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Abstract

Segmenting a chunk of text into words is usu-
ally the first step of processing Chinese text,
but its necessity has rarely been explored.

In this paper, we ask the fundamental question
of whether Chinese word segmentation (CWS)
is necessary for deep learning-based Chinese
Natural Language Processing. We bench-
mark neural word-based models which rely on
word segmentation against neural char-based
models which do not involve word segmenta-
tion in four end-to-end NLP benchmark tasks:
language modeling, machine translation, sen-
tence matching/paraphrase and text classifica-
tion. Through direct comparisons between
these two types of models, we find that char-
based models consistently outperform word-
based models.

Based on these observations, we conduct com-
prehensive experiments to study why word-
based models underperform char-based mod-
els in these deep learning-based NLP tasks.
We show that it is because word-based models
are more vulnerable to data sparsity and the
presence of out-of-vocabulary (OOV) words,
and thus more prone to overfitting. We hope
this paper could encourage researchers in the
community to rethink the necessity of word
segmentation in deep learning-based Chinese
Natural Language Processing. !

1 Introduction

There is a key difference between English (or more
broadly, languages that use some form of the Latin
alphabet) and Chinese (or other languages that do
not have obvious word delimiters such as Korean
and Japanese) : words in English can be easily
recognized since the space token is a good approxi-
mation of a word divider, whereas no word divider

"Yuxian Meng and Xiaoya Li contributed equally to this
paper.

is present between words in written Chinese sen-
tences. This gives rise to the task of Chinese Word
Segmentation (CWS) (Zhang et al., 2003; Peng
et al., 2004; Huang and Zhao, 2007; Zhao et al.,
2006; Zheng et al., 2013; Zhou et al., 2017; Yang
etal., 2017, 2018). In the context of deep learning,
the segmented words are usually treated as the ba-
sic units for operations (we call these models the
word-based models for the rest of this paper). Each
segmented word is associated with a fixed-length
vector representation, which will be processed by
deep learning models in the same way as how En-
glish words are processed. Word-based models
come with a few fundamental disadvantages, as
will be discussed below.

Firstly, word data sparsity inevitably leads to
overfitting and the ubiquity of OOV words limits
the model’s learning capacity. Particularly, Zipf’s
law applies to most languages including Chinese.
Frequencies of many Chinese words are extremely
small, making the model impossible to fully learn
their semantics. Let us take the widely used Chi-
nese Treebank dataset (CTB) as an example (Xia,
2000). Using Jieba,? the most widely-used open-
sourced Chinese word segmentation system, to seg-
ment the CTB, we end up with a dataset consist-
ing of 615,194 words with 50,266 distinct words.
Among the 50,266 distinct words, 24,458 words
appear only once, amounting to 48.7% of the total
vocabulary, yet they only take up 4.0% of the entire
corpus. If we increase the frequency bar to 4, we
get 38,889 words appearing less or equal to 4 times,
which contribute to 77.4% of the total vocabulary
but only 10.1% of the entire corpus. Statistics are
given in Table 1. This shows that the word-based
data is very sparse. The data sparsity issue is likely
to induce overfitting, since more words means a
larger number of parameters. In addition, since it

https://github.com/fxsjy/jieba
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bar  #distinct prop of vocab  prop of corpus

) 50,266 100% 100%
4 38,889 77.4% 10.1%
1 24,458 48.7% 4.0%

Table 1: Word statistics of Chinese TreeBank.

