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Abstract
In this paper, we explore a new approach
for automated chess commentary generation,
which aims to generate chess commentary
texts in different categories (e.g., description,
comparison, planning, etc.). We introduce a
neural chess engine into text generation mod-
els to help with encoding boards, predicting
moves, and analyzing situations. By jointly
training the neural chess engine and the gener-
ation models for different categories, the mod-
els become more effective. We conduct exper-
iments on 5 categories in a benchmark Chess
Commentary dataset and achieve inspiring re-
sults in both automatic and human evaluations.

1 Introduction

With games exploding in popularity, the demand
for Natural Language Generation (NLG) applica-
tions for games is growing rapidly. Related re-
searches about generating real-time game reports
(Yao et al., 2017), comments (Jhamtani et al.,
2018; Kameko et al., 2015), and tutorials (Green
et al., 2018a,b) benefit people with entertainments
and learning materials. Among these, chess com-
mentary is a typical task. As illustrated in Fig-
ure 1, the commentators need to understand the
current board and move. And then they comment
about the current move (Description), their judg-
ment about the move (Quality), the game situation
for both sides (Contexts), their analysis (Compar-
ison) and guesses about player’s strategy (Plan-
ning). The comments provide valuable informa-
tion about what is going on and what will happen.
Such information not only make the game more
enjoyable for the viewers, but also help them learn
to think and play. Our task is to design automated
generation model to address all the 5 sub-tasks
(Description, Quality, Comparison, Planning, and
Contexts) of single-move chess commentary.

∗The two authors contributed equally to this paper.

Figure 1: Chess Commentary Examples.

Automatically generating chess comments
draws attention from researchers for a long time.
Traditional template-based methods (Sadikov
et al., 2007) are precise but limited in template
variety. With the development of deep learning,
data-driven methods using neural networks are
proposed to produce comments with high quality
and flexibility. However, generating insightful
comments (e.g., to explain why a move is better
than the others) is still very challenging. Current
neural approaches (Kameko et al., 2015; Jhamtani
et al., 2018) get semantic representations from
raw boards, moves, and evaluation information
(threats and scores) from external chess engines.
Such methods can easily ground comments to cur-
rent boards and moves. But they cannot provide
sufficient analysis on what will happen next in the
game. Although external features are provided by
powerful chess engines, the features are not in a
continuous space, which may be not very suitable
for context modeling and commentary generation.

It is common knowledge that professional game
commentators are usually game players. And ex-
pert players can usually provide more thorough
analysis than amateurs. Inspired by this, we ar-
gue that for chess commentary generation, the
generation model needs to know how to think
and play in order to provide better outputs. In
this paper, we introduce a neural chess engine
into our generation models. The chess engine is
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pre-trained by supervised expert games collected
from FICS Database1 and unsupervised self-play
(Silver et al., 2017a,b) games, and then jointly
trained with the generation models. It is able
to get board representations, predict reasonable
move distributions, and give continuous predic-
tions by self-play. Our generation models are de-
signed to imitate commentators’ thinking process
by using the representations and predictions from
the internal chess engine. And then the models
ground commentary texts to the thinking results
(semantics). We perform our experiments on 5
categories (Description, Quality, Contexts, Com-
parison, Planning) in the benchmark Chess Com-
mentary dataset provided by Harsh (2018). We
tried models with different chess engines having
different playing strength. Both automatic and hu-
man evaluation results show the efficacy and supe-
riority of our proposed models.

The contributions are summarized as follows:

• To the best of our knowledge, we are the first
to introduce a compatible neural chess engine
to the chess comment generation models and
jointly train them, which enables the genera-
tion models benefit a lot from internal repre-
sentations of game playing and analysis.

• On all the 5 categories in the Chess Com-
mentary dataset, our proposed model per-
forms significantly better than previous state-
of-the-art models.

• Our codes for models and data processing
will be released on GitHub2. Experiments
can be easily reproduced and extended.

