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Abstract

Bilingual Lexicon Induction (BLI) is the task
of translating words from corpora in two lan-
guages. Recent advances in BLI work by
aligning the two word embedding spaces. Fol-
lowing that, a key step is to retrieve the near-
est neighbor (NN) in the target space given the
source word. However, a phenomenon called
hubness often degrades the accuracy of NN.
Hubness appears as some data points, called
hubs, being extra-ordinarily close to many of
the other data points. Reducing hubness is
necessary for retrieval tasks. One successful
example is Inverted SoFtmax (ISF), recently
proposed to improve NN. This work pro-
poses a new method, Hubless Nearest Neigh-
bor (HNN), to mitigate hubness. HNN dif-
fers from NN by imposing an additional equal
preference assumption. Moreover, the HNN
formulation explains why ISF works as well
as it does. Empirical results demonstrate that
HNN outperforms NN, ISF and other state-of-
the-art. For reproducibility and follow-ups, we
have published all code'.

1 Introduction

This paper presents a new method for Bilingual
Lexicon Induction (BLI), which we call Hub-
less Nearest Neighbor (HNN). BLI is the task
of creating a lexicon of translation equivalents
such as, bank:banc or bank:banque automatically
from non-parallel corpora. The proposed method
not only improves upon but also unifies several
recent works that retrieve translations by Near-
est Neighbor (NN) (Mikolov et al., 2013) and
more advanced techniques like Inverted SoFtmax
(ISF) (Smith et al., 2017).

There is a long history of BLI using non-
parallel corpora. Methods often rely on some
designed features, which reveal some shared
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structures across languages. For example, co-
occurrence matrices (Rapp, 1995), tf-idf of con-
text words (Fung, 1998), and lexical similari-
ties (Klementiev et al., 2012). A comprehensive
study can be found in (Irvine and Callison-Burch,
2017).

Recently, Mikolov et al. (2013) observe that iso-
morphism exists across word embeddings of dif-
ferent languages. This motivates them to learn a
linear mapping to align the spaces, using a seed-
ing dictionary of 5K pairs of translations. Af-
ter that, more translations can be induced by NN
search. Following the seminal work, significant
advances have been made. For example, Faruqui
and Dyer (2014) use Canonical Component Anal-
ysis to align the two embedding spaces. Xing
et al. (2015) show a substantial gain by normaliz-
ing the embeddings and constraining the mapping
to be orthogonal. A series of works by Artetxe
et al. (2017, 2018a,b) show that decent accura-
cies can be achieved even with a tiny or no seed-
ing dictionary. The authors name their method as
“self-learning”, which alternates between learning
the mapping and inducing more translation pairs.
The similar methodology is also seen in (Zhang
et al., 2017b), where the induction step reduces a
cost called earth mover distance. Conneau et al.
(2018) propose to use Generative Adversarial Net-
work (Goodfellow et al., 2014) to learn the map-
ping when no seeding dictionary is available.

Whether using a seeding dictionary or not, the
induction always requires to retrieve the transla-
tion under some distance measure. NN may be
the most straightforward approach. However, it
is often challenged by a phenomenon called hub-
ness (Radovanovic et al., 2010). Hubness is a ten-
dency that a few words (hubs) are too near to too
many other words, especially in high dimensional
spaces. It degrades the accuracy of NN in various
tasks (Aucouturier and Pachet, 2008; Ozaki et al.,

4072

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4072—4080
Florence, Italy, July 28 - August 2, 2019. (©2019 Association for Computational Linguistics


https://github.com/baidu-research/HNN

2011; Suzuki et al., 2013; Zhang et al., 2017a),
including BLI (Dinu et al., 2014). Recently, re-
markable improvements have been made in BLI
by mitigating hubness. For example, Smith et al.
(2017) propose Inverted SoFtmax (ISF) that scales
the similarities by a (global) measure of hubness.
Conneau et al. (2018) develop a method called
Cross domain Similarity Local Scaling (CSLS)
that relies on a local measure of hubness instead.