Corpora | Yao [ Ming | reaches the final
CTB TEEA A EIRTE
PKU | Bk [ B | #A | 5 [ R¥% |

Table 2: CTB and PKU have different segmentation
criteria (Chen et al., 2017c¢).

is unrealistic to maintain a huge word-vector ta-
ble, many words are treated as OOVs, which may
further constrain the model’s learning capability.
Secondly, the state-of-the-art word segmenta-
tion performance is far from perfect, the errors of
which would bias downstream NLP tasks. Partic-
ularly, CWS is a relatively hard and complicated
task, primarily because word boundary of Chinese
words is usually quite vague. As discussed in Chen
et al. (2017¢), different linguistic perspectives have
different criteria for CWS (Chen et al., 2017c¢). As
shown in Table 1, in the two most widely adopted
CWS datasets PKU (Yu et al., 2001) and CTB (Xia,
2000), the same sentence is segmented differently.
Thirdly, if we ask the fundamental problem of
how much benefit word segmentation may provide,
it is all about how much additional semantic infor-
mation is present in a labeled CWS dataset. Af-
ter all, the fundamental difference between word-
based models and char-based models is whether
teaching signals from the CWS labeled dataset are
utilized. Unfortunately, the answer to this question
remains unclear. For example. in machine transla-
tion we usually have millions of training examples.
The labeled CWS dataset is relatively small (68k
sentences for CTB and 21k for PKU), and the do-
main is relatively narrow. It is not clear that CWS
dataset is sure to introduce a performance boost.
Before neural network models became popular,
there were discussions on whether CWS is nec-
essary and how much improvement it can bring
about. In information retrieval(IR), Foo and Li
(2004) discussed CWS’s effect on IR systems and
revealed that segmentation approach has an effect
on IR effectiveness as long as the SAME segmenta-
tion method is used for query and document, and
that CWS does not always work better than mod-
els without segmentation. In cases where CWS
does lead to better performance, the gap between
word-based models and char-based models can be

closed if bigrams of characters are used in char-
based models. In the phrase-based machine trans-
lation, Xu et al. (2004) reported that CWS only
showed non-significant improvements over mod-
els without word segmentation. Zhao et al. (2013)
found that segmentation itself does not guarantee
better MT performance and it is not key to MT im-
provement. For text classification, Liu et al. (2007)
compared a naive character bigram model with
word-based models, and concluded that CWS is
not necessary for text classification. Outside the
literature of computational linguistics, there have
been discussions in the field of cognitive science.
Based on eye movement data, Tsai and McConkie
(2003) found that fixations of Chinese readers do
not land more frequently on the centers of Chi-
nese words, suggesting that characters, rather than
words, should be the basic units of Chinese reading
comprehension. Consistent with this view, Bai et al.
(2008) found that Chinese readers read unspaced
text as fast as word spaced text.

In this paper, we ask the fundamental question
of whether word segmentation is necessary for
deep learning-based Chinese natural language pro-
cessing. We first benchmark word-based models
against char-based models (those do not involve
Chinese word segmentation). We run apples-to-
apples comparison between these two types of
models on four NLP tasks: language modeling,
document classification, machine translation and
sentence matching. We observe that char-based
models consistently outperform word-based model.
We also compare char-based models with word-
char hybrid models (Yin et al., 2016; Dong et al.,
2016; Yu et al., 2017), and observe that char-based
models perform better or at least as good as the
hybrid model, indicating that char-based models
already encode sufficient semantic information.

It is also crucial to understand the inadequacy
of word-based models. To this end, we perform
comprehensive analyses on the behavior of word-
based models and char-based models. We identify
the major factor contributing to the disadvantage
of word-based models, i.e., data sparsity, which in
turn leads to overfitting, prevelance of OOV words,
and weak domain transfer ability.

Instead of making a conclusive (and arrogant)
argument that Chinese word segmentation is not
necessary, we hope this paper could foster more
discussions and explorations on the necessity of
the long-existing task of CWS in the community,
alongside with its underlying mechanisms.
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2 Related Work

Since the First International Chinese Word Seg-
mentation Bakeoff in 2003 (Sproat and Emerson,
2003) , a lot of effort has been made on Chinese
word segmentation.

Most of the models in the early years are based
on a dictionary, which is pre-defined and thus in-
dependent of the Chinese text to be segmented.
The simplest but remarkably robust model is the
maximum matching model (Jurafsky and Martin,
2014). The simplest version of it is the left-to-right
maximum matching model (maxmatch). Starting
with the beginning of a string, maxmatch chooses
the longest word in the dictionary that matches the
current position, and advances to the end of the
matched word in the string. Different models are
proposed based on different segmentation criteria
(Huang and Zhao, 2007).