2 Related Works

The most relevant work is (Jhamtani et al.,
2018). The authors released the Chess Commen-
tary dataset with the state-of-the-art Game Aware
Commentary (GAC) generation models. Their
models generate comments with extracted features
from powerful search-based chess engines. We
follow their work to further explore better solu-
tions on different sub-tasks (categories) in their
dataset. Another relevant research about Shogi (a
similar board game to chess) commentary gener-
ation is from Kameko et al. (2015). They rely
on external tools to extract key words first, and

1https://www.ficsgames.org/
2https://github.com/zhyack/SCC

then generate comments with respect to the key
words. Different from their works, in this paper,
we argue that an internal neural chess engine can
provide better information about the game states,
options and developments. And we design reason-
able models and sufficient experiments to support
our proposal.

Chess engine has been researched for decades
(Levy and Newborn, 1982; Baxter et al., 2000;
David et al., 2017; Silver et al., 2017a). Power-
ful chess engines have already achieved much bet-
ter game strength than human-beings (Campbell
et al., 2002; Silver et al., 2017a). Traditional chess
engines are based on rules and heuristic searches
(Marsland, 1987; Campbell et al., 2002). They are
powerful, but limited to the human-designed value
functions. In recent years, neural models (Silver
et al., 2016, 2017b; David et al., 2017) show their
unlimited potential in board games. Several mod-
els are proposed and can easily beat the best hu-
man players in Go, Chess, Shogi, etc. (Silver et al.,
2017a). Compared to the traditional engines, the
hidden states of neural engines can provide vast
information about the game and have the potential
to be compatible in NLG models. We follow the
advanced techniques and design our neural chess
engine. Apart from learning to play the game, our
engine is designed to make game states compati-
ble with semantic representations, which bridges
the game state space and human language space.
And to realize this, we deploy multi-task learning
(Collobert and Weston, 2008; Sanh et al., 2018) in
our proposed models.

Data-to-text generation is a popular track in
NLG researches. Recent researches are mainly
about generating from structured data to biogra-
phy (Sha et al., 2018), market comments (Mu-
rakami et al., 2017), and game reports (Li and
Wan, 2018). Here we manage to ground the com-
mentary to the game data (boards and moves). Ad-
dressing content selection (Wiseman et al., 2017)
is one of the top considerations in our designs.

3 Our Approach

The overview of our approach is shown in Figure
2. Apart from the text generation models, there are
three crucial modules in our approach: the inter-
nal chess engine, the move encoder, and the multi-
choices encoder. We will first introduce our solu-
tion to all the sub-tasks of chess commentary gen-
eration with the modules as black boxes. And then
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Figure 2: Overview of our chess commentary model.

we describe them in details.

3.1 Our Solutions

In Figure 2, an example is presented with model
structures to demonstrate the way our models solv-
ing all the sub-tasks. The process is impelled
by the internal chess engine. Given the current
board b(0) and move m(0), the engine emulates
the game and provides the current and next board
states together with wining rates of the players.
Besides, the engine also predicts for another op-
tional move m̂(0) from b(0) to make comparisons
to m(0). And then a series of long-term moves
(m(1),m(2), ...) and boards (b(2), b(3), ...) are fur-
ther predicted by the engine in a self-play man-
ner (Silver et al., 2017a,b) for deep analysis. With
the semantics provided by the engine, generation
models are able to predict with abundant and in-
formative contexts. We will first detail the differ-
ent semantic contexts with respect to models for
5 different subtasks. And then we summarize the
common decoding process for all the models.

