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Abstract

De-identification is the task of detecting pro-
tected health information (PHI) in medical
text. It is a critical step in sanitizing electronic
health records (EHRs) to be shared for re-
search. Automatic de-identification classifiers
can significantly speed up the sanitization pro-
cess. However, obtaining a large and diverse
dataset to train such a classifier that works well
across many types of medical text poses a chal-
lenge as privacy laws prohibit the sharing of
raw medical records. We introduce a method
to create privacy-preserving shareable repre-
sentations of medical text (i.e. they contain
no PHI) that does not require expensive man-
ual pseudonymization. These representations
can be shared between organizations to create
unified datasets for training de-identification
models. Our representation allows training a
simple LSTM-CRF de-identification model to
an F1 score of 97.4%, which is comparable
to a strong baseline that exposes private infor-
mation in its representation. A robust, widely
available de-identification classifier based on
our representation could potentially enable
studies for which de-identification would oth-
erwise be too costly.

1 Introduction

Electronic health records (EHRs) are are valuable
resource that could potentially be used in large-
scale medical research (Botsis et al., 2010; Birk-
head et al., 2015; Cowie et al., 2017). In addition
to structured medical data, EHRs contain free-text
patient notes that are a rich source of information
(Jensen et al., 2012). However, due to privacy
and data protection laws, medical records can only
be shared and used for research if they are sani-
tized to not include information potentially identi-
fying patients. The PHI that may not be shared in-
cludes potentially identifying information such as
names, geographic identifiers, dates, and account

numbers; the American Health Insurance Porta-
bility Accountability Act1 (HIPAA, 1996) defines
18 categories of PHI. De-identification is the task
of finding and labeling PHI in medical text as a
step toward sanitization. As the information to
be removed is very sensitive, sanitization always
requires final human verification. Automatic de-
identification labeling can however significantly
speed up the process, as shown for other annota-
tion tasks in e.g. Yimam (2015).

Trying to create an automatic classifier for de-
identification leads to a “chicken and egg prob-
lem” (Uzuner et al., 2007): without a compre-
hensive training set, an automatic de-identification
classifier cannot be developed, but without ac-
cess to automatic de-identification, it is difficult to
share large corpora of medical text in a privacy-
preserving way for research (including for train-
ing the classifier itself). The standard method of
data protection compliant sharing of training data
for a de-identification classifier requires humans to
pseudonymize protected information with substi-
tutes in a document-coherent way. This includes
replacing e.g. every person or place name with
a different name, offsetting dates by a random
amount while retaining date intervals, and replac-
ing misspellings with similar misspellings of the
pseudonym (Uzuner et al., 2007).

In 2019, a pseudonymized dataset for de-
identification from a single source, the i2b2 2014
dataset, is publicly available (Stubbs and Uzuner,
2015). However, de-identification classifiers
trained on this dataset do not generalize well to
data from other sources (Stubbs et al., 2017).
To obtain a universal de-identification classifier,
many medical institutions would have to pool their
data. But, preparing this data for sharing us-
ing the document-coherent pseudonymization ap-

1https://legislink.org/us/pl-104-191
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Figure 1: Sharing training data for de-identification. PHI annotations are marked with [brackets]. Upper alter-
native: traditional process using manual pseudonymization. Lower alternative: our approach of sharing private
vector representations. The people icon represents tasks done by humans; the gears icon represents tasks done by
machines; the lock icon represents privacy-preserving artifacts. Manual pseudonymization is marked with a dollar
icon to emphasize its high costs.

proach requires large human effort (Dernoncourt
et al., 2017).

To address this problem, we introduce an ad-
versarially learned representation of medical text
that allows privacy-preserving sharing of training
data for a de-identification classifier by transform-
ing text non-reversibly into a vector space and
only sharing this representation. Our approach
still requires humans to annotate PHI (as this is
the training data for the actual de-identification
task) but the pseudonymization step (replacing
PHI with coherent substitutes) is replaced by the
automatic transformation to the vector representa-
tion instead. A classifier then trained on our rep-
resentation cannot contain any protected data, as it
is never trained on raw text (as long as the repre-
sentation does not allow for the reconstruction of
sensitive information). The traditional approach to
sharing training data is conceptually compared to
our approach in Fig. 1.