With the rise of statistical machine learning
methods, the task of CWS is formalized as a tag-
ging task, i.e., assigning a BEMS label to each
character of a string that indicates whether the
character is the start of a word(Begin), the end
of a word(End), inside a word (Middel) or a single
word(Single). Traditional sequence labeling mod-
els such as HMM, MEMM and CRF are widely
used (Lafferty et al., 2001; Peng et al., 2004; Zhao
et al., 2006; Carpenter, 2006). .

Neural CWS Models such as RNNs, LSTMs
(Hochreiter and Schmidhuber, 1997) and CNNs
(Krizhevsky et al., 2012; Kim, 2014) not only pro-
vide a more flexible way to incorporate context
semantics into tagging models but also relieve re-
searchers from the massive work of feature engi-
neering. Neural models for the CWS task have
become very popular these years (Chen et al.,
2015b,a; Cai and Zhao, 2016; Yao and Huang,
2016; Chen et al., 2017b; Zhang et al., 2016; Chen
et al., 2017c; Yang et al., 2017; Cai et al., 2017;
Zhang et al., 2017). Neural representations can be
used either as a set of CRF features or as input to
the decision layer.

3 Experimental Results

In this section, we evaluate the effect of word seg-
mentation in deep learning-based Chinese NLP
in four tasks, language modeling, machine trans-
lation, text classification and sentence match-
ing/paraphrase. To enforce apples-to-apples com-
parison, for both the word-based model and the
char-based model, we use grid search to tune all

model dimension ppl |
word 512 199.9
char 512 193.0
word 2048 182.1
char 2048 170.9
hybrid (word+char)  1024+1024  175.7
hybrid (word+char)  2048+1024  177.1
hybrid (word+char) 204842048 176.2
hybrid (char only) 2048 171.6

Table 3: Language modeling perplexities in different
models.

important hyper-parameters such as learning rate,
batch size, dropout rate, etc.

3.1 Language Modeling

We evaluate the two types of models on Chinese
Tree-Bank 6.0 (CTB6). We followed the standard
protocol, by which the dataset was split into 80%,
10%, 10% for training, validation and test. The
task is formalized as predicting the upcoming word
given previous context representations. The text
is segmented using Jieba.> An upcoming word is
predicted given the previous context representation.
For different settings, context representations are
obtained using the char-based model and the word-
based model. LSTMs are used to encode characters
and words.

Results are given in Table 3. In both settings,
the char-based model significantly outperforms the
word-based model. In addition to Jieba, we also
used the Stanford CWS package (Monroe et al.,
2014) and the LTP package (Che et al., 2010),
which resulted in similar findings.

It is also interesting to see results from the hy-
brid model (Yin et al., 2016; Dong et al., 2016; Yu
et al., 2017), which associates each word with a
representation and each char with a representation.
A word representation is obtained by combining
the vector of its constituent word and vectors of the
remaining characters. Since a Chinese word can
contain an arbitrary number of characters, CNNs
are applied to the combination of characters vectors
(Kim et al., 2016) to keep the dimensionality of the
output representation invariant.

We use hybrid (word+char) to denote the stan-
dard hybrid model that uses both char vectors and
word vectors. For comparing purposes, we also im-
plement a pseudo-hybrid model, denoted by hybrid
(char only), in which we do use a word segmen-
tor to segment the texts, but word representations

*https://github.com/fxsjy/jieba
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are obtained only using embeddings of their con-
stituent characters. We tune hyper-parameters such
as vector dimensionality, learning rate and batch
size for all models.

Results are given in Table 3. As can be seen,
the char-based model not only outperforms the
word-based model, but also the hybrid (word+char)
model by a large margin. The hybrid (word+char)
model outperforms the word-based model. This
means that characters already encode all the se-
mantic information needed and adding word em-
beddings would backfire. The hybrid (char only)
model performs similarly to the char-based model,
suggesting that word segmentation does not pro-
vide any additional information. It outperforms the
word-based model, which can be explained by that
the hybrid (char only) model computes word rep-
resentations only based on characters, and thus do
not suffer from the data sparsity issue, OOV issue
and the overfitting issue of the word-based model.