Description Model: Descriptions about the
current move intuitively depend on the move it-
self. However, playing the same move could have
different motivations under different contexts. For
example, e2e4 is the classic Queen Pawn Open-

ing in a fresh start. But it can be forming a pawn
defense structure in the middle of the game. Dif-
ferent from previous works for chess commentary
generation (Jhamtani et al., 2018; Kameko et al.,
2015), we find all kinds of latent relationships in
the current board vital for current move analysis.
Therefore, our description model takes the rep-
resentation of both b(0) and m(0) from the move
encoder fME as semantic contexts to produce de-
scription comment YDesc. The description model
is formulated as Eq.1.

fDescription(fME(b
(0),m(0)))→ YDesc (1)

Quality Model: Harsh et al. (2018) find the
wining rate features benefit the generation mod-
els on Quality category. Inspired by this, we con-
catenate the current board state E

(0)
S , the next

board state E
(1)
S , and the wining rate difference

v(1) − v(0) as semantic contexts for the decoder.
And to model the value of wining rate difference,
we introduce a weight matrix Wdiff to map the
board state-value pair [E

(0)
S ;E

(1)
S ; v(1) − v(0)] to

the same semantic space of the other contexts by
Eq.2. Our quality model is formulated as Eq.3,
where YQual is the target comment about quality.

ED = Wdiff [E
(0)
S ;E

(1)
S ; v(1) − v(0)] (2)
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fQuality(E
(0)
S , E

(1)
S , ED)→ YQual (3)

Comparison Model: Usually, there are more
than 10 possible moves in a given board. But
not all of them are worth considering. Kameko
et al. (2015) propose an interesting phenomenon
in chess commentary: when the expert commenta-
tors comment about a bad move, they usually ex-
plain why the move is bad by showing the right
move, but not another bad move. Inspired by
this, we only consider the true move m(0) and the
potential best move m̂(0) (decided by the inter-
nal chess engine) as options for the comparison
model. And the semantic contexts for the options
are encoded by the multi-choices encoder. We de-
fine the comparison model as Eq.4 , where fMCE

is the multi-choices encoder, b(1) is the board after
executing m(0) on b(0), b̂(1) is the board after exe-
cuting m̂(0) on b(0), and YComp is the target com-
ment about comparison.

fComparison(fMCE((b
(1),m(0)), (b̂(1), m̂(0))))

→ YComp (4)

Planning Model: We can always find such
scenes where commentators try to predict what
will happen assuming they are playing the game.
And then they give analysis according to their sim-
ulations. Our internal chess engine is able to sim-
ulate and predict the game in a similar way (self-
play). We realize our model for planning by im-
itating the human commentators’ behavior. Pre-
dicted moves and boards are processed by our
multi-choices encoder to tell the potential big mo-
ments in the future. And we use the multi-choices
encoder fMCE to produce the semantic contexts
for the decoder. The process to generate planning
comment YPlan is described in Eq.5.

fPlanning(fMCE((b
(2),m(1)), (b(3),m(2)),

(b(4),m(3)), ...))→ YPlan (5)

Contexts Model: To analyze the situation of
the whole game, the model should know about not
only the current, but also the future. And similar
to the planning model, contexts model takes a se-
ries of long-term moves and boards produced by
self-play predictions as inputs. In this way, the
model comments the game in a god-like perspec-
tive. And the semantic contexts is also processed
by the multi-choices encoder for generating con-

texts comment YCont as Eq.6.

fContexts(fMCE((b
(1),m(0)), (b(2),m(1)),

(b(3),m(2)), (b(4),m(3)), ...))→ YCont (6)

Each of the above models has a decoder (the
hexagon blocks in Figure 2) for text generation
and we use LSTM decoders (Sundermeyer et al.,
2012). And we use cross entropy loss function
for training. The function is formalized as Eq.7,
where Y is the gold standard outputs.

LossGen = −logp(Y |b(0);m(0)) (7)

We denote E ∈ IRn×d as a bunch of raw context
vectors, where n is the number of such context
vectors and d is the dimension of the vectors. Al-
though the semantic contexts E for different gen-
eration models are different as described before,
we regard all of the board states, wining rates,
and move representations as general semantic con-
texts. And we use attention mechanism (Bahdanau
et al., 2015; Luong et al., 2015) to gather informa-
tion from the contexts. For example, assuming that
we have a hidden vector h drawing from LSTM
units, to decode with the semantic contexts, we
use the score function f of Luong attention (Lu-
ong et al., 2015) as

f(X, y) = XWy, (8)

to calculate the attention weights a for vectors in
E, where W is a transformation function for the
attentional context vectors. The scores are further
normalized by a softmax function to a by

a = softmax(f(E, h)). (9)

