
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2420–2430
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

2420

Multi-Task Semantic Dependency Parsing with Policy Gradient for
Learning Easy-First Strategies

Shuhei Kurita
Center for Advanced Intelligence Project

RIKEN
Tokyo, Japan

shuhei.kurita@riken.jp

Anders Søgaard
Department of Computer Science

University of Copenhagen
Copenhagen, Denmark
soegaard@di.ku.dk

Abstract

In Semantic Dependency Parsing (SDP), se-
mantic relations form directed acyclic graphs,
rather than trees. We propose a new iterative
predicate selection (IPS) algorithm for SDP.
Our IPS algorithm combines the graph-based
and transition-based parsing approaches in or-
der to handle multiple semantic head words.
We train the IPS model using a combination
of multi-task learning and task-specific pol-
icy gradient training. Trained this way, IPS
achieves a new state of the art on the SemEval
2015 Task 18 datasets. Furthermore, we ob-
serve that policy gradient training learns an
easy-first strategy.

1 Introduction

Dependency parsers assign syntactic structures to
sentences in the form of trees. Semantic depen-
dency parsing (SDP), first introduced in the Se-
mEval 2014 shared task (Oepen et al., 2014), in
contrast, is the task of assigning semantic struc-
tures in the form of directed acyclic graphs to sen-
tences. SDP graphs consist of binary semantic re-
lations, connecting semantic predicates and their
arguments. A notable feature of SDP is that words
can be the semantic arguments of multiple predi-
cates. For example, in the English sentence: “The
man went back and spoke to the desk clerk” – the
word “man” is the subject of the two predicates
“went back” and “spoke”. SDP formalisms typi-
cally express this by two directed arcs, from the
two predicates to the argument. This yields a di-
rected acyclic graph that expresses various rela-
tions among words. However, the fact that SDP
structures are directed acyclic graphs means that
we cannot apply standard dependency parsing al-
gorithms to SDP.

Standard dependency parsing algorithms are of-
ten said to come in two flavors: transition-based

The man went back and spoke to the desk clerk.

a) DM

The man went back and spoke to the desk clerk.

b) PAS

The man went back and spoke to the desk clerk.

c) PSD ROOT ROOT

ROOT

ROOT

BV ARG1

ARG1
AND_C

LOC
ARG1

ARG2
BV

COMPOUND

DET_ARG1 VERB_ARG1

VERB_ARG1

ADJ_ARG1

COORD_ARG1

COORD_ARG2 PREP_ARG1

PREP_ARG2

DET_ARG1

NOUN_ARG1

ACT DIR3

CONJ.MEMBER

RSTR

ADDR

CONJ.MEMBER

Figure 1: Semantic dependency parsing arcs of DM,
PAS and PSD formalisms.

parsers score transitions between states, and grad-
ually build up dependency graphs on the side.
Graph-based parsers, in contrast, score all candi-
date edges directly and apply tree decoding algo-
rithms for the resulting score table. The two types
of parsing algorithms have different advantages
(McDonald and Nivre, 2007), with transition-
based parsers often having more problems with er-
ror propagation and, as a result, with long-distance
dependencies. This paper presents a compromise
between transition-based and graph-based parsing,
called iterative predicate selection (IPS) – inspired
by head selection algorithms for dependency pars-
ing (Zhang et al., 2017) – and show that error
propagation, for this algorithm, can be reduced
by a combination of multi-task and reinforcement
learning.

Multi-task learning is motivated by the fact that
there are several linguistic formalisms for SDP.
Fig. 1 shows the three formalisms used in the
shared task. The DELPH-IN MRS (DM) for-
malism derives from DeepBank (Flickinger et al.,
2012) and minimal recursion semantics (Copes-
take et al., 2005). Predicate-Argument Structure
(PAS) is a formalism based on the Enju HPSG
parser (Miyao et al., 2004) and is generally con-
sidered slightly more syntactic of nature than the

2421

other formalisms. Prague Semantic Dependencies
(PSD) are extracted from the Czech-English De-
pendency Treebank (Hajič et al., 2012). There
are several overlaps between these linguistic for-
malisms, and we show below that parsers, us-
ing multi-task learning strategies, can take advan-
tage of these overlaps or synergies during train-
ing. Specifically, we follow Peng et al. (2017) in
using multi-task learning to learn representations
of parser states that generalize better, but we go
beyond their work, using a new parsing algorithm
and showing that we can subsequently use rein-
forcement learning to prevent error propagation
and tailor these representations to specific linguis-
tic formalisms.

Contributions In this paper, (i) we propose a
new parsing algorithm for semantic dependency
parsing (SDP) that combines transition-based and
graph-based approaches; (ii) we show that multi-
task learning of state representations for this pars-
ing algorithm is superior to single-task training;
(iii) we improve this model by task-specific policy
gradient fine-tuning; (iv) we achieve a new state of
the art result across three linguistic formalisms; fi-
nally, (v) we show that policy gradient fine-tuning
learns an easy-first strategy, which reduces error
propagation.

