
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5797–5808
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

5797

Analyzing Multi-Head Self-Attention:
Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned

Elena Voita1,2 David Talbot1 Fedor Moiseev1,5 Rico Sennrich3,4 Ivan Titov3,2

1Yandex, Russia 2University of Amsterdam, Netherlands
3University of Edinburgh, Scotland 4University of Zurich, Switzerland

5Moscow Institute of Physics and Technology, Russia
{lena-voita, talbot, femoiseev}@yandex-team.ru
rico.sennrich@ed.ac.uk ititov@inf.ed.ac.uk

Abstract

Multi-head self-attention is a key component
of the Transformer, a state-of-the-art architec-
ture for neural machine translation. In this
work we evaluate the contribution made by in-
dividual attention heads in the encoder to the
overall performance of the model and analyze
the roles played by them. We find that the
most important and confident heads play con-
sistent and often linguistically-interpretable
roles. When pruning heads using a method
based on stochastic gates and a differentiable
relaxation of the L0 penalty, we observe that
specialized heads are last to be pruned. Our
novel pruning method removes the vast major-
ity of heads without seriously affecting perfor-
mance. For example, on the English-Russian
WMT dataset, pruning 38 out of 48 encoder
heads results in a drop of only 0.15 BLEU.1

1 Introduction

The Transformer (Vaswani et al., 2017) has be-
come the dominant modeling paradigm in neu-
ral machine translation. It follows the encoder-
decoder framework using stacked multi-head self-
attention and fully connected layers. Multi-head
attention was shown to make more efficient use of
the model’s capacity: performance of the model
with 8 heads is almost 1 BLEU point higher than
that of a model of the same size with single-head
attention (Vaswani et al., 2017). The Transformer
achieved state-of-the-art results in recent shared
translation tasks (Bojar et al., 2018; Niehues
et al., 2018). Despite the model’s widespread
adoption and recent attempts to investigate the
kinds of information learned by the model’s en-
coder (Raganato and Tiedemann, 2018), the anal-
ysis of multi-head attention and its importance

1We release code at https://github.com/
lena-voita/the-story-of-heads.

for translation is challenging. Previous analysis
of multi-head attention considered the average of
attention weights over all heads at a given posi-
tion or focused only on the maximum attention
weights (Voita et al., 2018; Tang et al., 2018),
but neither method explicitly takes into account
the varying importance of different heads. Also,
this obscures the roles played by individual heads
which, as we show, influence the generated trans-
lations to differing extents. We attempt to answer
the following questions:

• To what extent does translation quality de-
pend on individual encoder heads?

• Do individual encoder heads play consistent
and interpretable roles? If so, which are the
most important ones for translation quality?

• Which types of model attention (encoder
self-attention, decoder self-attention or
decoder-encoder attention) are most sensitive
to the number of attention heads and on
which layers?

• Can we significantly reduce the number of
attention heads while preserving translation
quality?

We start by identifying the most important
heads in each encoder layer using layer-wise rele-
vance propagation (Ding et al., 2017). For heads
judged to be important, we then attempt to charac-
terize the roles they perform. We observe the fol-
lowing types of role: positional (heads attending
to an adjacent token), syntactic (heads attending
to tokens in a specific syntactic dependency rela-
tion) and attention to rare words (heads pointing to
the least frequent tokens in the sentence).

To understand whether the remaining heads per-
form vital but less easily defined roles, or are sim-
ply redundant to the performance of the model as

https://github.com/lena-voita/the-story-of-heads
https://github.com/lena-voita/the-story-of-heads

5798

measured by translation quality, we introduce a
method for pruning heads based on Louizos et al.
(2018). While we cannot easily incorporate the
number of active heads as a penalty term in our
learning objective (i.e. the L0 regularizer), we can
use a differentiable relaxation. We prune atten-
tion heads in a continuous learning scenario start-
ing from the converged full model and identify the
roles of those which remain in the model. These
experiments corroborate the findings of layer-wise
relevance propagation; in particular, heads with
clearly identifiable positional and syntactic func-
tions are pruned last and hence shown to be most
important for the translation task.

Our key findings are as follows:

• Only a small subset of heads are important
for translation;

• Important heads have one or more specialized
and interpretable functions in the model;

• The functions correspond to attention to
neighbouring words and to tokens in specific
syntactic dependency relations.

2 Transformer Architecture

In this section, we briefly describe the Transformer
architecture (Vaswani et al., 2017) introducing the
terminology used in the rest of the paper.

The Transformer is an encoder-decoder model
that uses stacked self-attention and fully con-
nected layers for both the encoder and decoder.
The encoder consists of N layers, each contain-
ing two sub-layers: (a) a multi-head self-attention
mechanism, and (b) a feed-forward network. The
multi-head attention mechanism relies on scaled
dot-product attention, which operates on a query
Q, a key K and a value V :

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V (1)

where dk is the key dimensionality. In self-
attention, queries, keys and values come from the
output of the previous layer.