In conclusion, for the language modeling task
on CTB, word segmentation does not provide any
additional performance boost, and including word
embeddings worsen the result.

3.2 Machine Translation

In our experiments on machine translation, we use
the standard Ch-En setting. The training set con-
sists of 1.25M sentence pairs extracted from the
LDC corpora.* The validation set is from NIST
2002 and the models are evaluated on NIST 2003,
2004, 2005, 2006 and 2008. We followed exactly
the common setup in Ma et al. (2018); Chen et al.
(2017a); Li et al. (2017); Zhang et al. (2018), which
use top 30,000 English words and 27,500 Chinese
words. For the char-based model, vocab size is set
to 4,500. We report results in both the Ch-En and
the En-Ch settings.

Regarding the implementation, we compare
char-based models with word-based models un-
der the standard framework of SEQ2SEQ +attention
(Sutskever et al., 2014; Luong et al., 2015). The cur-
rent state-of-the-art model is from Ma et al. (2018),
which uses both the sentences (seq2seq) and the
bag-of-words as targets in the training stage. We
simply change the word-level encoding in Ma et al.
(2018) to char-level encoding. For En-Ch transla-
tion, we use the same dataset to train and test both
models. As in Ma et al. (2018), the dimensionality
for word vectors and char vectors is set to 512.

*LDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08 and LDC2005T06.

Results for Ch-En are shown in Table 4. As can
be seen, for the vanilla SEQ2SEQ +attention model,
the char-based model outperforms the word-based
model across all datasets, yielding an average per-
formance boost of +0.83. The same pattern applies
to the bag-of-words framework in Ma et al. (2018).
When changing the word-based model to the char-
based model, we are able to obtain a performance
boost of +0.63. As far as we are concerned, this is
the best result on this 1.25M Ch-En dataset.

Results for En-Ch are presented in Table 5. As
can be seen, the char-based model outperforms the
word-based model by a huge margin (+3.13), and
this margin is greater than the improvement in the
Ch-En translation task. This is because in Ch-En
translation, the difference between word-based and
char-based models is only present in the source
encoding stage, whereas in En-Ch translation it is
present in both the source encoding and the tar-
get decoding stage. Another major reason that
contributes to the inferior performance of the word-
based model is the UNK word at decoding time, We
also implemented the BPE subword model (Sen-
nrich et al., 2016b,a) on the Chinese target side.
The BPE model achieves a performance of 41.44
for the Seq2Seq+attn setting and 44.35 for bag-of-
words, significantly outperforming the word-based
model, but still underperforming the char-based
model by about 0.8-0.9 in BLEU.

We conclude that for Chinese, generating char-
acters has the advantage over generating words in
deep learning decoding.

3.3 Sentence Matching/Paraphrase

There are two Chinese datasets similar to the Stan-
ford Natural Language Inference (SNLI) Corpus
(Bowman et al., 2015): BQ and LCQMC, in which
we need to assign a label to a pair of sentences
depending on whether they share similar mean-
ings. For the BQ dataset (Chen et al., 2018), it
contains 120,000 Chinese sentence pairs, and each
pair is associated with a label indicating whether
the two sentences are of equivalent semantic mean-
ings. The dataset is deliberately constructed so that
sentences in some pairs may have significant word
overlap but complete different meanings, while oth-
ers are the other way around. For LCQMC (Liu
et al., 2018), it aims at identifying whether two sen-
tences have the same intention. This task is similar
to but not exactly the same as the paraphrase detec-
tion task in BQ: two sentences can have different
meanings but share the same intention. For exam-
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. . Seq2Seq Seq2Seq Seq2Seq (word)  Seq2Seq (char)
TestSet | Mixed RNN  Bi-Tree-LSTM  PKI | \\ "(vord)  +Attn (char) | +Atn+BOW  +Attn+BOW
MT-02 36.57 36.10 39.77 35.67 36.82 (+1.15) 37.70 40.14 (+0.37)
MT-03 34.90 35.64 33.64 35.30 36.27 (+0.97) 38.91 40.29 (+1.38)
MT-04 38.60 36.63 36.48 37.23 37.93 (+0.70) 40.02 40.45 (+0.43)
MT-05 35.50 34.35 33.08 33.54 34.69 (+1.15) 36.82 36.96 (+0.14)
MT-06 35.60 30.57 32.90 35.04 35.22 (+0.18) 35.93 36.79 (+0.86)
MT-08 - - 24.63 26.89 27.27 (+0.38) 27.61 28.23 (+0.62)
Average - - 32.51 33.94 34.77 (+0.83) 36.51 37.14 (+0.63)