2 Related Work

There are generally two kinds of dependency pars-
ing algorithms, namely transition-based parsing
algorithms (McDonald and Nivre, 2007; Kiper-
wasser and Goldberg, 2016; Ballesteros et al.,
2015) and graph-based ones (McDonald and
Pereira, 2006; Zhang and Clark, 2008; Galley and
Manning, 2009; Zhang et al., 2017). In graph-
based parsing, a model is trained to score all pos-
sible dependency arcs between words, and decod-
ing algorithms are subsequently applied to find the
most likely dependency graph. The Eisner algo-
rithm (Eisner, 1996) and the Chu-Liu-Edmonds al-
gorithm are often used for finding the most likely
dependency trees, whereas the AD3 algorithm
(Martins et al., 2011) is used for finding SDP
graphs that form DAGs in Peng et al. (2017) and
Peng et al. (2018). During training, the loss is
computed after decoding, leading the models to
reflect a structured loss. The advantage of graph-
based algorithms is that there is no real error prop-
agation to the extent the decoding algorithms are
global inference algorithm, but this also means

that reinforcement learning is not obviously appli-
cable to graph-based parsing. In transition-based
parsing, the model is typically taught to follow a
gold transition path to obtain a perfect dependency
graph during training. This training paradigm has
the limitation that the model only ever gets to see
states that are on gold transition paths, and error
propagation is therefore likely to happen when the
parser predicts wrong transitions leading to unseen
states (McDonald and Nivre, 2007; Goldberg and
Nivre, 2013).

There have been several attempts to train
transition-based parsers with reinforcement learn-
ing: Zhang and Chan (2009) applied SARSA
(Baird III, 1999) to an Arc-Standard model, us-
ing SARSA updates to fine-tune a model that was
pre-trained using a feed-forward neural network.
Fried and Klein (2018), more recently, presented
experiments with applying policy gradient train-
ing to several constituency parsers, including the
RNNG transition-based parser (Dyer et al., 2016).
In their experiments, however, the models trained
with policy gradient did not always perform better
than the models trained with supervised learning.
We hypothesize this is due to credit assignment be-
ing difficult in transition-based parsing. Iterative
refinement approaches have been proposed in the
context of sentence generation (Lee et al., 2018).
Our proposed model explores multiple transition
paths at once and avoids making risky decisions in
the initial transitions, in part inspired by such iter-
ative refinement techniques. We also pre-train our
model with supervised learning to avoid sampling
from irrelevant states at the early stages of policy
gradient training.

Several models have been presented for DAG
parsing (Sagae and Tsujii, 2008; Ribeyre et al.,
2014; Tokgöz and Gülsen, 2015; Hershcovich
et al., 2017). Wang et al. (2018) proposed a
similar transition-based parsing model for SDP;
they modified the possible transitions of the Arc-
Eager algorithm (Nivre and Scholz, 2004b) to cre-
ate multi-headed graphs. We are, to the best of our
knowledge, first to explore reinforcement learning
for DAG parsing.

3 Model

3.1 Iterative Predicate Selection

We propose a new semantic dependency parsing
algorithm based on the head-selection algorithm
for syntactic dependency parsing (Zhang et al.,

2422

The man went back and spoke to the desk clerk.

The man went back and spoke to the desk clerk.

The man went back and spoke to the desk clerk.

The man went back and spoke to the desk clerk.

The man went back and spoke to the desk clerk.

The man went back and spoke to the desk clerk.

transitions

Initial state

Final state

t0w1
, · · · , t0wn

t1w1
, · · · , t1wn

t2w1
, · · ·, t2wn

transitions

transitions

τ = 0

τ = 1

τ = 2

τ = 3

Figure 2: Construction of semantic dependency arcs (DM) in the IPS parsing algorithm. Parsing begins from the
initial state and proceeds to the final state following one of several paths. In the left path, the model resolves
adjacent arcs first. In contrast, in the right path, distant arcs that rely on the global structure are resolved first.

2017). Head selection iterates over sentences, fix-
ing the head of a word w in each iteration, ig-
noring w in future iterations. This is possible
for dependency parsing because each word has a
unique head word, including the root of the sen-
tence, which is attached to an artificial root sym-
bol. However, in SDP, words may attach to mul-
tiple head-words or semantic predicates whereas
other words may not attach to any semantic pred-
icates. Thus, we propose an iterative predicate se-
lection (IPS) parsing algorithm, as a generaliza-
tion of head-selection in SDP.