The multi-head attention mechanism obtains h
(i.e. one per head) different representations of (Q,
K, V), computes scaled dot-product attention for
each representation, concatenates the results, and
projects the concatenation through a feed-forward
layer. This can be expressed in the same notation
as Equation (1):

headi = Attention(QWQ
i ,KW

K
i , V W

V
i) (2)

MultiHead(Q,K, V) = Concati(headi)WO (3)

where the Wi and WO are parameter matrices.
The second component of each layer of the

Transformer network is a feed-forward network.
The authors propose using a two-layer network
with a ReLU activation.

Analogously, each layer of the decoder contains
the two sub-layers mentioned above as well as an
additional multi-head attention sub-layer. This ad-
ditional sub-layer receives the output of the en-
coder as its keys and values.

The Transformer uses multi-head attention in
three different ways: encoder self-attention, de-
coder self-attention and decoder-encoder atten-
tion. In this work, we concentrate primarily on
encoder self-attention.

3 Data and setting

We focus on English as a source language and con-
sider three target languages: Russian, German and
French. For each language pair, we use the same
number of sentence pairs from WMT data to con-
trol for the amount of training data and train Trans-
former models with the same numbers of param-
eters. We use 2.5m sentence pairs, corresponding
to the amount of English–Russian parallel train-
ing data (excluding UN and Paracrawl). In Sec-
tion 5.2 we use the same held-out data for all lan-
guage pairs; these are 50k English sentences taken
from the WMT EN-FR data not used in training.

For English-Russian, we perform additional ex-
periments using the publicly available OpenSubti-
tles2018 corpus (Lison et al., 2018) to evaluate the
impact of domains on our results.

In Section 6 we concentrate on English-Russian
and two domains: WMT and OpenSubtitles.

Model hyperparameters, preprocessing and
training details are provided in appendix B.

4 Identifying Important Heads

Previous work analyzing how representations are
formed by the Transformer’s multi-head attention
mechanism focused on either the average or the
maximum attention weights over all heads (Voita
et al., 2018; Tang et al., 2018), but neither method
explicitly takes into account the varying impor-
tance of different heads. Also, this obscures the
roles played by individual heads which, as we will
show, influence the generated translations to dif-
fering extents.

5799

(a) LRP (b) confidence (c) head functions

Figure 1: Importance (according to LRP), confidence, and function of self-attention heads. In each layer, heads
are sorted by their relevance according to LRP. Model trained on 6m OpenSubtitles EN-RU data.

(a) LRP (EN-DE) (b) head functions

(c) LRP (EN-FR) (d) head functions

Figure 2: Importance (according to LRP) and function
of self-attention heads. In each layer, heads are sorted
by their relevance according to LRP. Models trained on
2.5m WMT EN-DE (a, b) and EN-FR (c, d).

We define the “confidence” of a head as the
average of its maximum attention weight exclud-
ing the end of sentence symbol,2 where average
is taken over tokens in a set of sentences used for
evaluation (development set). A confident head is
one that usually assigns a high proportion of its at-
tention to a single token. Intuitively, we might ex-
pect confident heads to be important to the trans-
lation task.

Layer-wise relevance propagation (LRP) (Ding
et al., 2017) is a method for computing the rela-
tive contribution of neurons at one point in a net-
work to neurons at another.3 Here we propose to
use LRP to evaluate the degree to which different
heads at each layer contribute to the top-1 logit
predicted by the model. Heads whose outputs have
a higher relevance value may be judged to be more
important to the model’s predictions.

2We exclude EOS on the grounds that it is not a real token.
3A detailed description of LRP is provided in appendix A.

The results of LRP are shown in Figures 1a, 2a,
2c. In each layer, LRP ranks a small number of
heads as much more important than all others.

The confidence for each head is shown in Fig-
ure 1b. We can observe that the relevance of a
head as computed by LRP agrees to a reasonable
extent with its confidence. The only clear excep-
tion to this pattern is the head judged by LRP to
be the most important in the first layer. It is the
most relevant head in the first layer but its average
maximum attention weight is low. We will discuss
this head further in Section 5.3.

5 Characterizing heads

We now turn to investigating whether heads
play consistent and interpretable roles within the
model.

We examined some attention matrices paying
particular attention to heads ranked highly by LRP
and identified three functions which heads might
be playing:

1. positional: the head points to an adjacent to-
ken,

2. syntactic: the head points to tokens in a spe-
cific syntactic relation,

3. rare words: the head points to the least fre-
quent tokens in a sentence.

Now we discuss the criteria used to determine
if a head is performing one of these functions and
examine properties of the corresponding heads.

5.1 Positional heads
We refer to a head as “positional” if at least 90%
of the time its maximum attention weight is as-
signed to a specific relative position (in practice
either -1 or +1, i.e. attention to adjacent tokens).
Such heads are shown in purple in Figures 1c for

5800

English-Russian, 2b for English-German, 2d for
English-French and marked with the relative posi-
tion.

As can be seen, the positional heads correspond
to a large extent to the most confident heads and
the most important heads as ranked by LRP. In
fact, the average maximum attention weight ex-
ceeds 0.8 for every positional head for all language
pairs considered here.

