictions are better than those for any individ-
ual participant, reaching Pair and Rank scores of
more than 0.90 and Cos, NN, and RSA scores of
up to two times the averaged score for individual
participants.

5 Discussion and conclusion

Our results show that none of our tested models
learns a good cross-space mapping: the predicted

5MLP and Ridge were run with and without feature selec-
tion; table lists best results (MLP: with, Ridge: without).
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semantic vectors are far from their expected loca-
tion and fail to capture the target space’s similar-
ity structure. Meanwhile, excellent performance is
achieved on pairwise and rank-based classification
tasks, which implies that the predictions contain
sufficient information for reconstructing stimulus
word labels. These contradictory results suggest
a situation not unlike the one sketched in Fig. 1.
This means that from a linguistic point of view,
early claims about the success of brain decoding
techniques should be taken cautiously.

Two obvious questions are how such a situa-
tion can arise and how it can be prevented. First
of all, it seems likely that there is simply not
enough training data to learn a precise mapping;
the results of our experiments with adding ‘ex-
tra’ data are in line with this hypothesis. More-
over, the fact that all vocabulary words are rela-
tively far from each other could make the mapping
problem harder. For example, the ‘correct’ near-
est neighbours of dog are pig, toy, and bear; the
model might predict fish, play and bird, which are
‘wrong’ but intuitively do not seem much worse.
We speculate that using a dataset with a more di-
verse similarity structure (i.e. where each word is
very close to some words and further from oth-
ers) could help the model learn a better map-
ping. Yet another issue is contextuality: stan-
dard GloVe embeddings are context-independent
(i.e. a given word always has the same repre-
sentation regardless of its word sense and syntac-
tic position in the sentence), whereas the brain
images are not because they were obtained us-
ing contextualized stimuli (e.g. a word in a sen-
tence). Hence, an interesting question is whether
trying to predict contextualized word embeddings,
obtained using more traditional distributional ap-
proaches (e.g. Erk and Padó, 2010; Thater et al.,
2011) or deep neural language models (e.g. De-
vlin et al., 2018), would be an easier task. Fi-
nally, the success of our experiment with com-
bining participants suggests that using group-level
data can help overcome the challenges inherent in
predicting corpus-based (GloVe) representations
from individual-level (brain) representations.
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