The proposed algorithm is formalized as fol-
lows. First, we define transition operations for all
words in a sentence. For the i-th word wi in a sen-
tence, the model selects one transition tτi from the
set of possible transitions T τi for each transition
time step τ . Generally, the possible transitions Ti
for the i-th word are expressed as follows:

{NULL,ARCi,ROOT,ARCi,1, · · · ,ARCi,n}

where ARCi,j is a transition to create an arc from
the j-th word to the i-th word, encoding that the
semantic predicate wj takes wi as an semantic ar-
gument. NULL is a special transition that does
not create an arc. The set of possible transitions
T τi for the i-th word at time step τ is a subset of
possible transitions Ti that satisfy two constraints:
(i) no arcs can be reflexive, i.e., wi cannot be an
argument of itself, and (ii) the new arc must not
be a member of the set of arcs Aτ comprising the
partial parse graph yτ constructed at time step τ .
Therefore, we obtain: T τi = Ti/(ARCi,i ∪ Aτ).
The model then creates semantic dependency arcs
by iterating over the sentence as follows:1

1This algorithm can introduce circles. However, circles

1 For each word wi, select a head arc from T τi .

2 Update the partial semantic dependency graph.

3 If all words select NULL, the parser halts. Oth-
erwise, go to 1.

Fig. 2 shows the transitions of the IPS algorithm
during the DM parsing of the sentence “The man
went back and spoke to the desk clerk.” In this
case, there are several paths from the initial state
to the final parsing state, depending on the orders
of creating the arcs. This is known as the non-
deterministic oracle problem (Goldberg and Nivre,
2013). In IPS parsing, some arcs are easy to pre-
dict; others are very hard to predict. Long-distance
arcs are generally difficult to predict, but they
are very important for down-stream applications,
including reordering for machine translation (Xu
et al., 2009). Since long-distance arcs are harder to
predict, and transition-based parsers are prone to
error propagation, several easy-first strategies have
been introduced, both in supervised (Goldberg and
Elhadad, 2010; Ma et al., 2013) and unsupervised
dependency parsing (Spitkovsky et al., 2011), to
prefer some paths over others in the face of the
non-deterministic oracle problem. Easy-first prin-
ciples have also proven effective with sequence
taggers (Tsuruoka and Tsujii, 2005; Martins and
Kreutzer, 2017). In this paper, we take an arguably
more principled approach, learning a strategy for
choosing transition paths over others using rein-
forcement learning. We observe, however, that the
learned strategies exhibit a clear easy-first prefer-
ence.

were extremely rare in our experiments, and can be avoided
by simple heuristics during decoding. We discuss this issue
in the Supplementary Material, §A.1.

2423

LSTM LSTM LSTM LSTM

MLP MLP MLP

The U.S. contends that the rules ...

The
U.S.

contends
that

 ROOT The U.S. contends that the ...

pi(tj)

LSTM LSTM LSTM

hihj
gij fij

hi hj+3

NULL ROOT

MLP . . .

NULL U.S. The U.S. contends

softmax

. . .

U.S. thatU.S. ROOT

Transition probabilitya) Encoder and MLP b) Encoder of Semantic Dependency

ROOT The U.S. contends that the rules ...

LSTM

LSTM

LSTM ...

The
U.S.

contends
that

(the)wi i

wNONE wNONE

wROOT wNONE wNONE

(contentds)w 2

wNONE wNONE

g ij

+

g i,j+2

g i+1,j−1

LSTM LSTM LSTM LSTM LSTM LSTM

. . .

for i-th word

...

sij sij+3si0

. . .

sij+2.

wNONE

wNONE

wNONE

wNONE

wNONE

wNONE wNONE

wNONE

wNONE

wNONE

wNONE

wNONE

wNONE

wNONE

wNONE

Figure 3: Our network architecture: (a) The encoder of the sentence into the hidden representations hi and hj , and
the MLP for the transition probabilities. (b) The encoder of the semantic dependency matrix for the representation
of hdij . The MLP also takes the arc flag representation fij (see text for explanation).

3.2 Neural Model
Fig. 3 shows the overall neural network. It con-
sists of an encoder for input sentences and par-
tial SDP graphs, as well as a multi-layered per-
ceptron (MLP) for the semantic head-selection of
each word.

Sentence encoder We employ bidirectional
long short-term memory (BiLSTM) layers for en-
coding words in sentences. A BiLSTM con-
sists of two LSTMs that reads the sentence for-
ward and backward, and concatenates their out-
put before passing it on. For a sequence of to-
kens [w1, · · · , wn], the inputs for the encoder are
words, POS tags and lemmas.2 They are mapped
to the same p-dimensional embedding vectors in
a look-up table. Then they are concatenated to
form 3p-dimensional vectors and used as the in-
put of BiLSTMs. We denote the mapping function
of tokens into 3p-dimensional vectors as u(w∗)
for later usages. Finally, we obtain the hidden
representations of all words [h(w1), · · · , h(wn)]
from the three-layer BiLSTMs. We use three-layer
stacked BiLSTMs. We also use special embed-
dings hNULL for the NULL transition and hROOT

for the ROOT of the sentence.

Encoder of partial SDP graphs The model up-
dates the partial SDP graph at each time step of
the parsing procedure. The SDP graph yτ at time
step τ is stored in a semantic dependency matrix
Gτ ∈ {0, 1}n×(n+1) for a sentence of n words.3

The rows of the matrix G represent arguments and
2In the analysis of our experiments, we include an abla-

tion test, where we leave out lemma information for a more
direct comparison with one of our baselines.

