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Abstract

Machine translation is highly sensitive to the

size and quality of the training data, which

has led to an increasing interest in collect-

ing and filtering large parallel corpora. In

this paper, we propose a new method for this

task based on multilingual sentence embed-

dings. In contrast to previous approaches,

which rely on nearest neighbor retrieval with

a hard threshold over cosine similarity, our

proposed method accounts for the scale in-

consistencies of this measure, considering the

margin between a given sentence pair and its

closest candidates instead. Our experiments

show large improvements over existing meth-

ods. We outperform the best published results

on the BUCC mining task and the UN recon-

struction task by more than 10 F1 and 30 preci-

sion points, respectively. Filtering the English-

German ParaCrawl corpus with our approach,

we obtain 31.2 BLEU points on newstest2014,

an improvement of more than one point over

the best official filtered version.

1 Introduction

While Neural Machine Translation (NTM) has

obtained breakthrough improvements in standard

benchmarks, it is known to be particularly sen-

sitive to the size and quality of the training

data (Koehn and Knowles, 2017; Khayrallah and

Koehn, 2018). In this context, effective ap-

proaches to mine and filter parallel corpora are

crucial to apply NMT in practical settings.

Traditional parallel corpus mining has relied

on heavily engineered systems. Early approaches

were mostly based on metadata information from

web crawls (Resnik, 1999; Shi et al., 2006). More

recent methods focus on the textual content in-

stead. For instance, Zipporah learns a classifier

∗This work was performed during an internship at Face-
book AI Research.

over bag-of-word features to distinguish between

ground truth translations and synthetic noisy ones

(Xu and Koehn, 2017). STACC uses seed lexical

translations induced from IBM alignments, which

are combined with set expansion operations to

score translation candidates through the Jaccard

similarity coefficient (Etchegoyhen and Azpeitia,

2016; Azpeitia et al., 2017, 2018). Many of these

approaches rely on cross-lingual document re-

trieval (Utiyama and Isahara, 2003; Munteanu and

Marcu, 2005, 2006; Abdul-Rauf and Schwenk,

2009) or machine translation (Abdul-Rauf and

Schwenk, 2009; Bouamor and Sajjad, 2018).

More recently, a new research line has shown

promising results using multilingual sentence em-

beddings alone1 (Schwenk, 2018; Guo et al.,

2018). These methods use an NMT inspired

encoder-decoder to train sentence embeddings on

existing parallel data, which are then directly ap-

plied to retrieve and filter new parallel sentences

using nearest neighbor retrieval over cosine simi-

larity with a hard threshold (España-Bonet et al.,

2017; Hassan et al., 2018; Schwenk, 2018).

In this paper, we argue that this retrieval method

suffers from the scale of cosine similarity not be-

ing globally consistent. As illustrated by the ex-

ample in Table 1, some sentences without any cor-

rect translation have overall high cosine scores,

making them rank higher than other sentences

with a correct translation. This issue was also

pointed out by Guo et al. (2018), who learn an

encoder to score known translation pairs above

synthetic negative examples and train a separate

model to dynamically scale and shift the dot prod-

uct on held out supervised data. In contrast, our

1Multilingual entence embeddings have also been used as
part of a larger system, either to obtain an initial alignment
that is then further filtered (Bouamor and Sajjad, 2018) or
as an intermediate representation of an end-to-end classifier
(Grégoire and Langlais, 2017).
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(A) Les produits agricoles sont constitués de thé, de riz, de sucre, de tabac, de camphre, de fruits et de soie.

0.818 Main crops include wheat, sugar beets, potatoes, cotton, tobacco, vegetables, and fruit.
0.817 The fertile soil supports wheat, corn, barley, tobacco, sugar beet, and soybeans.
0.814 Main agricultural products include grains, cotton, oil, pigs, poultry, fruits, vegetables, and edible fungus.
0.808 The important crops grown are cotton, jowar, groundnut, rice, sunflower and cereals.

(B) Mais dans le contexte actuel, nous pourrons les ignorer sans risque.

0.737 But, in view of the current situation, we can safely ignore these.
0.499 But without the living language, it risks becoming an empty shell.
0.498 While the risk to those working in ceramics is now much reduced, it can still not be ignored.
0.488 But now they have discovered they are not free to speak their minds.

Table 1: Motivating example of the proposed method. We show the nearest neighbors of two French sentences on

the BUCC training set along with their cosine similarities. Only the nearest neighbor of B is a correct translation,

yet that of A has a higher cosine similarity. We argue that this is caused by the cosine similarity of different

sentences being in different scales, making it a poor indicator of the confidence of the prediction. Our method

tackles this issue by considering the margin between a given candidate and the rest of the k nearest neighbors.

proposed method tackles this issue by considering

the margin between the cosine of a given sentence

pair and that of its respective k nearest neighbors.