Table 4: Results of different models on the Ch-En machine translation task. Results of Mixed RNN (Li et al.,
2017), Bi-Tree-LSTM (Chen et al., 2017a) and PKI (Zhang et al., 2018) are copied from the original papers.

TestSet Seq2Seq Seq2Seq Seq2Seq Seq2Seq (char)
+Attn (word)  +Attn (char) | +Attn+BOW +Attn+BOW
MT-02 42.57 44.09 (+1.52) 43.42 46.78 (+3.36)
MT-03 40.88 44.57 (+3.69) 43.92 47.44 (+3.52)
MT-04 40.98 44.73 (+3.75) 43.35 47.29 (+3.94)
MT-05 40.87 42.50 (+1.63) 42.63 44.73 (+2.10)
MT-06 39.33 42.88 (+3.55) 43.31 46.66 (+3.35)
MT-08 33.52 35.36 (+1.84) 35.65 38.12 (+2.47)
Average 39.69 42.36 (+2.67) 42.04 45.17 (+3.13)

Table 5: Results on the En-Ch machine translation task.

ple, the meanings of My phone is lost” and "I need
a new phone” are different, but their intentions are
the same: buying a new phone.

Each pair of sentences in the BQ and the
LCQMC dataset is associated with a binary label in-
dicating whether the two sentences share the same
intention, and the task can be formalized as pre-
dicting this binary label. To predict correct labels,
a model needs to handle the semantics of the sub-
units of a sentence, which makes the task very ap-
propriate for examining the capability of semantic
models.

We compare char-based models with word-based
models. For the word-based models, texts are seg-
mented using Jieba. The SOTA results on these
two datasets is achieved by the bilateral multi-
perspective matching model (BiMPM) (Wang et al.,
2017). We use the standard settings proposed by
BiMPM, i.e. 200d word/char embeddings, which
are randomly initialized.

Results are shown in Table 6. As can be seen,
the char-based model significantly outperforms the
word-based model by a huge margin, +1.34 on the
LCQMC dataset and +2.90 on the BQ set. For
this paraphrase detection task, the model needs
to handle the interactions between sub-units of a
sentence. We conclude that the char-based model
is significantly better in this respect.

3.4 Text Classification

For text classification, we use the currently widely
used benchmarks including:

e ChinaNews: Chinese news articles split into 7
news categories.

o Ifeng: First paragraphs of Chinese news arti-
cles from 2006-2016. The dataset consists of
5 news categories;

e JD_Full: product reviews in Chinese crawled
from JD.com. The reviews are used to predict
customers’ ratings (1 to 5 stars), making the
task a five-class classification problem.

e JD binary: the same product reviews from
JD.com. We label 1, 2-star reviews as “neg-
ative reviews” and 4 and 5-star reviews as
“positive reviews” (3-star reviews are ignored),
making the task a binary-classification prob-
lem.

e Dianping: Chinese restaurant reviews crawled
from the online review website Dazhong Di-
anping (similar to Yelp). We collapse the 1, 2
and 3-star reviews to “negative reviews” and
4 and 5-star reviews to “positive reviews”.