3In this subsection, we omit the time step subscription τ
of the partial SDP graph from some equations for simplicity.

the columns represent head-candidates, including
the ROOT of the sentence, which is represented by
the first column of the matrix. For each transition
for a word, the model fills in one cell in a row, if
the transition is not NULL. In the initial state, all
cells in G are 0. A cell G[i, j] is updated to 1,
when the model predicts that the (i − 1)-th word
is an argument of the j-th word or ROOT when
j = 0.

We convert the semantic dependency matrix
G into a rank three tensor G′ ∈ Rn×(n+1)×p,
by replacing elements with embeddings of tokens
u(w∗) by

g′ij =

{
u(wj−1) (gij = 1)

u(wNONE) (gij = 0)
(1)

where gij ∈ G and g′ij ∈ G′. g′i∗ contains the
representations of the semantic predicates for the
i-th word in the partial SDP graph. We use a sin-
gle layer Bi-LSTM to encode the semantic predi-
cates g′i∗ of each word; see Fig. 3 (b). Finally, we
concatenate the hidden representation of the NULL
transition and obtain the partial SDP graph repre-
sentation Gτ of the time step τ :

Gτ = [gτNULL, g
τ
∗,1, · · · , gτ∗,n+1] (2)

We also employ dependency flags that directly
encode the semantic dependency matrix and indi-
cate whether the corresponding arcs are already
created or not. Flag representations F ′ are also
three-rank tensors, consisting of two hidden rep-
resentations: fARC for gi,j = 1 and fNOARC for
gi,j = 0 depending on G. fARC and fNOARC is
q-dimensional vectors. Then we concatenate the
hidden representation of the NULL transition and

2424

obtain the flag representation F τ :

F τ = [f τNULL, f
τ
∗,1, · · · , f τ∗,n+1] (3)

. We do not use BiLSTMs to encode these flags.
These flags also reflect the current state of the se-
mantic dependency matrix.

Predicate selection model The semantic predi-
cate selection model comprises an MLP with in-
puts from the encoder of the sentence and the par-
tial semantic dependency graph: the sentence rep-
resentationH , the SDP representationGτ , and the
dependency flag F τ . They are rank three tensors
and concatenated at the third axis. Formally, the
score sij of the i-th word and the j-th transition is
expressed as follows.

sτij = MLP([hi, hj , g
τ
ij , f

τ
ij]) (4)

For the MLP, we use a concatenation of outputs
from three different networks: a three-layer MLP,
a two-layer MLP and a matrix multiplication with
bias terms as follows.

MLP(x) =W 3
3 a
(
W 3

2 a(W
3
1 x+ b31) + b32

)
+W 2

2 a(W
2
1 x+ b22) +W 1

1 x+ b11

W ∗∗′ are matrices or vectors used in this MLP and
W ∗∗′ are bias terms. Here, we use this MLP for pre-
dicting a scalar score sij ; therefore, W 3

3 ,W
2
2 ,W

1
1

are vectors. The model computes the probability
of the transition tj for each word i by applying
a softmax function over the candidates of the se-
mantic head words wj .

pi(t
τ
j) = softmaxj(s

τ
ij) (5)

These transition probabilities pi(tj) of selecting a
semantic head word wj , are defined for each word
wi in a sentence.

For supervised learning, we employ a cross en-
tropy loss

Lτ (θ) = −
∑
i,j

li log pi(t
τ
j |Gτ) (6)

for the partial SDP graph Gτ at time step τ .
Here li is a gold transition label for the i-th word
and θ represents all trainable parameters. Note
that this supervised training regime, as mentioned
above, does not have a principled answer to the
non-deterministic oracle problem (Goldberg and
Nivre, 2013), and samples transition paths ran-
domly from those consistent with the gold anntoa-
tions to create transition labels.

Algorithm 1 Policy gradient learning for IPS Algorithm

Input: Sentence x with an empty parsing tree y0.
Let a time step τ = 0 and finish flags f∗ = 0.
for 0 ≤ τ < the number of maximum iterations do

Compute πτ and argmax transitions t̂i = argmaxπτi .
if ∀i ; t̂τi = NULL then

break
end if
for i-th word in a sentence do

if check a finish flag fi = 1 then
continue

end if
if all arcs to word i are correctly created in yτ and
t̂i = NULL then

Let a flag f = 1
continue

end if
Sample tτi from πτi .
Update the parsing tree yτ to yτ+1.
Compute a new reward rτi from yτ , yτ+1 and yg .

end for
Store a tuple of the state, transitions and rewards for
words {yτ , tτ∗ , rτ∗}.

end for
Shuffle tuples of {yτ , tτ∗ , rτ∗} for a time step τ .
for a tuple {yτ

′
, tτ∗ , r

τ ′
∗ } of time step τ ′ do

Compute gradient and update parameters.
end for

Labeling model We also develop a semantic de-
pendency labeling neural network. This neural
network consists of three-layer stacked BiLSTMs
and a MLP for predicting a semantic dependency
label between words and their predicates. We use
a MLP that is a sum of the outputs from a three-
layer MLP, a two-layer MLP and a matrix multi-
plication. Note that the output dimension of this
MLP is the number of semantic dependency la-
bels. The input of this MLP is the hidden repre-
sentations of a word i and its predicates j: [hi, hj]
extracted from the stacked BiLSTMs. The score
s′ij(l) of the label l for the arc from predicate j to
word i is predicted as follows.

s′ij(l) = MLP′([hi, hj]) (7)

We minimize the softmax cross entropy loss using
supervised learning.