5.2 Syntactic heads

We hypothesize that, when used to perform trans-
lation, the Transformer’s encoder may be respon-
sible for disambiguating the syntactic structure
of the source sentence. We therefore wish to
know whether a head attends to tokens corre-
sponding to any of the major syntactic relations
in a sentence. In our analysis, we looked at the
following dependency relations: nominal subject
(nsubj), direct object (dobj), adjectival modifier
(amod) and adverbial modifier (advmod). These
include the main verbal arguments of a sentence
and some other common relations. They also in-
clude those relations which might inform morpho-
logical agreement or government in one or more
of the target languages considered here.

5.2.1 Methodology
We evaluate to what extent each head in the Trans-
former’s encoder accounts for a specific depen-
dency relation by comparing its attention weights
to a predicted dependency structure generated us-
ing CoreNLP (Manning et al., 2014) on a large
number of held-out sentences. We calculate for
each head how often it assigns its maximum atten-
tion weight (excluding EOS) to a token with which
it is in one of the aforementioned dependency rela-
tions. We count each relation separately and allow
the relation to hold in either direction between the
two tokens.

We refer to this relative frequency as the “ac-
curacy” of head on a specific dependency relation
in a specific direction. Note that under this defini-
tion, we may evaluate the accuracy of a head for
multiple dependency relations.

Many dependency relations are frequently ob-
served in specific relative positions (for example,
often they hold between adjacent tokens, see Fig-
ure 3). We say that a head is “syntactic” if its ac-
curacy is at least 10% higher than the baseline that
looks at the most frequent relative position for this
dependency relation.

Figure 3: Distribution of the relative position of depen-
dent for different dependency relations (WMT).

dep. direction best head / baseline
accuracy

WMT OpenSubtitles
nsubj

v→ s 45 / 35 77 / 45
s→ v 52 / 35 70 / 45

dobj
v→ o 78 / 41 61 / 46
o→ v 73 / 41 84 / 46

amod
noun→ adj.m. 74 / 72 81 / 80
adj.m. → noun 82 / 72 81 / 80

advmod
v→ adv.m. 48 / 46 38 / 33
adv.m. → v 52 / 46 42 / 33

Table 1: Dependency scores for EN-RU, comparing the
best self-attention head to a positional baseline. Models
trained on 2.5m WMT data and 6m OpenSubtitles data.

Figure 4: Dependency scores for EN-RU, EN-DE, EN-
FR each trained on 2.5m WMT data.

5.2.2 Results

Table 1 shows the accuracy of the most accurate
head for each of the considered dependency re-
lations on the two domains for English-Russian.
Figure 4 compares the scores of the models trained
on WMT with different target languages.

Clearly certain heads learn to detect syntactic
relations with accuracies significantly higher than
the positional baseline. This supports the hypoth-

5801

(a) (b) (c)

Figure 5: Attention maps of the rare words head. Models trained on WMT: (a) EN-RU, (b) EN-DE, (c) EN-FR

esis that the encoder does indeed perform some
amount of syntactic disambiguation of the source
sentence.

Several heads appear to be responsible for the
same dependency relation. These heads are shown
in green in Figures 1c, 2b, 2d.

Unfortunately, it is not possible to draw any
strong conclusions from these results regarding the
impact of target language morphology on the ac-
curacy of the syntactic attention heads although re-
lations with strong target morphology are among
those that are most accurately learned.

Note the difference in accuracy of the verb-
subject relation heads across the two domains
for English-Russian. We hypothesize that this
is due to the greater variety of grammatical per-
son present4 in the Subtitles data which requires
more attention to this relation. However, we leave
proper analysis of this to future work.

5.3 Rare words

In all models (EN-RU, EN-DE, EN-FR on WMT
and EN-RU on OpenSubtitles), we find that one
head in the first layer is judged to be much more
important to the model’s predictions than any
other heads in this layer.

We find that this head points to the least fre-
quent tokens in a sentence. For models trained on
OpenSubtitles, among sentences where the least
frequent token in a sentence is not in the top-
500 most frequent tokens, this head points to the
rarest token in 66% of cases, and to one of the two
least frequent tokens in 83% of cases. For mod-
els trained on WMT, this head points to one of
the two least frequent tokens in more than 50% of
such cases. This head is shown in orange in Fig-

4First, second and third person subjects are encountered
in approximately 6%, 3% and 91% of cases in WMT data
and in 32%, 21% and 47% of cases in OpenSubtitles data.

ures 1c, 2b, 2d. Examples of attention maps for
this head for models trained on WMT data with
different target languages are shown in Figure 5.

6 Pruning Attention Heads

We have identified certain functions of the most
relevant heads at each layer and showed that to a
large extent they are interpretable. What of the
remaining heads? Are they redundant to trans-
lation quality or do they play equally vital but
simply less easily defined roles? We introduce a
method for pruning attention heads to try to an-
swer these questions. Our method is based on
Louizos et al. (2018). Whereas they pruned in-
dividual neural network weights, we prune entire
model components (i.e. heads). We start by de-
scribing our method and then examine how per-
formance changes as we remove heads, identify-
ing the functions of heads retained in the sparsified
models.