2 Related Work

Our work builds upon two lines of research: firstly
de-identification, as the system has to provide
good de-identification performance, and secondly
adversarial representation learning, to remove all
identifying information from the representations
to be distributed.

2.1 Automatic De-Identification
Analogously to many natural language process-
ing tasks, the state of the art in de-identification
changed in recent years from rule-based systems
and shallow machine learning approaches like
conditional random fields (CRFs) (Uzuner et al.,

2007; Meystre et al., 2010) to deep learning meth-
ods (Stubbs et al., 2017; Dernoncourt et al., 2017;
Liu et al., 2017).

Three i2b2 shared tasks on de-identification
were run in 2006 (Uzuner et al., 2007), 2014
(Stubbs et al., 2015), and 2016 (Stubbs et al.,
2017). The organizers performed manual pseu-
donymization on clinical records from a single
source to create the datasets for each of the tasks.
An F1 score of 95% has been suggested as a target
for reasonable de-identification systems (Stubbs
et al., 2015).

Dernoncourt et al. (2017) first applied a
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) model with a CRF output
component to de-identification. Transfer learn-
ing from a larger dataset slightly improves perfor-
mance on the i2b2 2014 dataset (Lee et al., 2018).
Liu et al. (2017) achieve state-of-the-art perfor-
mance in de-identification by combining a deep
learning ensemble with a rule component.

Up to and including the 2014 shared task, the
organizers emphasized that it is unclear if a sys-
tem trained on the provided datasets will general-
ize to medical records from other sources (Uzuner
et al., 2007; Stubbs et al., 2015). The 2016 shared
task featured a sight-unseen track in which de-
identification systems were evaluated on records
from a new data source. The best system achieved
an F1 score of 79%, suggesting that systems at
the time were not able to deliver sufficient per-
formance on completely new data (Stubbs et al.,
2017).
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2.2 Adversarial Representation Learning

Fair representations (Zemel et al., 2013; Hamm,
2015) aim to encode features of raw data that al-
lows it to be used in e.g. machine learning algo-
rithms while obfuscating membership in a pro-
tected group or other sensitive attributes. The
domain-adversarial neural network (DANN) ar-
chitecture (Ganin et al., 2016) is a deep learning
implementation of a three-party game between a
representer, a classifier, and an adversary compo-
nent. The classifier and the adversary are deep
learning models with shared initial layers. A gra-
dient reversal layer is used to worsen the represen-
tation for the adversary during back-propagation:
when training the adversary, the adversary-specific
part of the network is optimized for the adversarial
task but the shared part is updated against the gra-
dient to make the shared representation less suit-
able for the adversary.

Although initially conceived for use in domain
adaptation, DANNs and similar adversarial deep
learning models have recently been used to obfus-
cate demographic attributes from text (Elazar and
Goldberg, 2018; Li et al., 2018) and subject iden-
tity (Feutry et al., 2018) from images. Elazar and
Goldberg (2018) warn that when a representation
is learned using gradient reversal methods, contin-
ued adversary training on the frozen representa-
tion may allow adversaries to break representation
privacy. To test whether the unwanted informa-
tion is not extractable from the generated informa-
tion anymore, adversary training needs to continue
on the frozen representation after finishing train-
ing the system. Only if after continued adversary
training the information cannot be recovered, we
have evidence that it really is not contained in the
representation anymore.

3 Dataset and De-Identification Model

We evaluate our approaches using the i2b2 2014
dataset (Stubbs and Uzuner, 2015), which was re-
leased as part of the 2014 i2b2/UTHealth shared
task track 1 and is the largest publicly available
dataset for de-identification today. It contains
1304 free-text documents with PHI annotations.
The i2b2 dataset uses the 18 categories of PHI de-
fined by HIPAA as a starting point for its own set
of PHI categories. In addition to the HIPAA set
of categories, it includes (sub-)categories such as
doctor names, professions, states, countries, and
ages under 90.