This work studies how to overcome hubness in
BLI. The new method, HNN, is proposed by in-
troducing an equal preference assumption. As we
shall see, the assumption leads to an optimization
problem that manifests the connection between
HNN, NN and ISE. Empirical results demonstrate
that HNN is very competitive and able to outper-
form NN, ISF and other state-of-the-art like CSLS.
In summary, the paper makes the following contri-
butions:

1. We propose an optimization based frame-
work that connects NN, ISF and the proposed
HNN.

2. We derive an efficient solver for HNN, which
outperforms NN, ISF and other state-of-the-
art.

3. We show that ISF is a part of HNN’s solver,
which explains why ISF works.

2 Bilingual Lexicon Induction with a
Seeding Dictionary

Since hubness is the major concern of this work,
we focus on the case with a seeding dictionary
for simplicity. Representative methods (Mikolov
et al.,, 2013; Xing et al., 2015; Artetxe et al.,
2018a) often consist of two steps: 1) learning a
mapping that aligns the source and target embed-
ding spaces; 2) given a source word, retrieve ac-
cording to some distance metric, in the target em-
bedding space. We briefly review the two steps in
this section.

Let the source word embeddings space be X' C
R?, and the target space be Y C R A typi-
cal value of the dimension d is 300. Suppose the
vocabulary sizes of source/target languages are m
and n respectively. Then X is a set of m embed-
ding vectors, denoted as

X ={x1,...,Xm},

and ) is a set of n embeddings,

y2{Y1>"'7Yﬂ}'

2.1 Learning Linear Transformation

Suppose we can access a seeding dictionary,
which reveals some correspondences from a sub-
set of X' to a subset of ). The correspondence
can be one-to-one, many-to-one, or one-to-many.
In matrix form, let the columns of matrix X (Y)
be the embeddings of source (target) words in the
dictionary, where the j-th columns of X and Y are
the embeddings of a pair of translations.

Using X and Y, a linear mapping T can be
learned, which “aligns” the X and ) space. In
particular,

T = argmin |[TX — Y|)%.
TeQ

Here 2 is a constraint set on T. For exam-
ple, Mikolov et al. (2013) simply let 2 be R%*9,
whereas Xing et al. (2015) show substantial gain
by setting {2 as the set of orthogonal matrices.

2.2 Retrieval by Nearest Neighbor (NN)

Once the T is obtained, translation can be cast as
a retrieval problem. We define a distance matrix
D, between the mapped source embeddings and
target embeddings,

Di,j £ diSt(TXi, yj),

where “dist” is some distance metric. For the -
th source word, Nearest Neighbor (NN) criterion
determines (the index of) its translation in the )
set, by
argmin D; ; (NN)
J
However, several works (Radovanovic et al.,
2010; Dinu et al., 2014) have observed that the ac-
curacy of NN is often significantly degraded by a
phenomenon called hubness. Mitigating hubness
has thus become necessary, which we will review
next.

2.3 Inverted Softmax: Improve NN by
Mitigating Hubness

Hubness occurs in high dimensional feature
space (Radovanovic et al., 2010). It appears as
some data points, called hubs, being close to too
many of the others. We look into Inverted SoFt-
max (ISF) (Smith et al., 2017), a recent retrieval
methods that tackle hubness.

Given the distance matrix D, ISF seeks a ma-
trix IS F where its i, j-th entry decides the prob-
ability of translating the ¢-th source word to the
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7-th target. A “temperature” parameter e is intro-
duced to construct a kernel, exp(—D; j/e). The
ISF matrix is obtained by normalizing the ker-
nel’s columns first, and then the rows.

exp (—D; j/e€)
Z; 35t exp (=Dij/e)’
where Z; is a row normalizer such that
Zj ISF;; = 1 for any i. The (index of) trans-
lation for the ¢-th source word is then determined
by