We compute weighted sum of E with a to produce
the attentional context vector z for word decoding

z = E>a. (10)

3.2 The Internal Chess Engine
The internal chess engine is in charge of the map-
ping from board B to semantic representation
ES , predicting possibility distribution D on valid
moves, and evaluating the wining rate v for the
players. In previous works (Jhamtani et al., 2018;
Kameko et al., 2015), researchers use discrete in-
formation (threats, game evaluation scores, etc.)
analyzed by external chess engine to build seman-
tic representations. It limits the capability of the
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representations by simply mapping the indepen-
dent features. Our internal chess engine is able to
mine deeper relations and semantics with the raw
board as input. And it can also make predictions
in a continuous semantic space, increasing the ca-
pability and robustness for generation.

Following advanced researches in neural chess
engines (David et al., 2017; Silver et al., 2017a),
we split the input raw board into 20 feature planes
F for the sake of machine understanding. There
are 12 planes for pieces’ (pawn, rook, knight,
bishop, queen, king) positions of each player, 4
planes for white’s repetitions, black’s repetitions,
total moves, and moves with no progress, and 4
planes for 2 castling choices of each player. The
feature planes F are encoded by several CNN lay-
ers to produce sufficient information for seman-
tic representation ES . Like previous researches
on chess engines, ES is used to predict the move
possibility distribution D and the wining rate v by
fully connected layers. But different from those
pure engines, we share the board state ES with
generation models in a multi-task manner (Col-
lobert and Weston, 2008). The engine is designed
not only for playing, but also for expressing. Our
generation models use ES as part of the inputs to
get better understanding of the game states.

Given the tuple of game replays (B,M, v′)
where M is the corresponding move and v′ is the
ground truth wining rate, we optimize the engine’s
policy, value function at the same time as Eq.11
shows. When the engine grows stronger, we let the
engine produce data by itself in a self-play manner
(Silver et al., 2017a). Besides, the engine jointly
optimizes LossGen when training generative mod-
els.

LossEng = −logp(M |B) + (v − v′)2 (11)

3.3 The Move Encoder
Apart from understanding the board B, commen-
tators also need to know the semantics of the move
M . Besides using the chess engine to produce
board representations ES , the move encoders also
prepare for move embeddings EM as attention
contexts for the text decoders. We set the features
of the move (starting cell, the move ending cell,
the piece at the starting cell, the piece at the ending
cell, the promotion state, and the checking state) as
a sequential input to a bi-directional RNN (Schus-
ter and Paliwal, 1997). When a decoder requests
attention contexts for hidden state h, the encoder

offers E = [EM ;ES ] to build attentional context
vector following Eq.9 and Eq.10.

3.4 The Multi-Choices Encoder
For Comparison, Planning, and Contexts, there
are multiple moves derived from variations and
predictions. The model needs to find the bright
spots to describe. To encode these moves and of-
fer precise information for the generation models,
we propose a multi-choices encoder. Human com-
mentators usually choose different aspects to com-
ment according to their experiences. We use a
global vector g to store our models’ experiences
and choose important moves to comment. Note
that g is to be learned. In module (c) of Figure
2, we denote Ei

M as the output vectors of the i-
th move encoder, Ei

S as the board state of the i-th
board, and Ei

V as the embedding of wining rate vi

of the i-th board. To model the wining rate value,
we introduce a mapping matrix Mval and process
the state-value pair to the value embedding as

Ei
V = Wval[E

i
S , v

i]. (12)

Then we calculate the soft weights of choices
c = {c1, c2, ...} with respect to the board states
S = {E1

