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Abstract

Simultaneous translation is widely useful but
remains one of the most difficult tasks in NLP.
Previous work either uses fixed-latency poli-
cies, or train a complicated two-staged model
using reinforcement learning. We propose a
much simpler single model that adds a “delay”
token to the target vocabulary, and design a
restricted dynamic oracle to greatly simplify
training. Experiments on Chinese↔English
simultaneous translation show that our work
leads to flexible policies that achieve better
BLEU scores and lower latencies compared to
both fixed and RL-learned policies.

1 Introduction

Simultaneous translation, which translates sen-
tences before they are finished, is useful in many
scenarios such as international conferences, sum-
mits, and negotiations. However, it is widely con-
sidered one of the most challenging tasks in NLP,
and one of the holy grails of AI (Grissom II et al.,
2014). A major challenge in simultaneous trans-
lation is the word order difference between the
source and target languages, e.g., between SOV
languages (German, Japanese, etc.) and SVO lan-
guages (English, Chinese, etc.).

Simultaneous translation is previously studied
as a part of real-time speech recognition sys-
tem (Yarmohammadi et al., 2013; Bangalore et al.,
2012; Fügen et al., 2007; Sridhar et al., 2013;
Jaitly et al., 2016; Graves et al., 2013). Re-
cently, there have been two encouraging efforts in
this problem with promising but limited success.
Gu et al. (2017) propose a complicated two-stage
model that is also trained in two stages. The base
model, responsible for producing target words, is
a conventional full-sentence seq2seq model, and
on top of that, the READ/WRITE (R/W) model
decides, at every step, whether to wait for an-
other source word (READ) or to emit a target word
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Chinese 我 得到 有关 方面 的 回应
pinyin wǒ dédào yǒuguān fāngmiàn de huı́yı̀ng
gloss I receive relevant party ’s response
wait-1
policy

I received thanks from relevant parties

wait-5
policy

I received re-
sponses from
relevant parties

adaptive
policy

I received responses from
relevant parties

Table 1: A Chinese-to-English translation example.
Wait-1 policy makes a mistake on guessing thanks from
while wait-5 policy has high latency. The adaptive
policy can wait for more information to avoid guesses
while maintaining low latency.

(WRITE) using the pretrained base model. This
R/W model is trained by reinforcement learning
(RL) method without updating the base model.
Ma et al. (2018), on the other hand, propose a
much simpler architecture, which only need one
model and can be trained with end-to-end local
training method. However, their model follows
a fixed-latency policy, which inevitably needs to
guess future content during translation. Table 1
gives an example which is difficult for the fixed-
latency (wait-k) policy but easy for adaptive pol-
icy.

We aim to combine the merits of both ef-
forts, that is, we design a single model end-to-
end trained from scratch to perform simultaneous
translation, as with Ma et al. (2018), which can
decide on the fly whether to wait or translate as
in Gu et al. (2017). There are two key ideas to
achieve this: the first is to add a “delay” token
(similar to the READ action in Gu et al. (2017),
the empty token in Press and Smith (2018), and
the ‘blank’ unit in Connectionist Temporal Classi-
fication (CTC) (Graves et al., 2006)) to the target-
side vocabulary, and if the model emits this de-
lay token, it will read one source word; the second
idea is to train the model using (restricted) imita-
tion learning by designing a (restricted) dynamic
oracle as the expert policy. Table 2 summarizes
different approaches for simultaneous translation
using neural machine translation (NMT) model.
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seq-to-seq prefix-to-prefix
fixed
policy

static Read-Write
(Dalvi et al., 2018)
test-time wait-k
(Ma et al., 2018)

wait-k (Ma et al.,
2018)

adaptive
policy

RL (Gu et al.,
2017)

imitation learning
(this work)

Table 2: Different approaches for simultaneous trans-
lation.

2 Preliminaries

Let x = (x1, . . . , xn) be a sequence of words. For
an integer 0 ≤ i ≤ n, we denote the sequence
consisting of the first consecutive i− 1 words in x
by x<i = (x1, . . . , xi−1). We say such a sequence
x<i is a prefix of the sequence x, and define s � x
if sequence s is a prefix of x.

Conventional Machine Translation Given a
sequence x from the source language, the con-
ventional machine translation model predicts the
probability distribution of the next target word yj
at the j-th step, conditioned on the full source se-
quence x and previously generated target words
y<j , that is p(yj | x,y<j). The probability of the
whole sequence y generated by the model will be
p(y | x) =

∏|y|
j=1 p(yj | x,y<j).