ISF(D);; =

argmax [SF(D); ;. (ISF)
J

Smith et al. (2017) show that ISF significantly

outperforms NN in BLI tasks. However, it is still

not clear why ISF works so well. One contribution

of our work is to shed light on the mechanism be-

hind ISF, which will be manifested after we study

the proposed Hubless Nearest Neighbor.
3 Hubless Nearest Neighbor (HNN)

This section formalizes the proposed HNN. As
will be clear from this section and the next, there
is a unified view over NN, ISF and HNN. We now
start by rephrasing the retrieval task into the fol-
lowing general problem. Given the distance ma-
trix D defined in section 2.2, we seek an assign-
ment matrix P where P, ; is the probability of
the j-th target word being the translation of the
i-th source word. Assume the target vocabulary is
large enough so that one or more translations can
always be found for any source word. Therefore

d py=1.
J

The (index of) translation is inferred by

argmax P; ;.
J
The art is to determine P from D and various other
information/priors. The above framework is gen-
eral in the sense that various designs exist in seek-
ing the P.

3.1 NN as a Warm-up

As a warm-up, we show that NN is a special case
of the above framework. In specific, let (-,-) be
matrix inner product, then (D, P) is a measure of
cost to translate from source to target, which we
may want to minimize. In addition, if we mini-
mize it along with a negative entropy regularizer
(on P), we can reduce the gap between NN and
(ISF). As stated by the following proposition,

Proposition 1. The (NN) criterion is equivalent
to argmax; b j, where P is the solution of the
following optimization problem,

in(D,P P, :log P; ;
Hgn< ) > + EZ 1,j 108 L7 5
27‘7

(Po)
S.t.f)i,j 2 O, ZBJ =1
J
Proof. The solution to (Py) is simply
exp(—D; /e
P, - (=Dij/€) 0

> i1 exp(=Djj/e)

Substituting Eq. (1) to arg max; F; ;, we arrive at
argmin D; ;,

which is exactly the NN criterion. O

The objective of (Py) is regularized by
€>_; ; Pijlog(P; j), which s the negative entropy
of P. It smooths the linear objective, and leads to
a solution, Eq. (1), as anther view of NN that is
closer to (ISF).

3.2 Equal Preference Assumption

Starting from (Pg), we now try to reduce the hubs.
Since hubness results in some y;’s being retrieved
more frequently than others, a natural idea is to
force all y;’s being equally preferred to be re-
trieved. The preference of y; can be measured by

L1
pfi(P) ==;;j£:f%J-

In other words, on average, how the j-th target
word is likely to be picked as the translation of
a source word. We therefore force -1 3. P ; to
be uniform over all j’s. In addition, with the
constraint that ) ;Pij = 1 for any 4, we have
% Y Pii= % for any j. We term the constraint
as equal preference assumption. Formally,

Definition 1. Equal Preference Assumption:

1
pf] - 57

forall j’s.

If the translation is strictly one-to-one, then
m = n and P is a permutation matrix. The as-
sumption exactly holds. In reality, translation is
not one-to-one. But empirically, we still observe
that it approximately holds, at least for some lan-
guage pairs. To see that, we build a “groundtruth”
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P* using an English-French dictionary?. The dic-
tionary includes 113K items, with plenty of poly-
semies. The vocabularies are built from monolin-
gual word embedding files 3. Vocabulary sizes are
set as m = n = 500, 000. The P* is computed as

1 ¢-th source word can be
translated to the j-th target |,
0 otherwise

s a1
1,7 Zl
(2)
where Z; is a normalizer that ensures ) | ;P =1
We compute the pf; values using the P*. To
measure how much the values deviate from the
equal preference assumption, we compute their
variance,
var; [pfj] . (3)
If the equal preference assumption exactly holds,
var; [pf;] = 0. Otherwise, the larger the variance,
the less true the assumption is. It turns out that
var;[pf;] ~ 1.9 x 10~ which is tiny and support
the assumption.