3.3 Reinforcement Learning

Policy gradient Reinforcement learning is a
method for learning to iteratively act according to
a dynamic environment in order to optimize fu-
ture rewards. In our context, the agent corresponds
to the neural network model predicting the transi-
tion probabilities pi(tτj) that are used in the parsing
algorithm. The environment includes the partial
SDP graph yτ , and the rewards rτ are computed

2425

by comparing the predicted parse graph to the gold
parse graph yg.

We adapt a variation of the policy gradient
method (Williams, 1992) for IPS parsing. Our ob-
jective function is to maximize the rewards

J(θ) = Eπ [r
τ
i] (8)

and the transition policy for the i-th word is given
by the probability of the transitions π ∼ pi(tτj |yτ).
The gradient of Eq.8 is given as follows:

∇J(θ) = Eπ
[
rτi∇ log pi(t

τ
j |yτ)

]
(9)

When we compute this gradient, given a policy π,
we approximate the expectation Eπ for any transi-
tion sequence with a single transition path t that is
sampled from policy π:

∇J(θ) ≈
∑
tτj∈t

[rτi∇ log pi(t
τ
j |yτ)] (10)

We summarize our policy gradient learning al-
gorithm for SDP in Algorithm 1. For time step
τ , the model samples one transition tτj selecting
the j-th word as a semantic head word of the i-
th word, from the set of possible transitions Ti,
following the transition probability of π. After
sampling tτj , the model updates the SDP graph to
yτ+1 and computes the reward rτi . When NULL
becomes the most likely transition for all words,
or the time step exceeds the maximum number of
time steps allowed, we stop.4 For each time step,
we then update the parameters of our model with
the gradients computed from the sampled transi-
tions and their rewards.5

Note how the cross entropy loss and the policy
gradient loss are similar, if we do not sample from
the policy π, and rewards are non-negative. How-
ever, these are the important differences between
supervised learning and reinforcement learning:
(1) Reinforcement learning uses sampling of tran-
sitions. This allows our model to explore transi-
tion paths that supervised models would never fol-
low. (2) In supervised learning, decisions are in-
dependent of the current time step τ , while in re-
inforcement learning, decisions depend on τ . This
means that the θ parameters are updated after the
parser finishes parsing the input sentence. (3) Loss

4We limit the number of transitions during training, but
not at test time.

5We update the parameters for each time step to reduce
memory requirements.

Reward Transitions

rτi = 1 (1) The model creates a new correct arc from
a semantic predicate to the i-th word.
(2) The first time the model chooses the NULL
transition after all gold arcs to the i-th word
have been created, and no wrong arcs to the i
words have not been created.

rτi = −1 (3) The model creates a wrong arc from a
semantic predicate candidate to the i-th word.

rτi = 0 (4) All other transitions.

Table 1: Rewards in SDP policy gradient.

must be non-negative in supervised learning, while
rewards can be negative in reinforcement learning.

In general, the cross entropy loss is able to opti-
mize for choosing good transitions given a parser
configuration, while the policy gradient objective
function is able to optimize the entire sequence of
transitions drawn according to the current policy.
We demonstrate the usefulness of reinforcement
learning in our experiments below.

Rewards for SDP We also introduce intermedi-
ate rewards, given during parsing, at different time
steps. The reward rτi of the i-th word is deter-
mined as shown in Table 1. The model gets a pos-
itive reward for creating a new correct arc to the
i-th word, or if the model for the first time chooses
a NULL transition after all arcs to the i-th word are
correctly created. The model gets a negative re-
ward when the model creates wrong arcs. When
our model chooses NULL transitions for the i-th
word before all gold arcs are created, the reward
rτi becomes 0.

3.4 Implementation Details
This section includes details of our implementa-
tion.6 We use 100-dimensional, pre-trained Glove
(Pennington et al., 2014) word vectors. Words
or lemmas in the training corpora that do not ap-
pear in pre-trained embeddings are associated with
randomly initialized vector representations. Em-
beddings of POS tags and other special symbol
are also randomly initialized. We apply Adam as
our optimizer. Preliminary experiments show that
mini-batching led to a degradation in performance.
When we apply policy gradient, we pre-train our
model using supervised learning. We then use
policy gradient for task-specific fine-tuning of our
model. We find that updating parameters of BiL-
STM and word embeddings during policy gradient

6The code is available at https://github.com/
shuheikurita/semrl

https://github.com/shuheikurita/semrl
https://github.com/shuheikurita/semrl

2426

Name Value

Encoder BiLSTM hidden layer size 600
Dependency LSTM hidden layer size 200
The dimensions of embeddings p,q 100, 128
MLPs hidden layer size 4000
Dropout rate in MLPs 0.5
Max transitions during reinforcement learning 10

Table 2: Hyper-parameters in our experiments.