6.1 Method

We modify the original Transformer architecture
by multiplying the representation computed by
each headi by a scalar gate gi. Equation (3) turns
into

MultiHead(Q,K, V)=Concati(gi ·headi)WO.

Unlike usual gates, gi are parameters specific to
heads and are independent of the input (i.e. the
sentence). As we would like to disable less im-
portant heads completely rather than simply down-
weighting them, we would ideally apply L0 regu-
larization to the scalars gi. TheL0 norm equals the
number of non-zero components and would push
the model to switch off less important heads:

L0(g1, . . . , gh) =
h∑

i=1

(1− [[gi = 0]]),

5802

where h is the number of heads, and [[]] denotes
the indicator function.

Unfortunately, the L0 norm is non-
differentiable and so cannot be directly incor-
porated as a regularization term in the objective
function. Instead, we use a stochastic relaxation:
each gate gi is now a random variable drawn
independently from a head-specific distribution.5

We use the Hard Concrete distributions (Louizos
et al., 2018), a parameterized family of mixed
discrete-continuous distributions over the closed
interval [0, 1], see Figure 6a. The distributions
have non-zero probability mass at 0 and 1,
P (gi = 0|φi) and P (gi = 1|φi), where φi are
the distribution parameters. Intuitively, the Hard
Concrete distribution is obtained by stretching
the binary version of the Concrete (aka Gumbel
softmax) distribution (Maddison et al., 2017; Jang
et al., 2017) from the original support of (0, 1) to
(−ε, 1 + ε) and then collapsing the probability
mass assigned to (−ε, 1] and [1, 1 + ε) to single
points, 0 and 1, respectively. These stretching and
rectification operations yield a mixed discrete-
continuous distribution over [0, 1]. Now the sum
of the probabilities of heads being non-zero can
be used as a relaxation of the L0 norm:

LC(φ) =
h∑

i=1

(1− P (gi = 0|φi)).

The new training objective is

L(θ, φ) = Lxent(θ, φ) + λLC(φ),

where θ are the parameters of the original Trans-
former, Lxent(θ, φ) is cross-entropy loss for the
translation model, and LC(φ) is the regularizer
described above. The objective is easy to opti-
mize: the reparameterization trick (Kingma and
Welling, 2014; Rezende et al., 2014) can be used
to backpropagate through the sampling process for
each gi, whereas the regularizer and its gradients
are available in the closed form. Interestingly,
we observe that the model converges to solutions
where gates are either almost completely closed
(i.e. the head is pruned, P (gi = 0|φi) ≈ 1) or
completely open (P (gi = 1|φi) ≈ 1), the latter
not being explicitly encouraged.6 This means that
at test time we can treat the model as a standard
Transformer and use only a subset of heads.7

5In training, we resample gate values gi for each batch.
6The ‘noise’ pushes the network not to use middle values.

The combination of noise and rectification has been previ-

(a) (b)

Figure 6: Concrete distribution: (a) Concrete and its
stretched and rectified version (Hard Concrete); (b)
Hard Concrete distributions with different parameters.

When applying this regularizer, we start from
the converged model trained without the LC

penalty (i.e. parameters θ are initialized with the
parameters of the converged model) and then add
the gates and continue training the full objective.
By varying the coefficient λ in the optimized ob-
jective, we obtain models with different numbers
of heads retained.

6.2 Pruning encoder heads

To determine which head functions are most im-
portant in the encoder and how many heads the
model needs, we conduct a series of experiments
with gates applied only to encoder self-attention.
Here we prune a model by fine-tuning a trained
model with the regularized objective.8 During
pruning, the parameters of the decoder are fixed
and only the encoder parameters and head gates
are fine-tuned. By not fine-tuning the decoder, we
ensure that the functions of the pruned encoder
heads do not migrate to the decoder.

6.2.1 Quantitative results: BLEU score

BLEU scores are provided in Figure 7. Surpris-
ingly, for OpenSubtitles, we lose only 0.25 BLEU
when we prune all but 4 heads out of 48.9 For the
more complex WMT task, 10 heads in the encoder
are sufficient to stay within 0.15 BLEU of the full
model.

ously used to achieve discretization (e.g., Kaiser and Bengio
(2018)).

7At test time, gate values are either 0 or 1 depending on
which of the values P (gi = 0|φi), P (gi = 1|φi) is larger.

8In preliminary experiments, we observed that fine-tuning
a trained model gives slightly better results (0.2–0.6 BLEU)
than applying the regularized objective, or training a model
with the same number of self-attention heads, from scratch.

9If all heads in a layer are pruned, the only remaining con-
nection to the previous layer is the residual connection.

5803

Figure 7: BLEU score as a function of number of re-
tained encoder heads (EN-RU). Regularization applied
by fine-tuning trained model.

Figure 8: Functions of encoder heads retained after
pruning. Each column represents all remaining heads
after varying amount of pruning (EN-RU; Subtitles).