S , E
2
S , ...} by Eq.13. For hidden state

vector h from decoder, attention weight matrix
A = {A1, A2, ...} are scaled by c via Eq.14. And
we finally get attentional context vector z accord-
ing to A by Eq.15. This approach enables gen-
eration models to generate comments with atten-
tion to intriguing board states. And the attention
weights can be more accurate when g accumulates
abundant experiences in training.

c = softmax(gS) (13)

Ai = ci ∗softmax(f([Ei
M ;Ei

S ;E
i
V ], h)) (14)

z =
∑
i

([Ei
M ;Ei

S ;E
i
V ])
>Ai (15)

4 Experiments

4.1 Dataset
We conduct our experiments on recently proposed
Chess Commentary dataset3 (Jhamtani et al.,
2018). In this dataset, Harsh et al. (2018) col-
lect and process 11,578 annotated chess games
from a large social forum GAMEKNOT4. There
are 298K aligned data pairs of game moves and

3https://github.com/harsh19/ChessCommentaryGeneration/
4https://gameknot.com
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commentaries. The dataset is split into training
set, validation set and test set as a 7:1:2 ratio with
respect to the games. As the GAMEKNOT is a
free-speech forum, the comments can be very free-
wheeling in grammar and morphology. The in-
formal language style and unpredictable expres-
sion tendency make a big challenge for data-driven
neural generation models. To narrow down the
expression tendency, Harsh et al. (2018) classify
the dataset into 6 categories: Description, Qual-
ity, Comparison, Planning, Contexts, and Gen-
eral. The General category is usually about the
player and tournament information, which needs
external knowledge irrelevant to game analysis.
We do not conduct experiments on the last cate-
gory.

And for the training of chess engine, we col-
lect all of the standard chess game records in the
past 10 years from FICS Games Database. And
we remove the games where any player’s rating
below 2,000. There are 36M training data (for sin-
gle move step) after cleaning.

4.2 Experiment Settings and Baselines
We train our neural chess engine using mixed data
consisting of supervised FICS data and unsuper-
vised self-play data. The number of self-play
games are set to 0 initially. And it will be in-
creased by 1 when the trained model beats the pre-
vious best version (with a wining rate larger than
0.55 in 20 games). During 400 iterations of train-
ing, we pick one strong engine and one weak en-
gine for further experiments. The stronger engine
loses 1 game and draws 55 games to the weak en-
gine in 100 games. As mentioned in Section 3.2,
when training generation models, we use the pre-
trained chess engine and fine-tune it with the gen-
eration models.

Here we introduce our models and baselines in
the experiments. We call our models the Skilled
Chess Commentator (SCC) as they have the skills
of playing chess.

• SCC-weak: The generation models are in-
tegrated with the weak engine mentioned
above, and they are trained independently
with respect to the 5 categories in Chess
Commentary dataset.

• SCC-strong: The model is similar to SCC-
weak, but integrated with the strong engine.

• SCC-mult: This is a multi-task learning

model where generation models for differ-
ent categories share the strong chess engine,
move encoder, the multi-choices encoder and
the value mapping matrix Wval.

• GAC: The state-of-the-art method proposed
by Harsh et al. (2018). Their models incorpo-
rate the domain knowledge provided by ex-
ternal chess engines. Their models only work
for first 3 categories: Description, Quality,
and Comparison. We will compare our re-
sults with GAC on these categories.

• KWG: Another state-of-the-art method for
game commentary generation (Kameko et al.,
2015). It is a pipeline method based on key-
word generation. We compare the results on
all data categories.

• Temp: This is a template-based baseline
methods. Together with the dataset, Harsh
et al. (2018) provide templates for the first
two categories. Inspired by (Sadikov et al.,
2006), we extend the templates to fit for all
the 5 categories.

• Re: This is a retrieval-based baseline method.
For each input in the test set, we find the most
matched datum in the training set by numbers
of matched input board and move features.