To train such a model, we can maximize the
probability of ground-truth target sequence condi-
tioned on the corresponding source sequence in a
parallel datasetD, which is equivalent to minimize
the following loss:

`(D) = −
∑

(x,y)∈D log p(y | x). (1)

In this work, we use Transformer (Vaswani
et al., 2017) as our NMT model, which consists
of an encoder and a decoder. The encoder works
in a self-attention fashion and maps a sequence of
words to a sequence of continuous representations.
The decoder performs attention over the predicted
words and the output of the encoder to generate
next prediction. Both encoder and decoder take as
input the sum of a word embedding and its corre-
sponding positional embedding.

Prefix-to-Prefix Framework Previous work
(Gu et al., 2017; Dalvi et al., 2018) use seq2seq
models to do simultaneous translation, which are
trained with full sentence pairs but need to predict
target words based on partial source sentences.
Ma et al. (2018) proposed a prefix-to-prefix
training framework to solve this mismatch. The
key idea of this framework is to train the model

to predict the next target word conditioned on
the partial source sequence the model has seen,
instead of the full source sequence.

As a simple example in this framework, Ma
et al. (2018) presented a class of policies, called
wait-k policy, that can be applied with local train-
ing in the prefix-to-prefix framework. For a pos-
itive integer k, the wait-k policy will wait for
the first k source words and then start to alter-
nate generating a target word with receiving a new
source word, until there is no more source words,
when the problem becomes the same as the full-
sequence translation. The probability of the j-th
word is pk(yj | x<j+k,y<j), and the probability
of the whole predicted sequence is pk(y | x) =∏|y|
j=1 pk(yj | x<j+k,y<j).

3 Model

To obtain a flexible and adaptive policy, we need
our model to be able to take both READ and
WRITE actions. Conventional translation model
already has the ability to write target words, so we
introduce a “delay” token 〈ε〉 in target vocabulary
to enable our model to apply the READ action.
Formally, for the target vocabulary V , we define
an extended vocabulary

V+ = V ∪ {〈ε〉}. (2)

Each word in this set can be an action, which is
applied with a transition function δ on a sequence
pair (s, t) for a given source sequence x where
s � x. We assume 〈ε〉 cannot be applied with
the sequence pair (s, t) if s = x, then we have the
transition function δ as follows,

δ((s, t), a) =

{
(s ◦ x|s|+1, t) if a = 〈ε〉
(s, t ◦ a) otherwise

where s ◦ x represents concatenating a sequence s
and a word x.

Based on this transition function, our model
can do simultaneous translation as follows. Given
the currently available source sequence, our model
continues predicting next target word until it pre-
dicts a delay token. Then it will read a new source
word, and continue prediction. Since we use
Transformer model, the whole available source se-
quence needs to be encoded again when reading
in a new source word, but the predicted target se-
quence will not be changed.

Note that the predicted delay tokens do not pro-
vide any semantic information, but may introduce



5818

Target

Source

Target

Source

aggressive  

bound 𝛼
conserv.  

bound 𝛽

Figure 1: Illustration of our proposed dynamic oracle
on a prefix grid. The blue right arrow represents choos-
ing next ground-truth target word, and the red down-
ward arrow represents choosing the delay token. The
left figure shows a simple dynamic oracle without delay
constraint. The right figure shows the dynamic oracle
with delay constraints.

some noise in attention layer during the translation
process. So we propose to remove those delay to-
ken in the attention layers except for the current
input one. However, this removal may reduce the
explicit latency information which will affect the
predictions of the model since the model cannot
observe previous output delay tokens. Therefore,
to provide this information explicitly, we embed
the number of previous delay tokens to a vector
and add this to the sum of the word embedding and
position embedding as the input of the decoder.

4 Methods

4.1 Training via Restricted Imitation
Learning

We first introduce a restricted dynamic ora-
cle (Cross and Huang, 2016) based on our ex-
tended vocabulary. Then we show how to use this
dynamic oracle to train a simultaneous translation
model via imitation learning. Note that we do not
need to train this oracle.

Restricted Dynamic Oracle Given a pair of full
sequences (x,y) in data, the input state of our re-
stricted dynamic oracle will be a pair of prefixes
(s, t) where s � x, t � y and (s, t) 6= (x,y).
The whole action set is V+ defined in the last sec-
tion. The objective of our dynamic oracle is to
obtain the full sequence pair (x,y) and maintain a
reasonably low latency.

For a prefix pair (s, t), the difference of the
lengths of the two prefixes can be used to mea-
sure the latency of translation. So we would like to
bound this difference as a latency constraint. This
idea can be illustrated in the prefix grid (see Fig-
ure 1), where we can define a band region and al-

ways keep the translation process in this band. For
simplicity, we first assume the two full sequences
have the same lengths, i.e. |x| = |y|. Then we
can bound the difference d = |s| − |t| by two con-
stants: α < d < β. The conservative bound (β)
guarantees relatively small difference and low la-
tency; while the aggressive bound (α) guarantees
there are not too many target words predicted be-
fore seeing enough source words. Formally, this
dynamic oracle is defined as follows.