3.3 HNN

We add the equal preference assumption as a con-
straint to problem (Pp), and now solve the follow-
ing new problem instead,

in(D, P P, ilogP; ;
rrgn( ) >+€Z i,j 108 L7,

1,J
1 1
st.Pj >0, ZPW‘ =1, - ZPM =
- i

J
(P1)

In analogous to (NN) and Proposition 1, we intro-

duce the following definition of Hubless Nearest

Neighbor (HNN).

Definition 2. HNN is the criterion that retrieves

index

arg max b ;
J
where P is the solution of problem (P1).

The remaining question is how to solve (P1),
which we will discuss in the next section.

4 Solvers for HNN

We first present a straightforward but less efficient
solver, then we derive an efficient alternative. Both
solvers, as will be seen, have strong connections
with ISE.

2https://dl.fbaipublicfiles.com/arrival/

dictionaries/en-fr.txt
https://dl.fbaipublicfiles.com/fasttext/
vectors-wiki/wiki.en.vec and
https://dl.fbaipublicfiles.com/fasttext/
vectors-wiki/wiki.fr.vec

4.1 A Less Efficient Solver

(P1) can be solved by Sinkhorn iteration (Cuturi,
2013), which iteratively normalizes the columns
and rows of a kernel matrix. The steps are sum-
marized in algorithm 1.

Algorithm 1 Sinkhorn Solver for Problem (P7)
Input: D
Output: P
1: P < exp(—D/e¢) where exp is on elements.
2: while stopping criteria not met do
3 // normalize columns
4 P« Pdiag{™./(PT1)}
5:  // normalize rows
6
7:

P <+ diag{1./(P1)}P
end while

Here ./ denotes elementwise division, 1 is an
all-one vector of suitable length, and diag{-} con-
structs a diagonal matrix from a vector.

Remark 1. The Sinkhorn Solver reveals some
connection between ISF and HNN. Indeed, ISF is
equivalent to running a single iteration of algo-
rithm 1. A deeper connection will be revealed in
the next subsection, where we provide a comple-
mentary view of problem (P1).

4.2 Dual Problem and an Efficient Solver

One drawback of algorithm 1 is its prohibitive
memory cost. Indeed, the P matrix has to be in
memory for frequent update, which is costly when
the vocabulary sizes m and n are big. In this
section, we study a dual form of problem (P;),
given in Proposition 2, which hints a more effi-
cient method to solve for P.

Proposition 2. The solution of problem (P1) can
be expressed as

exp (L_Di’j)
€
Py = @
) B_Dz
2.j€xXp (%)
where [3; is the solution of
1 8- D >
min — elo exp | =L—1
g3 e (0
(D)

1
Ta2h
J
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Proof. The proof is by method of Lagrangian mul-
tipliers. Details are in supplementary. 0

The dual form (D) is a special case of the dual
forms in general contexts (Genevay et al., 2016).
(D) is useful because it allows us to learn a much
smaller vector 3 (of size n), instead of keeping up-
dating the huge matrix P (m by n). Moreover, its
loss function is a summation over the ¢’s, which
can be minimized by parallelizable gradient de-
scent. Finally, (D) is convex, which guarantees
the convergence of gradient descent.

It is now a natural idea to derive the gradient
of (D) and give a gradient descent solver. Let us
define the objective in (D) as ¥;,

Bj — D; ; 1
&-éelogZeXp<36” —gZBj.
J J
Then,

ot; XD (@) 1 )
oB; S, exp (M) n’

€

Algorithm 2 summarizes the gradient descent
solver. The equivalence between algorithm 1 and
2 will be empirically validated in section 5.1. In
large-scale experiments, we apply algorithm 2 (in-
stead of algorithm 1) for its lower memory cost.

Algorithm 2 Dual Solver for Problem (P;)
Input: D, learning rate 7.
Output: P
1: 3«0
2: while stopping criteria not met do
33 fori=1,...,mdo
/I parallelizable
Compute gradient V/; using E.q. (5).
end for
ﬂ%B—n-%ZiWi
8: end while
9: Compute P by E.q. (4) and return.