Model DM PAS PSD Avg.

Peng+ 17 Freda3 90.4 92.7 78.5 88.0
Wang+ 18 Ens. 90.3 91.7 78.6 86.9
Peng+ 18 91.6 - 78.9 -

IPS 91.1 92.4 78.6 88.2
IPS +ML 91.2 92.5 78.8 88.3
IPS +RL 91.6‡ 92.8‡ 79.2‡ 88.7‡

IPS +ML +RL 92.0‡ 92.8‡ 79.3‡ 88.8‡

Table 3: Labeled parsing performance on in-domain
test data. Avg. is the micro-averaged score of three for-
malisms. ‡ of the +RL models represents that the scores
are statistically significant at p < 10−3 with their non-
RL counterparts.

makes training quite unstable. Therefore we fix
the BiLSTM parameters during policy gradient. In
our multi-task learning set-up, we apply multi-task
learning of the shared stacked BiLSTMs (Søgaard
and Goldberg, 2016; Hashimoto et al., 2017) in
supervised learning. We use task-specific MLPs
for the three different linguistic formalisms: DM,
PAS and PSD. We train the shared BiLSTM using
multi-task learning beforehand, and then we fine-
tune the task-specific MLPs with policy gradient.
We summarize the rest of our hyper-parameters in
Table 2.

4 Experiments

We use the SemEval 2015 Task18 (Oepen et al.,
2015) SDP dataset for evaluating our model. The
training corpus contains 33,964 sentences from the
WSJ corpus; the development and in-domain test
were taken from the same corpus and consist of
1,692 and 1,410 sentences, respectively. The out-
of-domain test set of 1,849 sentences is drawn
from Brown corpus. All sentences are annotated
with three semantic formalisms: DM, PAS and
PSD. We use the standard splits of the datasets
(Almeida and Martins, 2015; Du et al., 2015). Fol-
lowing standard evaluation practice in semantic
dependency parsing, all scores are micro-averaged
F-measures (Peng et al., 2017; Wang et al., 2018)
with labeled attachment scores (LAS).

Model DM PAS PSD Avg.

Peng+ 17 Freda3 85.3 89.0 76.4 84.4
Peng+ 18 86.7 - 77.1 -

IPS +ML 86.0 88.2 77.2 84.6
IPS +ML +RL 87.2‡ 88.8‡ 77.7‡ 85.3‡

Table 4: Labeled parsing performance on out-of-
domain test data. Avg. is the micro-averaged score of
three formalisms. ‡ of the +RL models represents that
the scores are statistically significant at p < 10−3 with
their non-RL counterparts.

The system we propose is the IPS parser trained
with a multi-task objective and fine-tuned using
reinforcement learning. This is referred to as
IPS+ML+RL in the results tables. To highlight the
contributions of the various components of our ar-
chitecture, we also report ablation scores for the
IPS parser without multi-task training nor rein-
forcement learning (IPS), with multi-task train-
ing (IPS+ML) and with reinforcement learning
(IPS+RL). At inference time, we apply heuris-
tics to avoid predicting circles during decoding
(Camerini et al., 1980); see Supplementary Ma-
terial, §A.1. This improves scores by 0.1 % or
less, since predicted circles are extremely rare. We
compare our proposed system with three state-of-
the-art SDP parsers: Freda3 of Peng et al. (2017),
the ensemble model in Wang et al. (2018) and
Peng et al. (2018). In Peng et al. (2018), they
use syntactic dependency trees, while we do not
use them in our models.7

The results of our experiments on in-domain
dataset are also shown in Table 3. We observe that
our basic IPS model achieves competitive scores
in DM and PAS parsing. Multi-task learning of
the shared BiLSTM (IPS+ML) leads to small im-
provements across the board, which is consistent
with the results of Peng et al. (2017). The model
trained with reinforcement learning (IPS+RL) per-
forms better than the model trained by supervised
learning (IPS). These differences are significant
(p < 10−3). Most importantly, the combination of
multi-task learning and policy gradient-based re-
inforcement learning (IPS+ML+RL) achieves the
best results among all IPS models and the previ-
ous state of the art models, by some margin. We
also obtain similar results for the out-of-domain

7Dozat and Manning (2018) report macro-averaged
scores instead, as mentioned in their ACL 2018 talk, and their
results are therefore not comparable to ours. For details, see
the video of their talk on ACL2018 that is available on Vimeo.

2427

1st
2nd
3rd
4th

Transitions

Arc Length

D
is

t.

a) Supervised

b) Reinforcement

D
is

t.

Figure 4: Arc length distributions: (a) Supervised learning (IPS+ML). (b) Reinforcement learning (IPS+ML+RL).
The four lines correspond to the first to fourth transitions in the derivations.

the position of chief financial officer , who will be hired from within the agency.