6.2.2 Functions of retained heads

Results in Figure 7 suggest that the encoder re-
mains effective even with only a few heads. In this
section, we investigate the function of those heads
that remain in the encoder during pruning. Fig-
ure 8 shows all heads color-coded for their func-
tion in a pruned model. Each column corresponds
to a model with a particular number of heads re-
tained after pruning. Heads from all layers are or-
dered by their function. Some heads can perform
several functions (e.g., s → v and v → o); in this
case the number of functions is shown.

First, we note that the model with 17 heads re-
tains heads with all the functions that we identified
in Section 5, even though 2⁄3 of the heads have been
pruned.

This indicates that these functions are indeed
the most important. Furthermore, when we have
fewer heads in the model, some functions “drift”
to other heads: for example, we see positional
heads starting to track syntactic dependencies;
hence some heads are assigned more than one
color at certain stages in Figure 8.

attention BLEU
heads from from

(e/d/d-e) trained scratch

WMT, 2.5m

baseline 48/48/48 29.6

sparse heads 14/31/30 29.62 29.47
12/21/25 29.36 28.95
8/13/15 29.06 28.56
5/9/12 28.90 28.41

OpenSubtitles, 6m

baseline 48/48/48 32.4

sparse heads 27/31/46 32.24 32.23
13/17/31 32.23 31.98
6/9/13 32.27 31.84

Table 2: BLEU scores for gates in all attentions, EN-
RU. Number of attention heads is provided in the
following order: encoder self-attention, decoder self-
attention, decoder-encoder attention.

6.3 Pruning all types of attention heads

We found our pruning technique to be efficient at
reducing the number of heads in the encoder with-
out a major drop in translation quality. Now we
investigate the effect of pruning all types of atten-
tion heads in the model (not just in the encoder).
This allows us to evaluate the importance of differ-
ent types of attention in the model for the task of
translation. In these experiments, we add gates to
all multi-head attention heads in the Transformer,
i.e. encoder and decoder self-attention and atten-
tion from the decoder to the encoder.

6.3.1 Quantitative results: BLEU score
Results of experiments pruning heads in all atten-
tion layers are provided in Table 2. For models
trained on WMT data, we are able to prune al-
most 3⁄4 of encoder heads and more than 1⁄3 of heads
in decoder self-attention and decoder-encoder at-
tention without any noticeable loss in translation
quality (sparse heads, row 1). We can also prune
more than half of all heads in the model and lose
no more than 0.25 BLEU.

While these results show clearly that the ma-
jority of attention heads can be removed from
the fully trained model without significant loss in
translation quality, it is not clear whether a model
can be trained from scratch with such a small
number of heads. In the rightmost column in Ta-

5804

Figure 9: Number of active heads of different attention
type for models with different sparsity rate

ble 2 we provide BLEU scores for models trained
with exactly the same number and configuration of
heads in each layer as the corresponding pruned
models but starting from a random initialization
of parameters. Here the degradation in translation
quality is more significant than for pruned mod-
els with the same number of heads. This agrees
with the observations made in works on model
compression: sparse architectures learned through
pruning cannot be trained from scratch to the same
test set performance as a model trained with joint
sparsification and optimization (Zhu and Gupta,
2017; Gale et al., 2019). In our case, attention
heads are less likely to learn important roles when
a model is retrained from scratch with a small
number of heads.

6.3.2 Heads importance

Figure 9 shows the number of retained heads for
each attention type at different pruning rates. We
can see that the model prefers to prune encoder
self-attention heads first, while decoder-encoder
attention heads appear to be the most important
for both datasets. Obviously, without decoder-
encoder attention no translation can happen.

The importance of decoder self-attention heads,
which function primarily as a target side language
model, varies across domains. These heads ap-
pear to be almost as important as decoder-encoder
attention heads for WMT data with its long sen-
tences (24 tokens on average), and slightly more
important than encoder self-attention heads for
OpenSubtitles dataset where sentences are shorter
(8 tokens on average).

Figure 10 shows the number of active self-
attention and decoder-encoder attention heads at
different layers in the decoder for models with dif-
ferent sparsity rate (to reduce noise, we plot the
sum of heads remaining in pairs of adjacent lay-
ers). It can be seen that self-attention heads are

Figure 10: Number of active heads in different layers
of the decoder for models with different sparsity rate
(EN-RU, WMT)

retained more readily in the lower layers, while
decoder-encoder attention heads are retained in
the higher layers. This suggests that lower layers
of the Transformer’s decoder are mostly responsi-
ble for language modeling, while higher layers are
mostly responsible for conditioning on the source
sentence. These observations are similar for both
datasets we use.

7 Related work

One popular approach to the analysis of NMT rep-
resentations is to evaluate how informative they
are for various linguistic tasks. Different levels of
linguistic analysis have been considered including
morphology (Belinkov et al., 2017a; Dalvi et al.,
2017; Bisazza and Tump, 2018), syntax (Shi et al.,
2016) and semantics (Hill et al., 2017; Belinkov
et al., 2017b; Raganato and Tiedemann, 2018).

Bisazza and Tump (2018) showed that the tar-
get language determines which information gets
encoded. This agrees with our results for different
domains on the English-Russian translation task in
Section 5.2.2. There we observed that attention
heads are more likely to track syntactic relations
requiring more complex agreement in the target
language (in this case the subject-verb relation).