Nk

Remark 2 (Unifying NN, ISF and HNN). Com-
paring the P matrix under NN (Eq. (1)) and HNN
criterion (Eq. (4)), we observe that HNN intro-
duces an additional set of values, (3;’s. The quan-
tity, exp(—pB;/e€), normalizes the j-th column of
the kernel matrix exp(—D; ;/€). In contrast, (ISF)
simply sets the column normalizer as the column
sum, y_.exp(—D; ;/€). Obviously, HNN works

harder in figuring out the normalizers, which re-
sults in a higher accuracy, as we shall see in the
experiment section.

5 Experiments

In this section, we first experiment with synthetic
data to illustrate the connection between NN, ISF
and the proposed HNN. Then, we report extensive
results on BLI task to show the advantage of HNN
over NN, ISF and CSLS, another state-of-the-art.
We will also demonstrate that hubness is in-
deed reduced by HNN. To measure hubness,
we adopt the k-occurrence metric proposed
in (Radovanovic et al., 2010), but with a small
adaption. In its original definition, k-occurrence,
Ng, is the number of times a data point appears
among the k nearest neighbors of all the others. In
our case, we measure for every target example, the
number of times it is retrieved against the source
set. If a target example is retrieved too many times,
it is likely to be a “hub”. For both the original def-
inition and our adapted one, hubness can be indi-
cated by a long tail of the distribution of Nj.

5.1 Connection between NN, ISF and HNN

We simulate a retrieval task, where source and tar-
get spaces are already aligned. In specific, data is
generated from a Gaussian mixture model,

10,000 1
. 01 x1

c=

where the dimension d = 300. The class mean g,
is generated by normalizing a R3%° vector where
each dimension is drawn from uniform(—1,1).
We generate two samples per class, one in the
source set, the other as the target to be retrieved.
We use NN, ISF and HNN with algorithm 1 and
2 to retrieve for the 10K source samples. € is set
to 0.1, which gives the best accuracy of ISF. The
same € is also used in HNN.

Table 1 reports top-1, top-5, top-10 accuracies.
The two algorithms for HNN achieve the best re-
sults and their accuracies are basically the same,
validating their equivalence. To understand the
improvement over NN, we measure the hubness in
different methods. Figure 1 plots the distribution
of N7, the 1-occurrences. HNN has the shortest
tail, in stark contrast to the long tail of NN, imply-
ing significantly reduced number of hubs.

We then illustrate the connection between ISF
and HNN. Figure 2 tracks the top-1 accuracies
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Table 1: Compare NN, ISF and HNN on the simulated
retrieval task

P@1 | P@5 | P@10

NN 51.71 | 71.88 | 78.51

ISF 7375 | 88.57 | 92.36
HNN

(Algorithm 1) 78.85 | 91.43 | 94.60
HNN

(Algorithm 2) | 534 | 9141 | 94.59

over the iterations in algorithm 1. The accuracy
at the first iteration matches that of ISF, validat-
ing the comments in remark 1. Next, recall the
observation we made in remark 2: Algorithm 2
and ISF both seek normalizers over the target ex-
amples to penalize hubness. It is therefore inter-
esting to compare the two normalizers, shown in
figure 3. We observe that the normalizer by HNN
is smoother than that of ISF.

5.2 BLI Data and Setups

We now compare the different methods on real
BLI tasks. We follow the setup in (Conneau et al.,
2018). The word embeddings and groundtruth
dictionaries (for both training and testing) can be
downloaded from the MUSE* repository. The
dataset includes word embeddings for 45 lan-
guages. We focus on six languages in our experi-
ments, since dictionaries are available for any two
out of the six. These six languages are English
(en), Spanish (es), French (fr), Italian (it), Por-
tuguese (pt) and German (de).