Hyperparameter Value

Pre-trained embeddings FastText, GloVe
Casing feature Yes
Batch size 32
Number of LSTM layers 2
LSTM units per layer/dir. 128
Input embedding dropout 0.1
Variational dropout 0.25
Dropout after LSTM 0.5
Optimizer Nadam
Gradient norm clipping 1.0

Table 1: Hyperparameter configuration of our de-
identification model.

We compare three different approaches: a non-
private de-identification classifier and two privacy-
enabled extensions, automatic pseudonymization
(Section 4) and adversarially learned representa-
tions (Section 5).

Our non-private system as well as the privacy-
enabled extensions are based on a bidirectional
LSTM-CRF architecture that has been proven to
work well in sequence tagging (Huang et al., 2015;
Lample et al., 2016) and de-identification (Der-
noncourt et al., 2017; Liu et al., 2017). We only
use pre-trained FastText (Bojanowski et al., 2017)
or GloVe (Pennington et al., 2014) word embed-
dings, not explicit character embeddings, as we
suspect that these may allow easy re-identification
of private information if used in shared represen-
tations. In place of learned character features,
we provide the casing feature from Reimers and
Gurevych (2017) as an additional input. The fea-
ture maps words to a one-hot representation of
their casing (numeric, mainly numeric, all lower,
all upper, initial upper, contains digit, or other).

Table 1 shows our raw de-identification model’s
hyperparameter configuration that was determined
through a random hyperparameter search.

4 Automatic Pseudonymization

To provide a baseline to compare our primary ap-
proach against, we introduce a naı̈ve word-level
automatic pseudonymization approach that ex-
ploits the fact that state-of-the-art de-identification
models (Liu et al., 2017; Dernoncourt et al., 2017)
as well as our non-private de-identification model
work on the sentence level and do not rely on doc-
ument coherency. Before training, we shuffle the
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Figure 2: Simplified visualization of the adversarial
model architecture. Sequences of squares denote real-
valued vectors, dotted arrows represent possible addi-
tional real or fake inputs to the adversary. The cas-
ing feature that is provided as a second input to the de-
identification model is omitted for legibility.

training sentences and replace all PHI tokens with
a random choice of a fixed numberN of their clos-
est neighbors in an embedding space (including
the token itself), as determined by cosine distance
in a pre-computed embedding matrix.

Using this approach, the sentence

[James] was admitted to [St. Thomas]

may be replaced by

[Henry] was admitted to [Croix Scott].

While the resulting sentences do not necessarily
make sense to a reader (e.g. “Croix Scott” is not
a realistic hospital name), its embedding represen-
tation is similar to the original. We train our de-
identification model on the transformed data and
test it on the raw data. The number of neighbors
N controls the privacy properties of the approach:
N = 1 means no pseudonymization; setting N to
the number of rows in a precomputed embedding
matrix delivers perfect anonymization but the re-
sulting data may be worthless for training a de-
identification model.

5 Adversarial Representation

We introduce a new data sharing approach that is
based on an adversarially learned private repre-

sentation and improves on the pseudonymization
from Section 4. After training the representation
on an initial publicly available dataset, e.g. the
i2b2 2014 data, a central model provider shares
the frozen representation model with participating
medical institutions. They transform their PHI-
labeled raw data into the pseudonymized repre-
sentation, which is then pooled into a new pub-
lic dataset for de-identification. Periodically, the
pipeline consisting of the representation model
and a trained de-identification model can be pub-
lished to be used by medical institutions on their
unlabeled data.

Since both the representation model and the re-
sulting representations are shared in this scenario,
our representation procedure is required to prevent
two attacks:

A1. Learning an inverse representation model that
transforms representations back to original
sentences containing PHI.

A2. Building a lookup table of inputs and their ex-
act representations that can be used in known
plaintext attacks.

5.1 Architecture

Our approach uses a model that is composed of
three components: a representation model, the de-
identification model from Section 3, and an adver-
sary. An overview of the architecture is shown in
Fig. 2.