An alternative method to study the ability of
language models and machine translation models
to capture hierarchical information is to test their
sensitivity to specific grammatical errors (Linzen
et al., 2016; Gulordava et al., 2018; Tran et al.,
2018; Sennrich, 2017; Tang et al., 2018). While
this line of work has shown that NMT models, in-
cluding the Transformer, do learn some syntactic
structures, our work provides further insight into
the role of multi-head attention.

There are several works analyzing attention
weights of different NMT models (Ghader and
Monz, 2017; Voita et al., 2018; Tang et al., 2018;

5805

Raganato and Tiedemann, 2018). Raganato and
Tiedemann (2018) use the self-attention weights
of the Transformer’s encoder to induce a tree
structure for each sentence and compute the un-
labeled attachment score of these trees. However
they do not evaluate specific syntactic relations
(i.e. labeled attachment scores) or consider how
different heads specialize to specific dependency
relations.

Recently Bau et al. (2019) proposed a method
for identifying important individual neurons in
NMT models. They show that similar important
neurons emerge in different models. Rather than
verifying the importance of individual neurons, we
identify the importance of entire attention heads
using layer-wise relevance propagation and verify
our findings by observing which heads are retained
when pruning the model.

8 Conclusions

We evaluate the contribution made by individ-
ual attention heads to Transformer model perfor-
mance on translation. We use layer-wise relevance
propagation to show that the relative contribution
of heads varies: only a small subset of heads ap-
pear to be important for the translation task. Im-
portant heads have one or more interpretable func-
tions in the model, including attending to adjacent
words and tracking specific syntactic relations. To
determine if the remaining less-interpretable heads
are crucial to the model’s performance, we intro-
duce a new approach to pruning attention heads.

We observe that specialized heads are the last
to be pruned, confirming their importance directly.
Moreover, the vast majority of heads, especially
the encoder self-attention heads, can be removed
without seriously affecting performance. In fu-
ture work, we would like to investigate how our
pruning method compares to alternative methods
of model compression in NMT.

Acknowledgments

We would like to thank anonymous reviewers for
their comments. We thank Wilker Aziz, Joost
Bastings for their helpful suggestions. The au-
thors also thank Yandex Machine Translation team
for helpful discussions and inspiration. Ivan Titov
acknowledges support of the European Research
Council (ERC StG BroadSem 678254) and the
Dutch National Science Foundation (NWO VIDI
639.022.518).

References
Sebastian Bach, Alexander Binder, Grégoire Mon-

tavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. 2015. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):e0130140.

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2019. Iden-
tifying and controlling important neurons in neural
machine translation. In International Conference on
Learning Representations, New Orleans.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017a. What do neu-
ral machine translation models learn about morphol-
ogy? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 861–872. Association
for Computational Linguistics.

Yonatan Belinkov, Lluís Màrquez, Hassan Sajjad,
Nadir Durrani, Fahim Dalvi, and James Glass.
2017b. Evaluating layers of representation in neural
machine translation on part-of-speech and semantic
tagging tasks. In Proceedings of the Eighth Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1–10. Asian
Federation of Natural Language Processing.

Arianna Bisazza and Clara Tump. 2018. The lazy en-
coder: A fine-grained analysis of the role of mor-
phology in neural machine translation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2871–2876,
Brussels, Belgium. Association for Computational
Linguistics.

Ondřej Bojar, Christian Federmann, Mark Fishel,
Yvette Graham, Barry Haddow, Matthias Huck,
Philipp Koehn, and Christof Monz. 2018. Find-
ings of the 2018 conference on machine translation
(wmt18). In Proceedings of the Third Conference
on Machine Translation, Volume 2: Shared Task Pa-
pers, pages 272–307, Belgium, Brussels. Associa-
tion for Computational Linguistics.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, and Stephan Vogel. 2017. Understanding
and improving morphological learning in the neu-
ral machine translation decoder. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 142–151. Asian Federation of Natural Lan-
guage Processing.

Yanzhuo Ding, Yang Liu, Huanbo Luan, and Maosong
Sun. 2017. Visualizing and understanding neural
machine translation. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1150–
1159, Vancouver, Canada. Association for Compu-
tational Linguistics.

https://openreview.net/pdf?id=H1z-PsR5KX
https://openreview.net/pdf?id=H1z-PsR5KX
https://openreview.net/pdf?id=H1z-PsR5KX
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
http://aclweb.org/anthology/I17-1001
http://aclweb.org/anthology/I17-1001
http://aclweb.org/anthology/I17-1001
http://www.aclweb.org/anthology/D18-1313
http://www.aclweb.org/anthology/D18-1313
http://www.aclweb.org/anthology/D18-1313
http://www.aclweb.org/anthology/W18-6401
http://www.aclweb.org/anthology/W18-6401
http://www.aclweb.org/anthology/W18-6401
http://aclweb.org/anthology/I17-1015
http://aclweb.org/anthology/I17-1015
http://aclweb.org/anthology/I17-1015
https://doi.org/10.18653/v1/P17-1106
https://doi.org/10.18653/v1/P17-1106

5806

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
state of sparsity in deep neural networks. arXiv
preprint.