π?x,y,α,β(s, t) =
{〈ε〉} if s 6= x and |s| − |t| ≤ α
{y|t|+1} if t 6= y and |s| − |t| ≥ β
{〈ε〉, y|t|+1} otherwise

By this definition, we know that this oracle can
always find an action sequence to obtain (x,y).
When the input state does not satisfy any latency
constraint, then this dynamic oracle will provide
only one action, applying which will improve the
length difference. Note that this dynamic oracle is
restricted in the sense that it is only defined on the
prefix pair instead of any sequence pair. And since
we only want to obtain the exact sequence from
data, this oracle can only choose the next ground-
truth target word other than 〈ε〉.

In many cases, the assumption |x| = |y| does
not hold. To overcome this limitation, we can uti-
lize the length ratio γ = |x|/|y| to modify the
length difference: d′ = |s| − γ|t|, and use this
new difference d′ in our dynamic oracle. Although
we cannot obtain this ratio during testing time, we
may use the averaged length ratio obtained from
training data (Huang et al., 2017).

Training with Restricted Dynamic Oracle We
apply imitation learning to train our translation
model, using the proposed dynamic oracle as the
expert policy. Recall that the prediction of our
model depends on the whole generated prefix
including 〈ε〉 (as the input contains the embedding
of the number of 〈ε〉), which is also an action
sequence. If an action sequence a is obtained
from our oracle, then applying this sequence will
result in a prefix pair, say sa and ta, of x and y.
Let p(a | sa, ta) be the probability of choosing
action a given the prefix pair obtained by applying
action sequence a. Then the averaged probability
of choosing the oracle actions conditioned on the
action sequence a will be
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f(a, π?x,y,α,β) =

∑
a∈π?x,y,α,β(sa,ta)

p(a | sa, ta)

|π?x,y,α,β(sa, ta)|
.

To train a model to learn from the dynamic or-
acle, we can sample from our oracle to obtain a
set, say S(x,y), of action sequences for a sentence
pair (x,y). The loss function for each sampled se-
quence a ∈ S(x,y) will be

`(a|x,y) = −
|a|∑
i=1

log f(a<i, π
?
x,y,α,β).

For a parallel text D, the training loss is

`(D) =
∑

(x,y)∈D

∑
a∈S(x,y)

1
|S(x,y)|`(a|x,y).

Directly optimizing the above loss may require
too much computation resource since for each pair
of (x,y), the size of S(x,y) (i.e. the number of
different action sequences) can be exponentially
large. To reduce the computation cost, we propose
to use two special action sequences as our sample
set so that our model can learn to do translation
within the two latency constraints. Recall that the
latency constraints of our dynamic oracle π?x,y,α,β
are defined by two bounds: α and β. For each
bound, there is a unique action sequence, which
corresponds to a path in the prefix grid, such that
following it can generate the most number of pre-
fix pairs that make this bound tight. Let aα(x,y)
(aβ(x,y)) be such an action sequence for (x,y) and

α (β). We replace S(x,y) with {aα(x,y),a
β
(x,y)},

then the above loss for dataset D becomes

`α,β(D) =
∑

(x,y)∈D

`(aα
(x,y)

|x,y)+`(aβ
(x,y)

|x,y)
2 .

This is the loss we use in our training process.
Note that there are some steps where our oracle

will return two actions, so for such steps we will
have a multi-label classification problem where la-
bels are the actions from our oracle. In such cases,
Sigmoid function for each action is more appropri-
ate than the Softmax function for the actions will
not compete each other (Ma et al., 2017; Zheng
et al., 2018; Ma et al., 2019). Therefore, we apply
Sigmoid for each action instead of using Softmax
function to generate a distribution for all actions.

4.2 Decoding
We observed that the model trained on the two
special action sequences occasionally violates the
latency constraints and visits states outside of the

designated band in prefix grid. To avoid such case,
we force the model to choose actions such that it
will always satisfy the latency constraints. That is,
if the model reaches the aggressive bound, it must
choose a target word other than 〈ε〉 with highest
score, even if 〈ε〉 has higher score; if the model
reaches the conservative bound, it can only choose
〈ε〉 at that step. We also apply a temperature con-
stant et to the score of 〈ε〉, which can implicitly
control the latency of our model without retrain-
ing it. This improves the flexibility of our trained
model so that it can be used in different scenarios
with different latency requirements.