2 Multilingual sentence embeddings

Figure 1 shows our encoder-decoder architecture

to learn multilingual sentence embeddings, which

is based on Schwenk (2018). The encoder consists

of a bidirectional LSTM, and our sentence em-

beddings are obtained by applying a max-pooling

operation over its output. These embeddings are

fed into an LSTM decoder in two ways: 1) they

are used to initialize its hidden and cell state after

a linear transformation, and 2) they are concate-

nated to the input embeddings at every time step.

We use a shared encoder and decoder for all lan-

guages with a joint 40k BPE vocabulary learned

on the concatenation of all training corpora.2 The

encoder is fully language agnostic, without any

explicit signal of the input or output language,

whereas the decoder receives an output language

ID embedding at every time step. Training min-

imizes the cross-entropy loss on parallel corpora,

alternating over all combinations of the languages

involved. We train on 4 GPUs with a total batch

size of 48,000 tokens, using Adam with a learning

rate of 0.001 and dropout set to 0.1. We use a sin-

gle layer for both the encoder and the decoder with

a hidden size of 512 and 2048, respectively, yield-

ing 1024 dimensional sentence embeddings. The

input embeddings size is set to 512, while the lan-

2Prior to BPE segmentation, we tokenize and lowercase
the input text using standard Moses tools. As the only ex-
ception, we use Jieba (https://github.com/fxsjy/
jieba) for Chinese word segmentation.

guage ID embeddings have 32 dimensions. After

training, the decoder is discarded, and the encoder

is used to map a sentence to a fixed-length vector.

3 Scoring and filtering parallel sentences

The multilingual encoder can be used to mine par-

allel sentences by taking the nearest neighbor of

each source sentence in the target side according to

cosine similarity, and filtering those below a fixed

threshold. While this approach has been reported

to be competitive (Schwenk, 2018), we argue that

it suffers from the scale of cosine similarity not be-

ing globally consistent across different sentences.3

For instance, Table 1 shows an example where an

incorrectly aligned sentence pair has a larger co-

sine similarity than a correctly aligned one, thus

making it impossible to filter it through a fixed

threshold. In that case, all four nearest neighbors

have equally high values. In contrast, for example

B, there is a big gap between the nearest neigh-

bor and its other candidates. As such, we argue

that the margin between the similarity of a given

candidate and that of its k nearest neighbors is a

better indicator of the strength of the alignment.4

We next describe our scoring method inspired by

this idea in Section 3.1, and discuss our candidate

generation and filtering strategy in Section 3.2.

3Note that, even if cosine similarity is normalized in the
(-1, 1) range, it is still susceptible to concentrate around dif-
ferent values.

4As a downside, this approach will penalize sentences
with many paraphrases in the corpus. While possible, we ar-
gue that such cases rarely happen in practice and, even when
they do, filtering them is unlikely to cause any major harm.
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Figure 1: Architecture of our system to learn multilingual sentence embeddings.

3.1 Margin-based scoring

We consider the margin between the cosine of a

given candidate and the average cosine of its k

nearest neighbors in both directions as follows:

score(x, y) = margin(cos(x, y),
∑

z∈NNk(x)

cos(x, z)

2k
+

∑

z∈NNk(y)

cos(y, z)

2k
)

where NNk(x) denotes the k nearest neighbors of

x in the other language excluding duplicates,5 and

analogously for NNk(y). We explore the follow-

ing variants of this general definition:

• Absolute (margin(a, b) = a): Ignoring the

average. This is equivalent to cosine similar-

ity and thus our baseline.

• Distance (margin(a, b) = a − b): Subtract-

ing the average cosine similarity from that of

the given candidate. This is proportional to

the CSLS score (Conneau et al., 2018), which

was originally motivated to mitigate the hub-

ness problem on Bilingual Lexicon Induction

(BLI) over cross-lingual word embeddings.6

• Ratio (margin(a, b) = a
b
): The ratio be-

tween the candidate and the average cosine

of its nearest neighbors in both directions.

3.2 Candidate generation and filtering

When mining parallel sentences, we explore the

following strategies to generate candidates:

5Unless otherwise indicated, we use k = 4.
6While our work is motivated by thresholding, which is

not used in BLI, this connection points out a related prob-
lem that our approach also addresses: even when the source
sentence is fixed, the potentially different scales of its tar-
get candidates might also affect their relative ranking, which
ultimately causes the hubness problem. Thanks to its bidirec-
tional nature, our proposed scoring method penalizes target
sentences with overall high cosine similarities, so it can learn
better alignments that account for this factor.

• Forward: Each source sentence is aligned

with exactly one best scoring target sen-

tence.7 Some target sentences may be aligned

with multiple source sentences or with none.

• Backward: Equivalent to the forward strat-

egy, but going in the opposite direction.