Hamidreza Ghader and Christof Monz. 2017. What
does attention in neural machine translation pay at-
tention to? In Proceedings of the Eighth Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 30–39.
Asian Federation of Natural Language Processing.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195–1205. Associ-
ation for Computational Linguistics.

Felix Hill, Kyunghyun Cho, Sébastien Jean, and
Y Bengio. 2017. The representational geometry of
word meanings acquired by neural machine transla-
tion models. Machine Translation, 31.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
International Conference on Learning Representa-
tions, Toulon, France.

Łukasz Kaiser and Samy Bengio. 2018. Discrete au-
toencoders for sequence models. arXiv preprint
arXiv:1801.09797.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentation (ICLR 2015).

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In International Confer-
ence on Learning Representations, Banff, Canada.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn syntax-
sensitive dependencies. Transactions of the Associ-
ation for Computational Linguistics, 4:521–535.

Pierre Lison, Jörg Tiedemann, and Milen Kouylekov.
2018. OpenSubtitles2018: Statistical Rescoring of
Sentence Alignments in Large, Noisy Parallel Cor-
pora. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Christos Louizos, Max Welling, and Diederik P.
Kingma. 2018. Learning sparse neural networks
through l_0 regularization. In International Con-
ference on Learning Representations, Vancouver,
Canada.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous re-
laxation of discrete random variables. In Inter-
national Conference on Learning Representations,
Toulon, France.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pages
55–60, Baltimore, Maryland. Association for Com-
putational Linguistics.

Jan Niehues, Ronaldo Cattoni, Sebastian Stüker,
Mauro Cettolo, Marco Turchi, and Marcello Fed-
erico. 2018. The IWSLT 2018 Evaluation Cam-
paign. In Proceedings of the 15th International
Workshop on Spoken Language Translation, pages
118–123, Bruges, Belgium.

Martin Popel and Ondrej Bojar. 2018. Training Tips
for the Transformer Model. pages 43–70.

Alessandro Raganato and Jörg Tiedemann. 2018. An
analysis of encoder representations in transformer-
based machine translation. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
287–297, Brussels, Belgium. Association for Com-
putational Linguistics.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic backpropagation and ap-
proximate inference in deep generative models. In
Proceedings of the 31st International Conference
on Machine Learning, volume 32 of Proceedings of
Machine Learning Research, pages 1278–1286, Be-
jing, China. PMLR.

Rico Sennrich. 2017. How Grammatical is Character-
level Neural Machine Translation? Assessing MT
Quality with Contrastive Translation Pairs. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 376–382,
Valencia, Spain.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural mt learn source syntax? In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1526–
1534. Association for Computational Linguistics.

Gongbo Tang, Mathias Müller, Annette Rios, and Rico
Sennrich. 2018. Why self-attention? a targeted eval-
uation of neural machine translation architectures.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4263–4272. Association for Computational Linguis-
tics.

https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1902.09574
http://aclweb.org/anthology/I17-1004
http://aclweb.org/anthology/I17-1004
http://aclweb.org/anthology/I17-1004
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.1007/s10590-017-9194-2
https://doi.org/10.1007/s10590-017-9194-2
https://doi.org/10.1007/s10590-017-9194-2
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=33X9fd2-9FyZd
https://openreview.net/forum?id=33X9fd2-9FyZd
http://aclweb.org/anthology/Q16-1037
http://aclweb.org/anthology/Q16-1037
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.2478/pralin-2018-0002
https://doi.org/10.2478/pralin-2018-0002
http://www.aclweb.org/anthology/W18-5431
http://www.aclweb.org/anthology/W18-5431
http://www.aclweb.org/anthology/W18-5431
http://proceedings.mlr.press/v32/rezende14.html
http://proceedings.mlr.press/v32/rezende14.html
http://aclweb.org/anthology/E17-2060.pdf
http://aclweb.org/anthology/E17-2060.pdf
http://aclweb.org/anthology/E17-2060.pdf
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/D16-1159
https://doi.org/10.18653/v1/D16-1159
http://aclweb.org/anthology/D18-1458
http://aclweb.org/anthology/D18-1458

5807

Gongbo Tang, Rico Sennrich, and Joakim Nivre. 2018.
An analysis of attention mechanisms: The case of
word sense disambiguation in neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 26–
35, Belgium, Brussels. Association for Computa-
tional Linguistics.

Ke Tran, Arianna Bisazza, and Christof Monz. 2018.
The importance of being recurrent for modeling hi-
erarchical structure. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4731–4736. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS, Los Angeles.

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan
Titov. 2018. Context-aware neural machine trans-
lation learns anaphora resolution. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1264–1274, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878.

A Layer-wise Relevance Propagation

Layer-wise relevance propagation (LRP) was orig-
inally designed to compute the contributions
of single pixels to predictions of image classi-
fiers (Bach et al., 2015). LRP back-propagates rel-
evance recursively from the output layer to the in-
put layer. We adapt LRP to the Transformer model
to calculate relevance that measures the associa-
tion degree between two arbitrary neurons in neu-
ral networks. In the following, we describe the
general idea of the LRP method, give the formal
definition used in our experiments and describe
how to compute a head relevance.