4.3 Evaluation Metrics
We develop both automatic evaluations and human
evaluations to compare the models.

For automatic evaluations, we use BLEU (Pap-
ineni et al., 2002) and METEOR (Denkowski and
Lavie, 2014) to evaluate the generated comments
with ground-truth outputs. BLEU evaluates the
modified precision between the predicted texts and
gold-standard references on corpus level. Evaluat-
ing with 4-grams (BLEU-4 5) is the most popular
way in NLG researches. However, for tasks like
dialogue system (Li et al., 2016), story telling gen-
eration (Jain et al., 2017), and chess commentary
(Jhamtani et al., 2018), the outputs can be rather
short and free expressions. Under such circum-
stances, brevity penalty for 4-grams can be too
strict and makes the results unbalanced. We use
BLEU-2 6 to show more steady results with BLEU

5https://github.com/moses-smt/mosesdecoder/blob/
master/scripts/generic/multi-bleu.perl

6https://github.com/harsh19/ChessCommentaryGeneration/
blob/master/Code/methods/category aware/BLEU2.perl
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BLEU-4 (%) Temp Re KWG GAC SCC-weak SCC-strong SCC-mult
Description 0.82 1.24 1.22 1.42 1.23 1.31 1.34

Quality 13.71 4.91 13.62 16.90 16.83 18.87 20.06
Comparison 0.11 1.03 1.07 1.37 2.33 3.05 2.53

Planning 0.05 0.57 0.84 N/A 1.07 0.99 0.90
Contexts 1.94 2.70 4.39 N/A 4.04 6.21 4.09

BLEU-2 (%) Temp Re KWG GAC SCC-weak SCC-strong SCC-mult
Description 24.42 22.11 18.69 19.46 23.29 25.98 25.87

Quality 46.29 39.14 55.13 47.80 58.53 61.13 61.62
Comparison 7.33 22.58 20.06 24.89 24.85 27.48 23.47

Planning 3.38 20.34 22.02 N/A 22.28 25.82 24.32
Contexts 26.03 30.12 31.58 N/A 37.32 41.59 38.59

METEOR (%) Temp Re KWG GAC SCC-weak SCC-strong SCC-mult
Description 6.26 5.27 6.07 6.19 6.03 6.83 7.10

Quality 22.95 17.01 22.86 24.20 24.89 25.57 25.37
Comparison 4.27 8.00 7.70 8.54 8.25 9.44 9.13

Planning 3.05 6.00 6.76 N/A 6.18 7.14 7.30
Contexts 9.46 8.90 10.31 N/A 11.07 11.76 11.09

Table 1: Automatic evaluation results.

evaluation algorithm. We also use METEOR as a
metric, whose results are more closed to a normal
distribution (Dobre, 2015).

We also conduct human evaluation to make
more convincing comparisons. We recruit 10
workers on Amazon Mechanical Turk7 to evaluate
150 groups of samples (30 from each category).
Each sample is assigned to exactly 2 workers. The
workers rate 8 shuffled texts (for Ground Truth,
Temp, Re, GAC, KWG, and SCC models) for the
following 4 aspect in a 5-pt Likert scale8.

• Fluency: Whether the comment is fluent and
grammatical.

• Accuracy: Whether the comment correctly
describes current board and move.

• Insights: Whether the comment makes ap-
propriate predictions and thorough analysis.

• Overall: The annotators’ overall impression
about comments.

4.4 Results and Analysis

We present the automatic evaluation results in Ta-
ble 1. Our SCC models outperform all of the base-
lines and previous state-of-the-art models. Temp

7https://www.mturk.com
8https://en.wikipedia.org/wiki/Likert scale

is limited by the variety of templates. It is compet-
itive with the neural models on Description and
Quality due to limited expressions in these tasks.
But when coming to Comparison, Planning and
Contexts, Temp shows really bad performances.
Re keeps flexibility by copying the sentences from
training set. But it does not perform well, either.
The ability of Re is limited by the sparse search-
ing space, where there are 90,743 data in the train-
ing set, but 1043 possible boards9 for chess game.
KWG and GAC provide competitive results. With
the help of external information from powerful
chess engines, GAC shows good performances on
Quality and Comparison. Although our internal
chess engine is no match for the external engines
that GAC uses at playing chess, it turns out that
our models with directly internal information can
better bridge the semantic spaces of chess game
and comment language. As for the comparisons
within our models, SCC-strong turns to be bet-
ter than SCC-weak, which supports our assump-
tion that better skills enable more precise predic-
tions, resulting in better comments. Training with
multi-task learning seems to hurt the overall per-
formances a little. But SCC-mult still has the
state-of-the-art performances. And more impor-
tant, it can react to all sub-tasks as a whole.