5 Experiments

To investigate the empirical performance of our
proposed method, we conduct experiments on
NIST corpus for Chinese-English. We use NIST
06 (616 sentence pairs) as our development set
and NIST 08 (691 sentence pairs) as our testing
set. We apply tokenization and byte-pair encoding
(BPE) (Sennrich et al., 2015) on both source and
target languages to reduce their vocabularies. For
training data, we only include 1 million sentence
pairs with length larger than 50. We use Trans-
former (Vaswani et al., 2017) as our NMT model,
and our implementation is adapted from PyTorch-
based OpenNMT (Klein et al., 2017). The archi-
tecture of our Transformer model is the same as
the base model in the original paper.

We use BLEU (Papineni et al., 2002) as the
translation quality metric and Average Lagging
(AL) introduced by Ma et al. (2018) as our la-
tency metrics, which measures the average de-
layed words. AL avoids some limitations of other
existing metrics, such as insensitivity to actual lag-
ging like Consecutive Wait (CW) (Gu et al., 2017),
and sensitivity to input length like Average Pro-
portion (AP) (Cho and Esipova, 2016) .

Results We tried three different pairs for α and
β: (1, 5), (3, 5) and (3, 7), and summarize the
results on testing sets in Figure 2. Figure 2 (a)
shows the results on Chinese-to-English transla-
tion. In this direction, our model can always
achieve higher BLEU scores with the same la-
tency, compared with the wait-k models and RL
models. We notice the model prefers conservative
policy during decoding time when t = 0. So we
apply negative values of t to encourage the model
to choose actions other than 〈ε〉. This can ef-
fectively reduce latency without sacrificing much
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Figure 2:
Translation quality (BLEU) against latency (AL)
on testing sets. Markers : wait-k models for k ∈
{1, 3, 5, 7}, +: RL with CW = 5, ×: RL with CW
= 8, F: full-sentence translation. Markers for our
models are given in the right table.

Training Decoding Policy
α β wait-α wait-β t = −2 t = −0.5 t = 0 t = 4.5 t = 9
1 5
3 5
3 7

translation quality, implying that our model can
implicitly control latency during testing time.

Figure 2 (b) shows our results on English-to-
Chinese translation. Since the English source sen-
tences are always longer than the Chinese sen-
tences, we utilize the length ratio γ = 1.25 (de-
rived from the dev set) during training, which is
the same as using “catchup” with frequency c =
0.25 introduced by Ma et al. (2018). Different
from the other direction, models for this direction
works better if the difference of α and β is big-
ger. Another difference is that our model prefers
aggressive policy instead of conservative policy
when t = 0. Thus, we apply positive values of t
to encourage it to choose 〈ε〉, obtaining more con-
servative policies to improve translation quality.

Example We provide an example from the de-
velopment set of Chinese-to-English translation in
Table 3 to compare the behaviours of different
models. Our model is trained with α = 3, β = 7
and tested with t = 0. It shows that our model can
wait for information “Ōuméng” to translates “eu”,
while the wait-3 model is forced to guess this in-
formation and made a mistake on the wrong guess
“us” before seeing “Ōuméng”.

Ablation Study To analyze the effects of pro-
posed techniques on the performance, we also pro-
vide an ablation study on those techniques for our

model trained with α = 3 and β = 5 in Chinese-
to-English translation. The results are given in Ta-
ble 4, and show that all the techniques are impor-
tant to the final performance and using Sigmoid
function is critical to learn adaptive policy.

Model
Decoding Policy

Wait-3 Wait-5 t=0
BLEU AL BLEU AL BLEU AL

Wait-3 29.32 4.60 - - - -
Wait-5 - - 30.97 6.30 - -
keep 〈ε〉 in
attention

29.55 4.50 30.68 6.49 30.74 6.53

no 〈ε〉 number
embedding

30.20 4.76 30.98 6.36 30.65 6.29

use Softmax
instead of Sigmoid

29.23 5.11 31.46 6.79 29.99 4.79

Full 29.45 4.71 31.72 6.35 31.59 6.28

Table 4: Ablation study on Chinese-to-English devel-
opment set with α = 3 and β = 5.

6 Conclusions

We have presented a simple model that includes a
delay token in the target vocabulary such that the
model can apply both READ and WRITE actions
during translation process without a explicit policy
model. We also designed a restricted dynamic or-
acle for the simultaneous translation problem and
provided a local training method utilizing this dy-
namic oracle. The model trained with this method
can learn a flexible policy for simultaneous trans-
lation and achieve better translation quality and
lower latency compared to previous methods.

Chinese 一 名 不 愿 具名 的 欧盟 官员 指出 ...
pinyin yı̀ mı́ng bú yùan jùmı́ng de Ōuméng gūanyúan zhı̌chū
gloss a - not willing named ’s EU official point out ...
wait-3 a us official who declined to be named said that ...

our work a eu official , who declined to be named , pointed out ...

Table 3: A Chinese-to-English development set example. Our model is trained with α = 3 and β = 7.
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