Dictionaries for a pair of languages have the fol-
lowing three parts:

4https://github.com/facebookresearch/MUSE

in algorithm 1. ISF’s P@1 overlaps
with that of HNN at the 1st itera-

log domain: log ) . exp(—D; ;/€)
for ISF, and —p;/e for HNN,
which is smoother.

1. src-tgt.0-5000.txt is a seeding dictionary for
learning the mapping, which has 5K unique
source words.

2. src-tgt.5000-6500.txt is a small test dictio-
nary that includes 1.5K unique source words.
In (Conneau et al., 2018), P@1 values are re-
ported on this set.

3. src-tgt.txt is a full dictionary that includes the
above two dictionaries and much more src-to-
tgt translations. In later experiments, we will
use it as a large test dictionary by excluding
from it the items in src-tgt.0-5000.txt.

Following (Conneau et al., 2018), an orthonor-
mal mapping T is learned using the seeding dictio-
nary first. The retrieval step uses cosine distance,

ie.,
.
1 T,
Dij==[1- RN ) (6)
2 3¢l

The hyper-parameters (¢ for ISF and HNN, & for
CSLS) should be set as the ones that achieve
the best accuracy on the seeding dictionary. We
choose to trust the default values (¢ = 1/30 and
k = 10) used in the MUSE repository, since us-
ing them, we can reproduce the results reported
in (Conneau et al., 2018). For HNN, ¢ is set to
the same value as in ISF, and we use the gradient
solver (Algorithm 2) throughout.

As a sanity check, we first reproduce some re-
sults reported in Tab. 1 of (Conneau et al., 2018)
(the part with cross-lingual supervision), and com-
pare those to HNN. Source and target vocabular-
ies are both 200K. P@1 values are reported on the
1.5K small test dictionary, shown in Tab. 2. HNN
is within the ballpark of state-of-the-art, produced
by ISF and CSLS.
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Figure 4: Diagnostics to understand the results in Table 3: (a) Visualizing var;[pf;], for every pair of source and
target languages, the corresponding block color-codes the variance of the preferences over the target words. The
variances are significantly bigger for pairs that involve German; (b)-(f): Distribution of Nj, the 5-occurrences for
different methods in foreign-English BLI tasks. 5-occurrence is the number of times a target word appears in the
top-5 retrievals. Long tail of the distribution indicates hubness.

Table 2: Compare HNN with some reproduced results
in Tab.1 of (Conneau et al., 2018), using 200K vocabu-
lary. P@1 is reported on the small 1.5K test dictionary.
HNN is comparable with ISF and CSLS. Note that the
P@1’s are reported on the small test dictionary, which
is less convincing. For more convincing comparisons,
refer to table 3 and table 1 in supplementary.

en-es es-en | en-fr fr-en

NN | 7740 77.27 | 74.93 176.07
ISF | 81.06 82.60 | 81.07 81.33
CSLS | 81.40 82.87 | 81.07 82.40
HNN | 81.27 82.53 | 81.33 82.00

5.3 BLI Results on the Large Test Dictionary

Reporting P@1 on the 1.5K small test dictionary
may not be sufficient to make a convincing com-
parison. We therefore repeat the same experiments
but report P@1 on the large test dictionary.

We first keep the vocabulary size of 200K, then
try a more challenging S00K. P@1 values are re-
ported on the large test dictionary. In fact, results
have the same trend for these different vocabulary
sizes. Therefore, considering space limit, we put

the results for the 200K case in supplementary.
Results of the 500K case are in Tab. 3.

HNN outperforms all the other methods in all
cases except pairs that involve German. Note that
French, Italian, and Portuguese are all Romance
languages. German is a Germanic language. En-
glish originates from both. The results seem to
suggest that the equal preference assumption is not
true between Romance and Germanic languages.

To better understand this, we estimate the
“eroundtruth” preference of target words, and the
variance of the preferences, following the process
in section 3.2 (Eq. (2) and (3)). The larger the vari-
ance, the less likely the equal preference assump-
tion holds. We visualize the variance between any
pair of languages in figure 4a, where a hot block
indicates large variance. We observe a large vari-
ance when either the source or target language is
German. In other words, the equal preference as-
sumption is more violated when translating from
or to German.