• Intersection of forward and backward candi-

dates, which discards sentences with incon-

sistent alignments.

• Max. score: Combination of forward and

backward candidates that, instead of dis-

carding all inconsistent alignments, it selects

those with the highest score.

These candidates are then sorted according to

their margin scores, and a threshold is applied.

This can be either optimized on the development

data, or adjusted to obtain the desired corpus size.

4 Experiments and results

We next present our results on the BUCC min-

ing task, UN corpus reconstruction, and ma-

chine translation over filtered ParaCrawl. All ex-

periments use an English/French/Spanish/German

multilingual encoder trained on Europarl v7

(Koehn, 2005) for 10 epochs. To cover all

languages in BUCC, we use a separate En-

glish/French/Russian/Chinese model trained on

the UN corpus (Ziemski et al., 2016) for 4 epochs.

4.1 BUCC mining task

The shared task of the workshop on Building and

Using Comparable Corpora (BUCC) is a well-

established evaluation framework for bitext min-

ing (Zweigenbaum et al., 2017, 2018). The task is

7For efficiency, only the k nearest neighbors over cosine
similarity are considered, where the neighborhood size k is
the same as that used for the margin-based scoring.
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Func. Retrieval
EN-DE EN-FR

P R F1 P R F1

Abs.
(cos)

Forward 78.9 75.1 77.0 82.1 74.2 77.9
Backward 79.0 73.1 75.9 77.2 72.2 74.7
Intersection 84.9 80.8 82.8 83.6 78.3 80.9
Max. score 83.1 77.2 80.1 80.9 77.5 79.2

Dist.

Forward 94.8 94.1 94.4 91.1 91.8 91.4
Backward 94.8 94.1 94.4 91.5 91.4 91.4
Intersection 94.9 94.1 94.5 91.2 91.8 91.5
Max. score 94.9 94.1 94.5 91.2 91.8 91.5

Ratio

Forward 95.2 94.4 94.8 92.4 91.3 91.8
Backward 95.2 94.4 94.8 92.3 91.3 91.8
Intersection 95.3 94.4 94.8 92.4 91.3 91.9
Max. score 95.3 94.4 94.8 92.4 91.3 91.9

Table 2: BUCC results (precision, recall and F1) on the

training set, used to optimize the filtering threshold.

to mine for parallel sentences between English and

four foreign languages: German, French, Russian

and Chinese. There are 150K to 1.2M sentences

for each language, split into a sample, training and

test set. About 2–3% of the sentences are parallel.

Table 2 reports precision, recall and F1 scores

on the training set.8 Our results show that multilin-

gual sentence embeddings already achieve com-

petitive performance using standard forward re-

trieval over cosine similarity, which is in line

with Schwenk (2018). Both of our bidirectional

retrieval strategies achieve substantial improve-

ments over this baseline while still relying on co-

sine similarity, with intersection giving the best re-

sults. Moreover, our proposed margin-based scor-

ing brings large improvements when using either

the distance or the ratio functions, outperform-

ing cosine similarity by more than 10 points in

all cases. The best results are achieved by ratio,

which outperforms distance by 0.3-0.5 points. In-

terestingly, the retrieval strategy has a very small

effect in both cases, suggesting that the proposed

scoring is more robust than cosine.

Table 3 reports the results on the test set for

both the Europarl and the UN model in compar-

ison to previous work.9 Our proposed system out-

performs all previous methods by a large margin,

8Note that the gold standard information was exclusively
used to optimize the filtering threshold for each configuration,
making results comparable across different variants.

9We use the ratio margin function with maximum score
retrieval for our method. The filtering threshold was opti-
mized to maximize the F1 score on the training set for each
language pair and model. The gold-alignments of the test set
are not publicly available – these scores on the test set are cal-
culated by the organizers of the BUCC workshop. We have
done one single submission.

en-de en-fr en-ru en-zh

Azpeitia et al. (2017) 83.7 79.5 - -
Azpeitia et al. (2018) 85.5 81.5 81.3 77.5
Bouamor and Sajjad (2018) - 76.0 - -
Schwenk (2018) 76.9 75.8 73.8 71.6

Proposed method (Europarl) 95.6 92.9 - -
Proposed method (UN) - - 92.0 92.6

Table 3: BUCC results (F1) on the test set. We use

the ratio function with maximum score retrieval and the

filtering threshold optimized on the training set.

en-fr en-es

Guo et al. (2018) 48.90 54.94

Proposed method 83.27 85.78

Table 4: Results on UN corpus reconstruction (P@1)

obtaining improvements of 10-15 F1 points and

showing very consistent performance across dif-

ferent languages, including distant ones.