Within weeks the unfolding Iran-Contra scandal took away Mr. Noriega’s insurance policy.

Morgan will help evaluate DFC’s position and help determine alternatives.

The U.S. Commerce Department reported a $ 10.77 billion deficit in August compared with ...
123 4

123 4

1 2 3 4

12 34

1 2 34

12 34

12 3 4

a)

b)

c)

d)
213 4

SL

RL
SL

RL
SL

RL
SL

RL

lead the industry with a strong sales performance in the human and animal health-products segment.e)
12 43

153 2

5

4SL

RL

Figure 5: Examples of clauses parsed with DM formalism. The underlined words are the semantic predicates of
the argument words in rectangles in the annotation. The superscript numbers (SL) are the orders of creating arcs
by IPS+ML and the subscript numbers (RL) are the orders by IPS+ML+RL. In the clause (a), we show a partial
SDP graph to visualize the SDP arcs.

Model DM PAS PSD Avg.

Peng+ 17 Freda3 90.4 92.5 78.5 88.0

IPS +ML -Lemma 90.7 92.3 78.3 88.0
IPS +ML +RL -Lemma 91.2‡ 92.9‡ 78.8‡ 88.5‡

Table 5: Evaluation of our parser when not using
lemma embeddings (for a more direct comparison with
Freda3), on in-domain test datasets. ‡ of +RL models
represents that the scores are statistically significant at
p < 10−3 with their non-RL counterparts.

datasets, as shown in Table 4. All improvements
with reinforcement learning are also statistically
significant (p < 10−3).

Evaluating Our Parser without Lemma Since
our baseline (Peng et al., 2017) does not rely
on neither lemma or any syntactic information,
we also make a comparison of IPS+ML and
IPS+ML+RL trained with word and POS embed-
dings, but without lemma embeddings. The results
are given in Table 5. We see that our model is still
better on average and achieves better performance
on all three formalisms. We also notice that the

lemma information does not improve the perfor-
mance in the PAS formalism.

Effect of Reinforcement Learning Fig. 4
shows the distributions of the length of the created
arcs in the first, second, third and fourth transi-
tions for all words, in the various IPS models in
the development corpus. These distributions show
the length of the arcs the models tend to create in
the first and later transitions. Since long arcs are
harder to predict, an easy-first strategy would typ-
ically amount to creating short arcs first.

In supervised learning (IPS+ML), there is a
slight tendency to create shorter arcs first, but
while the ordering is relatively consistent, the dif-
ferences are small. This is in sharp contrast with
the distributions we see for our policy gradient
parser (IPS+ML+RL). Here, across the board, it is
very likely that the first transition connects neigh-
boring words; and very unlikely that neighboring
words are connected at later stages. This sug-
gests that reinforcement learning learns an easy-
first strategy of predicting short arcs first. Note

2428

that unlike easy-first algorithms in syntactic pars-
ing (Goldberg and Nivre, 2013), we do not hard-
wire an easy-first strategy into our parser; but
rather, we learn it from the data, because it op-
timizes our long-term rewards. We present fur-
ther analyses and analyses on WSJ syntactic de-
pendency trees in Appendix A.2.

Fig. 5 shows four sentence excerpts from the
development corpus, and the order in which arcs
are created. We again compare the model trained
with supervised learning (IPS+ML notated as SL
here) to the model with reinforcement learning
(IPS+ML+RL notated as RL here). In examples
(a) and (b), the RL model creates arcs inside noun
phrases first and then creates arcs to the verb. The
SL model, in contrast, creates arcs with inconsis-
tent orders. There are lots of similar examples in
the development data. In clause (c), for example, it
seems that the RLmodel follows a grammatical or-
dering, while the SL model does not. In the clause
(d), it seems that the RL model first resolves arcs
from modifiers, in “chief financial officer”, then
creates an arc from the adjective phrase “, who will
be hired”, and finally creates an arc from the ex-
ternal phrase “the position of ”. Note that both the
SL and RL models make an arc from “of ” in stead
of the annotated label of the word “position” in
the phrase “the position of ”. In the clause (e), the
RL model resolve the arcs in the noun phrase “a
strong sales performance” and then resolve arcs
from the following prepositional phrase. Finally,
the RL model resolve the arc from the word “with”
that is the headword in the syntactic dependency
tree. In the example (d) and (e), the RL model
elaborately follows the syntactic order that are not
given in any stages of training and parsing.

5 Conclusion

We propose a novel iterative predicate selection
(IPS) parsing model for semantic dependency
parsing. We apply multi-task learning to learn
general representations of parser configurations,
and use reinforcement learning for task-specific
fine-tuning. In our experiments, our multi-task re-
inforcement IPS model achieves a new state of the
art for three SDP formalisms. Moreover, we show
that fine-tuning with reinforcement learning learns
an easy-first strategy and some syntactic features.

Acknowledgements

This work was done when Shuhei Kurita visited
the University of Copenhagen. Shuhei Kurita
was supported by JST ACT-I Grant Number JP-
MJPR17U8, Japan and partly supported by JST
CREST Grant Number JPMJCR1301, Japan. An-
ders Søgaard was supported by a Google Focused
Research Award.