The datasets were first introduced in Zhang and
LeCun (2017). We trained the word-based version
and the char-based version of bi-directional LSTM
models to solve this task. Results are shown in
Table 7. As can be seen, the only dataset that the
char-based model underperforms the word-based
model is the chinanews dataset, but the difference
is quite small (0.05). On all the other datasets,
the char-based model significantly outperforms the
word-based model.

Domain Adaptation Ability (Daumé III, 2007,
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Dataset description char valid word valid char test word test
LCQMC 238.7K/8.8K/12.5K 84.70 83.48 84.43 (+1.34) 83.09
BQ 100K/10K/10K 82.59 79.63 82.19 (+2.90) 79.29
Table 6: Results on the LCQMC and BQ corpus.
Dataset description char valid word valid char test word test
chinanews 1260K/140K/112K 91.81 91.82 91.80 91.85 (+0.05)
dianping  1800K/200K/500K 78.80 78.47 78.76 (+0.36)  78.40
ifeng 720K/80K/50K 86.04 84.89 85.95 (+1.09) 84.86
jd_binary  3600K/400K/360K 92.07 91.82 92.05 (+0.16)  91.89
jd_full 2700K/300K/250K 54.29 53.60 54.18 (+0.81)  53.37

Table 7: Results on the validation and the test set for text classification.

train_dianping_test_jd
model acc proportion of sen
containing OOV
word-based | 81.28% 11.79%
char-based | 83.33% 0.56%
train_jd_test_dianping
model acc proportion of sen
containing OOV
word-based | 67.32% 7.10%
char-based | 67.93% 46.85%

Table 8: Domain adaptation of the word-based model
and the char-based model

Jiang, 2008; Zhuang et al., 2010) refers to the abil-
ity of extending a model learned from one data
distribution (the source domain) for a different (but
related) data distribution (the target domain). Be-
cause of the data sparsity issue, we hypothesize that
char-based models have greater domain adaptation
ability than word-based models.

We test our hypothesis on different sentiment
analysis datasets. We train the word-based model
and the char-based model on Dianping (2M
restaurant reviews) and test the two models on
jd_binary (0.25M product reviews), as denoted by
train_dianping_test_jd. We also train models on
jd_binary and test them on Dianping, as denoted by
train_jd_test_dianping). Results are given in Table 8.
As expected, the char-based model has more do-
main adaptation ability and performs better than the
word-based model on both settings. The OOV is-
sue is especially serious for the word-based model.
In the train_dianping_test_jd setting, 11.79% of the
test sentences contain OOVs for the word-based
model, whereas this number is only 0.56% for the
char-based model. Similar observation holds for
the train_jd_test_dianping setting.

4 Analysis

In this section, we aim at understanding why word-
based models underperform char-based models.
We acknowledge that it is impossible to thoroughly
inspect the inner mechanism of word-based mod-
els, but we try our best to identify major factors
explaining the inferiority of word-based models.

4.1 Data Sparsity

A common method to avoid vocabulary size get-
ting too big is to set a frequency threshold, and use
a special UNK token to denote all words whose
frequency is below the threshold. The value of the
frequency threshold is closely related to the vocab-
ulary size, and consequently the number of param-
eters. Figure 2 shows the correlation between the
vocabulary size and the frequency threshold, along
with the correlation between model performances
and the frequency threshold. For both the char-
based model and the word-based model, using all
words/chars (threshold set to 0) leads to bad results.
The explanation is intuitive: it is hard to learn the
semantics of infrequent words/characters.

For the char-based model, the best performance
is obtained when character frequency threshold is
set to 5, resulting in a vocabulary size of 1,432
and a medium character frequency of 72. For
the word-based model, the best performance is ob-
tained when word frequency threshold is set to 50,
in which case the vocabulary size is 1,355 and the
medium word frequency is 83. As can be seen, the
vocabulary size and the medium word frequency
for the best word-based model is similar to those of
the best char-based model. This means, for a given
dataset, in order to learn the word/char semantics
well, the model needs to have enough exposure to
each word/character, the amount of which is ap-
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Figure 1: Effects of dropout rates on the char-based model and the word-based model.
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Figure 2: Effects of data sparsity on the char-based model and the word-based model.
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Figure 3: Semantic matching between two Chinese sentences with char-based models and word-based models.

proximately the same across different models. For
the word-based model, this requirement is particu-
larly hard to meet due to its sparseness.