A.1 General idea
Layer-wise relevance propagation in its general
form assumes that the model can be decomposed
into several layers of computation. The first layer
are the inputs (for example, the pixels of an image
or tokens of a sentence), the last layer is the real-
valued prediction output of the model f . The l-th
layer is modeled as a vector z = (z

(l)
d)

V (l)
d=1 with

dimensionality V (l). Layer-wise relevance prop-
agation assumes that we have a Relevance score
R

(l+1)
d for each dimension z(l+1)

d of the vector z at
layer l + 1. The idea is to find a Relevance score

R
(l)
d for each dimension z(l)d of the vector z at the

next layer l which is closer to the input layer such
that the following equation holds:

f= . . .=
∑
d∈l+1

R
(l+1)
d =

∑
d∈l
R

(l)
d = · · · =

∑
d

R
(1)
d .

This equation represents a conservation princi-
ple, on which LRP relies to propagate the predic-
tion back without using gradients. Intuitively, this
means that total contribution of neurons at each
layer is constant. Since we are interested only
in heads relevance, we do not propagate till input
variables and stop at the neurons of the encoder
layer of interest.

A.2 Formal rules
In this section, we provide formal rules for prop-
agating relevance. Here we follow the approach
by Ding et al. (2017) previously used for neural
machine translation.

Let ru←v denote relevance of neuron u for neu-
ron v.

Definition 1 Given a neuron u, its incoming
neuron set IN(u) comprises all its direct con-
nected preceding neurons in the network.

Definition 2 Given a neuron u, its outcoming
neuron set OUT (u) comprises all its direct con-
nected descendant neurons in the network.

Definition 3 Given a neuron v and its incoming
neurons u ∈ IN(v), the weight ratio measures the
contribution of u to v. It is calculated as

wu→v =
Wu,vu∑

u′∈IN(v)

Wu′,vu′
if v =

∑
u′∈IN(v)

Wu′,vu
′,

wu→v =
u∑

u′∈IN(v)

u′
if v =

∏
u′∈IN(v)

u′.

These equations define weight ratio for matrix
multiplication and element-wise multiplication
operations.

Redistribution rule for LRP Relevance is
propagated using the local redistribution rule as
follows:

ru←v =
∑

z∈OUT (u)

wu→zrz←v.

The provided equations for computing weights
ratio and the redistribution rule allow to compute
the relative contribution of neurons at one point
in a network to neurons at another. Note that we
follow Ding et al. (2017) and ignore non-linear ac-
tivation functions.

http://aclweb.org/anthology/W18-6304
http://aclweb.org/anthology/W18-6304
http://aclweb.org/anthology/W18-6304
http://aclweb.org/anthology/D18-1503
http://aclweb.org/anthology/D18-1503
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://aclweb.org/anthology/P18-1117
http://aclweb.org/anthology/P18-1117
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878

5808

A.3 Head relevance

In our experiments, we compute relative contri-
bution of each head to the network predictions.
For this, we evaluate contribution of neurons in
headi (see equation 1) to the top-1 logit predicted
by the model. Head relevance for a given predic-
tion is computed as the sum of relevances of its
neurons, normalized over heads in a layer. The
final relevance of a head is its average relevance,
where average is taken over all generation steps
for a development set.

B Experimental setup

B.1 Data preprocessing

Sentences were encoded using byte-pair encod-
ing (Sennrich et al., 2016), with source and target
vocabularies of about 32000 tokens. For Open-
Subtitles data, we pick only sentence pairs with
a relative time overlap of subtitle frames between
source and target language subtitles of at least 0.9
to reduce noise in the data. Translation pairs were
batched together by approximate sequence length.
Each training batch contained a set of translation
pairs containing approximately 1600010 source to-
kens. It has been shown that Transformer’s perfor-
mance depends heavily on a batch size (Popel and
Bojar, 2018), and we chose a large value of batch
size to ensure that models show their best perfor-
mance.

B.2 Model parameters

We follow the setup of Transformer base
model (Vaswani et al., 2017). More precisely, the
number of layers in the encoder and in the decoder
isN = 6. We employ h = 8 parallel attention lay-
ers, or heads. The dimensionality of input and out-
put is dmodel = 512, and the inner-layer of a feed-
forward networks has dimensionality dff = 2048.

We use regularization as described in (Vaswani
et al., 2017).

B.3 Optimizer

The optimizer we use is the same as in (Vaswani
et al., 2017). We use the Adam optimizer (Kingma
and Ba, 2015) with β1 = 0.9, β2 = 0.98 and ε =
10−9. We vary the learning rate over the course of

10This can be reached by using several of GPUs or by ac-
cumulating the gradients for several batches and then making
an update.

training, according to the formula:

lrate = scale ·min(step_num−0.5,

step_num · warmup_steps−1.5)

We use warmup_steps = 16000, scale = 4.