The human annotators are required to be good

9https://en.wikipedia.org/wiki/Shannon number
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Figure 3: Samples for case study.

Models Fluency Accuracy Insights Overall
Ground Truth 4.02 3.88 3.58 3.84

Temp 4.05 4.03 3.02 3.56
Re 3.71 3.00 2.80 2.85

KWG 3.51 3.24 2.93 3.00
SCC-weak 3.63 3.62 3.32 3.30
SCC-strong 3.81 3.74 3.49 3.49
SCC-mult 3.82 3.91 3.51 3.61

GAC* 3.68 3.32 2.99 3.14
SCC-mult* 3.83 3.99 3.46 3.52

Table 2: Human evaluation results. Models marked
with * are evaluated only for the Description, Qual-
ity, and Comparison categories. The underlined results
are significantly worse than those of SCC-mult(*) in a
two-tail T-test (p<0.01).

at playing chess. That is to say, they are the true
audiences of the commentator researches and ap-
plications. By introducing human evaluations, we
further reveal the performances in the perspective
of the audiences. We show the average scores
and significance test results in Table 2. We fur-
ther demonstrate the efficacy of our models with
significantly better overall performances than the
retrieval-based model and previous state-of-the-art
ones. It is worth noting that the evaluations about
Accuracy and Insights show that our models can
produce more precise and thorough analysis owing
to the internal chess engine. SCC-mult and SCC-
strong perform better than SCC-weak in Accu-
racy and Overall scores. It also supports the points
that the our commentary model can be improved
with better internal engine.

4.5 Case Study
To have a better view of comparisons among
model outputs, we present and analyze some sam-
ples in Figure 3. In these samples, our model

refers to SCC-mult.
For the first example, black can exchange

white’s e3 knight and e4 pawn with the b4 bishop
if white takes no action. But white chooses to pro-
tect the e3 knight with the g1 knight. All the mod-
els generate comments about Description. Temp
directly describes the move without explanation.
Re finds similar situation in the training set and ex-
plains the move as defense and developing. KWG
is right about developing, but wrong about the po-
sition of the knight and the threats. GAC pro-
duces safe comment about the developing. And
our model has a better understanding about the
boards. It annotates the move correctly and even
gives the reason why white plays this move.

For the second example, the game is at the 3rd
turn. White gives up the pawn on d5 and chooses
to push the queen’s pawn. Re and KWG both
make a mistake and recognize the move d2d4 as
Queen Pawn Opening. Temp thinks white is go-
ing to win because white have the advantage of
one more pawn. However, Temp cannot predict
that white will lose the advantage in the next move.
Our model is able to predict the future moves via
self-play. And it draws the conclusion that push-
ing the queen’s pawn can open up the ways for the
queen and bishop for future planning.

5 Conclusion and Future Work

In this work we propose a new approach for au-
tomated chess commentary generation. We come
up with the idea that models capable of playing
chess will generate good comments, and models
with better playing strength will perform better in
generation. By introducing a compatible chess en-
gine to comment generation models, we get mod-
els that can mine deeper information and ground
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more insightful comments to the input boards and
moves. Comprehensive experiments demonstrate
the effectiveness of our models.

Our experiment results show the direction to
further developing the state-of-the-art chess en-
gine to improve generation models. Another inter-
esting direction is to extend our models to multi-
move commentary generation tasks. And unsuper-
vised approaches to leverage massive chess com-
ments in social media is also worth exploring.
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