4.2 Out-of-Vocabulary Words

One possible explanation for the inferiority of the
word-based model is that it contains too many
OOVs. If so, we should be able to narrow or even
close the gap between word-based models and char-

based models by decreasing the number of OOVs.
As discussed in Section 4.2, setting the frequency
threshold low to avoid OOVs will hinder the per-
formance because it worsen the data sparsity issue.
We thus use an alternative strategy: for different
word-frequency thresholds, we remove sentences
that contain word OOVs from all of the training,
validation and test sets. Figure 4 shows vocabu-
lary sizes of the training set and accuracies plotted
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Figure 4: Effects of removing training instances containing OOV words.

against word frequency threshold. As can be seen,
the gap between the two types of models is gradu-
ally narrowed as we increase the word-frequency
threshold. It is also interesting that the curve for the
char-based model goes up slightly at the beginning
and then goes down steadily. It is because the OOV
issue is not severe for the char-based model and
thus does not affect the performance much. How-
ever, as we remove more and more training exam-
ples, the shrinking training dataset creates a bigger
problem. By contrast, for the word-based model,
the performance keeps increasing even when the
frequency threshold is set to 50, meaning that the
positive influence of removing some OOVs out-
weighs the negative influence of eliminating some
training data. In conclusion, the word-based model
suffers from the OOV issue. This issue can be al-
leviated by reducing the number of OOVs in the
datasets.

4.3 Overfitting

The data sparsity issue leads to the fact that word-
based models have more parameters to learn, and
thus are more prone to overfitting. We conducted
experiments on the BQ dataset (Chen et al., 2018)
and the results validate this point (Figure 1). To
achieve the best results, a larger dropout rate is
needed for the word-based model (0.5) than the
char-based model (0.3). This means overfitting is
a severe issue for the word-based model. We also
observe that curves with different dropout rates are
closer together in word-based models than in char-
based models, which means the dropout technique
is not enough to resolve the overfitting issue. the
char-based model without dropout already achieves
better performance (80.82) than the word-based
model with the optimal dropout rate (80.65).

4.4 Visualization

The BQ semantic matching task aims at deciding
whether two sentences have the same intention.
Figure 3 tangibly shows why the char-based model
outperforms the word-based model. The heatmap
denotes the attention matching values between to-
kens of two two sentences, computed by the BiPMP
model (Wang et al., 2017). The input two sentences
are: (1) FE 2 HEZ /D (how much is the inter-
est expense), with segmented text being F| & %
Fi (interest expense) #& (is) Z% /> (how much)
and (2) F—"PHILHENLDHE (how much
interest do I have to pay if I repay the bill next
month), with segmented text being T > A (next
month) I8 (repay), 11 (hold) £/ (how much)
F) B, (interest). For word-based semantic matching,
since | B, 7% FH (interest expense) is treated as a sin-
gle word, it fails to be mapped to F| E (interest).
This is not the case with the char-based model since
the same character in the two sentences are more
easily mapped.

5 Conclusion

In this paper, we ask the fundamental question of
whether word segmentation is necessary for deep
learning of Chinese representations. We bench-
mark such word-based models against char-based
models in four end-to-end NLP tasks, and enforce
apples-to-apples comparisons as much as possible.
We observe that char-based models consistently
outperform word-based models. Building upon
these findings, we show that word-based models’
inferiority is due to the sparseness of word dis-
tributions, which leads to more out-of-vocabulary
words, overfitting and lack of domain generaliza-
tion ability. We hope this paper will foster more
discussions on the necessity of the long-existing
task of CWS in the community.
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