The representation model maps a sequence of
word embeddings to an intermediate vector rep-
resentation sequence. The de-identification model
receives this representation sequence as an input
instead of the original embedding sequence. It re-
tains the casing feature as an auxiliary input. The
adversary has two inputs, the representation se-
quence and an additional embedding or represen-
tation sequence, and a single output unit.

5.2 Representation

To protect against A1, our representation must be
invariant to small input changes, like a single PHI
token being replaced with a neighbor in the em-
bedding space. Again, the number of neighborsN
controls the privacy level of the representation.

To protect against A2, we add a random element
to the representation that makes repeated trans-
formations of one sentence indistinguishable from
representations of similar input sentences.
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We use a bidirectional LSTM model to imple-
ment the representation. It applies Gaussian noise
N with zero mean and trainable standard devia-
tions to the input embeddings E and the output
sequence. The model learns a standard deviation
for each of the input and output dimensions.

R = Nout + LSTM(E +Nin) (1)

In a preliminary experiment, we confirmed
that adding noise with a single, fixed standard
deviation is not a viable approach for privacy-
preserving representations. To change the cosine
similarity neighborhoods of embeddings at all, we
need to add high amounts of noise (more than
double of the respective embedding matrix’s stan-
dard deviation), which in turn results in unreal-
istic embeddings that do not allow training a de-
identification model of sufficient quality.

In contrast to the automatic pseudonymization
approach from Section 4 that only perturbs PHI
tokens, the representation models in this approach
processes all tokens to represent them in a new
embedding space. We evaluate the representation
sizes d ∈ {50, 100, 300}.

5.3 Adversaries

We use two adversaries that are trained on tasks
that directly follow from A1 and A2:

T1. Given a representation sequence and an em-
bedding sequence, decide if they were ob-
tained from the same sentence.

T2. Given two representation sequences (and
their cosine similarities), decide if they were
obtained from the same sentence.

We generate the representation sequences for the
second adversary from a copy of the representa-
tion model with shared weights. We generate real
and fake pairs for adversarial training using the au-
tomatic pseudonymization approach presented in
Section 4, limiting the number of replaced PHI to-
kens to one per sentence.

The adversaries are implemented as bidirec-
tional LSTM models with single output units. We
confirmed that this type of model is able to learn
the adversarial tasks on random data and raw word
embeddings in preliminary experiments. To use
the two adversaries in our architecture, we aver-
age their outputs.

R

AD

1.

R

AD

2.

R

AD

3. a)

R

AD

3. b)

Figure 3: Visualization of Feutry et al.’s three-part
training procedure. The adversarial model layout fol-
lows Fig. 2: the representation model is at the bottom,
the left branch is the de-identification model and the
right branch is the adversary. In each step, the thick
components are trained while the thin components are
frozen.

5.4 Training

We evaluate two training procedures: DANN
training (Ganin et al., 2016) and the three-part pro-
cedure from Feutry et al. (2018).

In DANN training, the three components are
trained conjointly, optimizing the sum of losses.
Training the de-identification model modifies the
representation model weights to generate a more
meaningful representation for de-identification.
The adversary gradient is reversed with a gradi-
ent reversal layer between the adversary and the
representation model in the backward pass, caus-
ing the representation to become less meaningful
for the adversary.

The training procedure by Feutry et al. (2018)
is shown in Fig. 3. It is composed of three phases:

P1. The de-identification and representation
models are pre-trained together, optimizing
the de-identification loss ldeid.

P2. The representation model is frozen and the
adversary is pre-trained, optimizing the ad-
versarial loss ladv.

P3. In alternation, for one epoch each:

(a) The representation is frozen and both
de-identification model and adversary
are trained, optimizing their respective
losses ldeid and ladv.

(b) The de-identification model and adver-
sary are frozen and the representation is
trained, optimizing the combined loss

lrepr = ldeid + λ|ladv − lrandom| (2)

In each of the first two phases, the respective val-
idation loss is monitored to decide at which point
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the training should move on to the next phase.
The alternating steps in the third phase each last
one training epoch; the early stopping time for the
third phase is determined using only the combined
validation loss from Phase P3b.