4.2 UN corpus reconstruction

So as to compare our method to the similarly moti-

vated system of Guo et al. (2018), we mimic their

experiment on aligning the 11.3M sentences of the

UN corpus. This task does not require any filter-

ing, so we use forward retrieval with the ratio mar-

gin function. As shown in Table 4, our system

outperforms that of Guo et al. (2018) by a large

margin despite using only a fraction of the train-

ing data (2M sentences from Europarl in contrast

with over 400M sentences from Google’s internal

data).

4.3 Filtering ParaCrawl for NMT

Finally, we filter the English-German ParaCrawl

corpus and evaluate NMT models trained on them.

Our NMT models use fairseq’s implemen-

tation of the big transformer model (Vaswani

et al., 2017), using the same configuration as Ott

et al. (2018) and training for 100 epochs. Fol-

lowing common practice, we use newstest2013

and newstest2014 as our development and test

sets, respectively, and report both tokenized

and detokenized BLEU scores as computed by

multi-bleu.perl and sacreBLEU. We de-

code with a beam size of 5 using an ensemble

of the last 10 epochs. One single model is only

slightly worse.

Given the large size of ParaCrawl, we first pre-

process it to remove all duplicated sentence pairs,
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Figure 2: English-German Dev results (newstest2013)

using different thresholds to filter ParaCrawl.

#SENT
BLEU

tok detok

BiCleaner v1.2 17.4M 30.05 29.37
Zipporah v1.2 40.5M 24.78 24.38

Proposed method 10.0M 31.19 30.53

Table 5: Results on English-German newstest2014 for

different filtered versions of the ParaCrawl corpus.

sentences for which the fastText language identifi-

cation model10 predicts a different language, those

with less than 3 or more than 80 tokens, or those

with either an overlap of at least 50% or a ra-

tio above 2 between the source and target tokens.

This reduces the corpus size from 4.59 billion to

64.4 million sentence pairs, mostly due to dedu-

plication. We then score each sentence pair with

the ratio function, processing the entire corpus in

batches of 5 million sentences, and take the top

scoring entries up to the desired size. Figure 2

shows the development BLEU scores of the result-

ing system for different thresholds, which peaks at

10 million sentences. As shown in Table 5, this

model clearly outperforms the two official filtered

versions of ParaCrawl in the test set.

Finally, Table 6 compares our results to previ-

ous works in the literature using different train-

ing data. In addition to our ParaCrawl system,

we include an additional one combining it with

all parallel data from WMT18 except Common-

Crawl. As it can be seen, our system outperforms

all previous systems but Edunov et al. (2018), who

use a large in-domain monolingual corpus through

back-translation, making both works complemen-

tary. Quite remarkably, our full system outper-

forms Ott et al. (2018) by nearly 2 points despite

using the same configuration and training data, so

10https://fasttext.cc/docs/en/

language-identification.html

DATA
BLEU

tok detok

Wu et al. (2016) wmt 26.3 -
Gehring et al. (2017) wmt 26.4 -
Vaswani et al. (2017) wmt 28.4 -
Ahmed et al. (2017) wmt 28.9 -
Shaw et al. (2018) wmt 29.2 -
Ott et al. (2018) wmt 29.3 28.6
Ott et al. (2018) wmt+pc 29.8 29.3
Edunov et al. (2018) wmt+nc 35.0 33.8

Proposed method
pc 31.2 30.5

wmt+pc 31.8 31.1

Table 6: Results on English-German newstest2014 in

comparison to previous work. wmt for WMT parallel

data (excluding ParaCrawl), pc for ParaCrawl, and nc

for monolingual News Crawl with back-translation.

our improvement can be attributed to a better fil-

tering of ParaCrawl.11

5 Conclusions and future work

In this paper, we propose a new method for paral-

lel corpus mining based on multilingual sentence

embeddings. We use a sequence-to-sequence ar-

chitecture to train a multilingual sentence encoder

on an initial parallel corpus, and a novel margin-

based scoring method that overcomes the scale in-

consistencies of cosine similarity.

Our experiments show large improvements over

previous methods. Our system obtains the best

published results on the BUCC mining task, out-

performing previous systems by more than 10 F1

points for all the four language pairs. In addi-

tion, our method obtains up to 85% precision at

reconstructing the 11.3M sentence pairs from the

UN corpus, improving over the similarly moti-

vated method of Guo et al. (2018) by more than 30

points. Finally, we show that our improvements

also carry over to downstream machine transla-

tion, as we obtain 31.2 BLEU points for English-

German newstest2014 training on our filtered ver-

sion of ParaCrawl, an improvement of more than

one point over the best performing official release.

The code of this work is freely available as part

of the LASER toolkit, together with an additional

single encoder which covers 93 languages.12

11To confirm this, we trained a separate model on WMT
data, obtaining 29.4 tokenized BLEU. This is on par with the
results reported by Ott et al. (2018) for the same data (29.3
tokenized BLEU). This shows that the difference cannot be
attributed to implementation details.

12https://github.com/facebookresearch/

LASER
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