5.4 Analysis of Hubs in BLI

To see how the hubs are reduced, we again calcu-
late the k-occurrence metric. Figure 4b to 4f plot
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Table 3: P@1 values on the large test dictionary. Source and target vocabularies are both SO0K. HNN is the best

except pairs that involve German.

target en es fr it pt de
source
NN 54.98 | 55.66 | 46.30 | 37.02 | 53.03
en ISF 70.35 | 72.31 | 63.75 | 53.02 | 65.75
CSLS 71.21 | 72.62 | 64.11 | 53.54 | 66.50
HNN 71.34 | 73.65 | 64.91 | 54.03 | 64.61
NN 59.87 60.76 | 61.95 | 66.94 | 48.73
o ISF 73.11 76.82 | 76.33 | 78.67 | 61.70
CSLS 73.02 76.44 | 76.44 | 80.29 | 62.29
HNN 74.38 78.24 | 77.86 | 81.09 | 60.78
NN 61.60 | 61.73 59.43 | 46.31 | 57.10
. ISF 74.46 | 75.72 73.78 | 60.89 | 69.07
CSLS 74.88 | 76.68 74.34 | 62.06 | 70.34
HNN 75.97 | 77.23 75.12 | 63.10 | 67.94
NN 51.38 | 64.63 | 61.45 5191 | 50.68
it ISF 65.57 | 77.76 | 76.64 67.32 | 63.58
CSLS 65.32 | 78.45 | 76.74 68.85 | 64.57
HNN 67.57 | 79.75 | 78.56 70.33 | 62.96
NN 42.21 | 68.93 | 47.48 | 50.98 37.95
ot ISF 55.76 | 81.67 | 64.37 | 68.37 51.07
CSLS 54.75 | 81.98 | 63.68 | 67.92 51.78
HNN 57.43 | 83.97 | 66.19 | 70.44 49.93
NN 56.06 | 44.33 | 52.78 | 45.44 | 33.20
de ISF 69.74 | 60.77 | 71.59 | 65.99 | 52.74
CSLS 68.65 | 59.21 | 69.88 | 63.69 | 50.72
HNN 69.20 | 60.22 | 70.71 | 65.09 | 52.08

the distribution of the N5 values for all methods on
foreign-to-English BLI tasks. HNN has the short-
est tail in all cases, indicating the fewest hubs.

Table 4: Some representative hubs when applying NN
for the pt-en BLI task. Note that the N5 values are
significantly reduced after applying HNN.

Nj N5 frequency

word by NN by HNN rank
conspersus 1,776 0 484,387
Oryzopsis 1,235 5 472,161
these 1,042 25 122
s+bd 912 16 440,835
were 798 24 40
you 474 20 50
would 467 40 73

It is interesting to see what types of words are
likely to be hubs. Table 4 lists some representa-
tive ones in the pt-en experiment, picked from the
top 100 hubs with the biggest N5 values. Some

of them are extremely low-frequency words, e.g.,
“s+bd”. This is consistent with the finding in
(Dinu et al., 2014). Howeyver, it is also interest-
ing to see that highly frequent words like “were”
and “you” also appear to be hubs. Finally, all the
N5 values are reduced after applying HNN.

6 Conclusion

This paper studies how to reduce hubness dur-
ing retrieval, a crucial step for Bilingual Lexicon
Induction (BLI). The Hubless Nearest Neighbor
(HNN) is proposed by assuming an “equal prefer-
ence”’ constraint. HNN connects to NN, and also
sheds light on a recent hubness-preventing method
called Inverted SoFtmax (ISF). Empirical results
demonstrate that HNN effectively reduces hubs,
and can outperform NN, ISF and other state-of-
the-art. Future works include applying the method
to more language pairs and more domain-specific
lexicon induction, e.g., terminologies.
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