Gradient reversal is achieved by optimizing the
combined representation loss while the adversary
weights are frozen. The combined loss is moti-
vated by the fact that the adversary performance
should be the same as a random guessing model,
which is a lower bound for anonymization (Feutry
et al., 2018). The term |ladv− lrandom| approaches 0
when the adversary performance approaches ran-
dom guessing2. λ is a weighting factor for the two
losses; we select λ = 1.

6 Experiments

To evaluate our approaches, we perform experi-
ments using the i2b2 2014 dataset.

Preprocessing: We apply aggressive tokeniza-
tion similarly to Liu et al. (2017), including split-
ting at all punctuation marks and mid-word e.g. if
a number is followed by a word (“25yo” is split
into “25”, “yo”) in order to minimize the amount
of GloVe out-of-vocabulary tokens. We extend
spaCy’s3 sentence splitting heuristics with addi-
tional rules for splitting at multiple blank lines as
well as bulleted and numbered list items.

Deep Learning Models: We use the Keras
framework4 (Chollet et al., 2015) with the Tensor-
Flow backend (Abadi et al., 2015) to implement
our deep learning models.

Evaluation: In order to compare our results to
the state of the art, we use the token-based bi-
nary HIPAA F1 score as our main metric for de-
identification performance. Dernoncourt et al.
(2017) deem it the most important metric: decid-
ing if an entity is PHI or not is generally more im-
portant than assigning the correct category of PHI,
and only HIPAA categories of PHI are required to
be removed by American law. Non-PHI tokens are
not incorporated in the F1 score. We perform the
evaluation with the official i2b2 evaluation script5.

2In the case of binary classification: Lrandom = − log 1
2

.
3https://spacy.io
4https://keras.io
5https://github.com/kotfic/i2b2_

evaluation_scripts

Model F1 (%)

Our non-private FastText 97.67
Our non-private GloVe 97.24
Our non-private GloVe + casing 97.62

Dernoncourt et al. (LSTM-CRF) 97.85
Liu et al. (ensemble + rules) 98.27

Our autom. pseudon. FastText 96.75
Our autom. pseudon. GloVe 96.42

Our adv. repr. FastText 97.40
Our adv. repr. GloVe 96.89

Table 2: Binary HIPAA F1 scores of our non-private
(top) and private (bottom) de-identification approaches
on the i2b2 2014 test set in comparison to non-private
the state of the art. Our private approaches use N =
100 neighbors as a privacy criterion.

7 Results

Table 2 shows de-identification performance re-
sults for the non-private de-identification classifier
(upper part, in comparison to the state of the art) as
well as the two privacy-enabled extensions (lower
part). The results are average values out of five
experiment runs.

7.1 Non-private De-Identification Model

When trained on the raw i2b2 2014 data, our mod-
els achieve F1 scores that are comparable to Der-
noncourt et al.’s results. The casing feature im-
proves GloVe by 0.4 percentage points.

7.2 Automatic Pseudonymization

For both FastText and GloVe, moving training PHI
tokens to random tokens from up to theirN = 200
closest neighbors does not significantly reduce de-
identification performance (see Fig. 4). F1 scores
for both models drop to around 95% when se-
lecting from N = 500 neighbors and to around
90% when using N = 1000 neighbors. With
N = 100, the FastText model achieves anF1 score
of 96.75% and the GloVe model achieves an F1

score of 96.42%.

7.3 Adversarial Representation

We do not achieve satisfactory results with the
conjoint DANN training procedure: in all cases,
our models learn representations that are not suf-
ficiently resistant to the adversary. When training
the adversary on the frozen representation for an

https://spacy.io
https://keras.io
https://github.com/kotfic/i2b2_evaluation_scripts
https://github.com/kotfic/i2b2_evaluation_scripts
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Figure 4: F1 scores of our models when trained on
automatically pseudonymized data where PHI tokens
are moved to one of different numbers of neighbors N .
The gray dashed line marks the 95% target F1 score.

additional 20 epochs, it is able to distinguish real
from fake input pairs on a test set with accura-
cies above 80%. This confirms the difficulties of
DANN training as described by Elazar and Gold-
berg (2018) (see Section 2.2).

In contrast, with the three-part training proce-
dure, we are able to learn a representation that al-
lows training a de-identification model while pre-
venting an adversary from learning the adversar-
ial tasks, even with continued training on a frozen
representation.

Figure 5 (left) shows our de-identification re-
sults when using adversarially learned representa-
tions. A higher number of neighbors N means a
stronger invariance requirement for the representa-
tion. For values ofN up to 1 000, our FastText and
GloVe models are able to learn representations that
allow training de-identification models that reach
or exceed the target F1 score of 95%. However,
training becomes unstable for N > 500: at this
point, the adversary is able to break the represen-
tation privacy when trained for an additional 50
epochs (Fig. 5 right).

Our choice of representation size d ∈
{50, 100, 300} does not influence de-identification
or adversary performance, so we select d = 50 for
further evaluation. For d = 50 and N = 100, the
FastText model reaches an F1 score of 97.4% and
the GloVe model reaches an F1 score of 96.89%.

8 De-Identification Performance

In the following, we discuss the results of our
models with regard to our goal of sharing sensi-
tive training data for automatic de-identification.
Overall, privacy-preserving representations come
at a cost, as our best privacy-preserving model

scores 0.27 points F1 score lower than our best
non-private model; we consider this relative in-
crease of errors of less than 10% as tolerable.

Raw Text De-Identification: We find that the
choice of GloVe or FastText embeddings does
not meaningfully influence de-identification per-
formance. FastText’s approach to embedding
unknown words (word embeddings are the sum
of their subword embeddings) should intuitively
prove useful on datasets with misspellings and un-
grammatical text. However, when using the ad-
ditional casing feature, FastText beats GloVe only
by 0.05 percentage points on the i2b2 test set. In
this task, the casing feature makes up for GloVe’s
inability to embed unknown words.

Liu et al. (2017) use a deep learning ensemble
in combination with hand-crafted rules to achieve
state-of-the-art results for de-identification. Our
model’s scores are similar to the previous state
of the art, a bidirectional LSTM-CRF model with
character features (Dernoncourt et al., 2017).

Automatically Pseudonymized Data: Our
naı̈ve automatic word-level pseudonymization
approach allows training reasonable de-iden-
tification models when selecting from up to
N = 500 neighbors. There is almost no decrease
in F1 score for up to N = 20 neighbors for both
the FastText and GloVe model.

Adversarially Learned Representation: Our
adversarially trained vector representation allows
training reasonable de-identification models (F1

scores above 95%) when using up to N = 1000
neighbors as an invariance requirement. The ad-
versarial representation results beat the automatic
pseudonymization results because the representa-
tion model can act as a task-specific feature ex-
tractor. Additionally, the representations are more
general as they are invariant to word changes.

9 Privacy Properties

In this section, we discuss our models with respect
to their privacy-preserving properties.

Embeddings: When looking up embedding
space neighbors for words, it is notable that many
FastText neighbors include the original word or
parts of it as a subword. For tokens that occur
as PHI in the i2b2 training set, on average 7.37
of their N = 100 closest neighbors in the Fast-
Text embedding matrix contain the original token
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Figure 5: Left: de-identification F1 scores of our models using an adversarially trained representation with different
numbers of neighbors N for the representation invariance requirement. Right: mean adversary accuracy when
trained on the frozen representation for an additional 50 epochs. The figure shows average results out of five
experiment runs.

as a subword. When looking up neighbors using
GloVe embeddings, the value is 0.44. This may
indicate that FastText requires stronger perturba-
tion (i.e. higher N ) than GloVe to sufficiently ob-
fuscate protected information.

Automatically Pseudonymized Data: The
word-level pseudonymization does not guarantee
a minimum perturbation for every word, e.g. in a
set of pseudonymized sentences using N = 100
FastText neighbors, we found the phrase

[Florida Hospital],

which was replaced with

[Miami-Florida Hosp].

Additionally, the approach may allow an adver-
sary to piece together documents from the shuf-
fled sentences. If multiple sentences contain sim-
ilar pseudonymized identifiers, they will likely
come from the same original document, undoing
the privacy gain from shuffling training sentences
across documents. It may be possible to infer the
original information using the overlapping neigh-
bor spaces. To counter this, we can re-introduce
document-level pseudonymization, i.e. moving all
occurrences of a PHI token to the same neighbor.
However, we would then also need to detect mis-
spelled names as well as other hints to the actual
tokens and transform them similarly to the orig-
inal, which would add back much of the com-
plexity of manual pseudonymization that we try
to avoid.

Adversarially Learned Representation: Our
adversarial representation empirically satisfies a
strong privacy criterion: representations are in-
variant to any protected information token being

replaced with any of its N neighbors in an em-
bedding space. When freezing the representation
model from an experiment run using up to N =
500 neighbors and training the adversary for an ad-
ditional 50 epochs, it still does not achieve higher-
than-chance accuracies on the training data. Due
to the additive noise, the adversary does not over-
fit on its training set but rather fails to identify any
structure in the data.

In the case of N = 1000 neighbors, the repre-
sentation never becomes stable in the alternating
training phase. The adversary is always able to
break the representation privacy.

10 Conclusions & Future Work

We introduced a new approach to sharing train-
ing data for de-identification that requires lower
human effort than the existing approach of
document-coherent pseudonymization. Our ap-
proach is based on adversarial learning, which
yields representations that can be distributed since
they do not contain private health information.
The setup is motivated by the need of de-
identification of medical text before sharing; our
approach provides a lower-cost alternative than
manual pseudonymization and gives rise to the
pooling of de-identification datasets from hetero-
geneous sources in order to train more robust clas-
sifiers. Our implementation and experimental data
are publicly available6.

As precursors to our adversarial representation
approach, we developed a deep learning model
for de-identification that does not rely on ex-
plicit character features as well as an automatic

6https://github.com/maxfriedrich/
deid-training-data

https://github.com/maxfriedrich/deid-training-data
https://github.com/maxfriedrich/deid-training-data
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word-level pseudonymization approach. A model
trained on our automatically pseudonymized data
with N = 100 neighbors loses around one per-
centage point in F1 score when compared to the
non-private system, scoring 96.75% on the i2b2
2014 test set.

Further, we presented an adversarial learning
based private representation of medical text that
is invariant to any PHI word being replaced with
any of its embedding space neighbors and con-
tains a random element. The representation allows
training a de-identification model while being ro-
bust to adversaries trying to re-identify protected
information or building a lookup table of repre-
sentations. We extended existing adversarial rep-
resentation learning approaches by using two ad-
versaries that discriminate real from fake sequence
pairs with an additional sequence input.

The representation acts as a task-specific fea-
ture extractor. For an invariance criterion of up to
N = 500 neighbors, training is stable and adver-
saries cannot beat the random guessing accuracy
of 50%. Using the adversarially learned represen-
tation, de-identification models reach an F1 score
of 97.4%, which is close to the non-private system
(97.67%). In contrast, the automatic pseudonymi-
zation approach only reaches an F1 score of 95.0%
at N = 500.

Our adversarial representation approach en-
ables cost-effective private sharing of training data
for sequence labeling. Pooling of training data for
de-identification from multiple institutions would
lead to much more robust classifiers. Eventually,
improved de-identification classifiers could help
enable large-scale medical studies that eventually
improve public health.

Future Work: The automatic pseudonymiza-
tion approach could serve as a data augmenta-
tion scheme to be used as a regularizer for de-
identification models. Training a model on a com-
bination of raw and pseudonymized data may re-
sult in better test scores on the i2b2 test set, possi-
bly improving the state of the art.

Private character embeddings that are learned
from a perturbed source could be an interesting ex-
tension to our models.

In adversarial learning with the three-part train-
ing procedure, it might be possible to tune the λ
parameter and define a better stopping condition
that avoids the unstable characteristics with high
values for N in the invariance criterion. A fur-

ther possible extension is a dynamic noise level
in the representation model that depends on the
LSTM output instead of being a trained weight.
This might allow using lower amounts of noise for
certain inputs while still being robust to the adver-
sary.

When more training data from multiple sources
become available in the future, it will be possible
to evaluate our adversarially learned representa-
tion against unseen data.
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