References
M. Almeida and A. Martins. 2015. Lisbon: Evaluating

turbosemanticparser on multiple languages and out-
of-domain data.

Leemon C. Baird III. 1999. Reinforcement learning
through gradient descent. School of Computer Sci-
ence Carnegie Mellon University.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of the EMNLP, pages 349–359.

P. M. Camerini, L. Fratta, and F. Maffioli. 1980. The
k best spanning arborescences of a network. Net-
works, 10:91–110.

Ann Copestake, Dan Flickinger, Ivan A. Sag, and Carl
Pollard. 2005. Minimal recursion semantics: An in-
troduction. In Research on Language & Computa-
tion, pages 3(4):281–332.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the ACL (Short Papers),
pages 484–490.

Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun, and
XiaojunWan. 2015. Peking: Building semantic de-
pendency graphs with a hybrid parser.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural net-
work grammars. In Proceedings of the 2016 Con-
ference of the NAACL: HLT, pages 199–209, San
Diego, California.

J. Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. In COLING.

Daniel Flickinger, Yi Zhang, and Valia Kordoni. 2012.
Deepbank: Adynamically annotated treebank of the
wall street journal. In In Proc. of TLT.

Daniel Fried and Dan Klein. 2018. Policy gradient as
a proxy for dynamic oracles in constituency parsing.
In Proceedings of the ACL, pages 469–476.

Michel Galley and Christopher D. Manning. 2009.
Quadratic-time dependency parsing for machine
translation. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the

http://aclweb.org/anthology/D15-1041
http://aclweb.org/anthology/D15-1041

2429

4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 773–781.
Association for Computational Linguistics.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
NAACL, pages 742–750, Los Angeles, California.

Yoav Goldberg and Joakim Nivre. 2013. Training de-
terministic parsers with non-deterministic oracles.
pages 403–414.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr
Sgall, Ondřej Bojar, Silvie Cinková, Eva Fučı́ková,
Marie Mikulová, Petr Pajas, Jan Popelka, Jiřı́ Se-
mecký, Jana Šindlerová, Jan Štěpánek, Josef Toman,
Zdeňka Urešová, and Zdeněk Žabokrtský. 2012.
Announcing prague czech-english dependency tree-
bank 2.0. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC-2012), pages 3153–3160.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple nlp
tasks. In Proceedings of the EMNLP, pages 1923–
1933.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for ucca. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1127–
1138. Association for Computational Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. TACL, 4:313–
327.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1173–
1182. Association for Computational Linguistics.

Ji Ma, Jingbo Zhu, Tong Xiao, and Nan Yang. 2013.
Easy-first POS tagging and dependency parsing with
beam search. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 110–114,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Andre Martins, Noah Smith, Mario Figueiredo, and Pe-
dro Aguiar. 2011. Dual decomposition with many
overlapping components. In Proceedings of the
2011 Conference on EMNLP, pages 238–249, Ed-
inburgh, Scotland, UK.

André F. T. Martins and Julia Kreutzer. 2017. Learning
what’s easy: Fully differentiable neural easy-first
taggers. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Process-
ing, pages 349–362, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the errors of data-driven dependency parsing
models. In Proceedings of the 2007 Joint Confer-
ence on EMNLP-CoNLL, pages 122–131.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In 11th Conference of the European Chapter
of the Association for Computational Linguistics.

Yusuke Miyao, Takashi Ninomiya, and Jun’ichi. Tsu-
jii. 2004. Corpus-oriented grammar development
for acquiring a head-driven phrase structure gram-
mar from the penn treebank. In In Proceedings of
IJCNLP-04.

Joakim Nivre and Mario Scholz. 2004b. Deterministic
dependency parsing of english text. In Proceedings
of Coling 2004, pages 64–70. COLING.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkova, Dan Flickinger, Jan
Hajic, and Zdenka Uresova. 2015. Semeval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
915–926, Denver, Colorado. Association for Com-
putational Linguistics.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. Semeval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63–72,
Dublin, Ireland.

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep multitask learning for semantic dependency
parsing. In Proceedings of the ACL, pages 2037–
2048, Vancouver, Canada.

Hao Peng, Sam Thomson, and Noah A. Smith. 2018a.
Backpropagating through structured argmax using a
spigot. In Proceedings of the 56th Annual Meeting
of the ACL, pages 1863–1873.

Hao Peng, Sam Thomson, Swabha Swayamdipta, and
Noah A. Smith. 2018b. Learning joint semantic
parsers from disjoint data. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1492–1502, New Orleans, Louisiana.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

http://aclweb.org/anthology/D17-1206
http://aclweb.org/anthology/D17-1206
http://aclweb.org/anthology/D17-1206
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
https://www.aclweb.org/anthology/P13-2020
https://www.aclweb.org/anthology/P13-2020
https://doi.org/10.18653/v1/D17-1036
https://doi.org/10.18653/v1/D17-1036
https://doi.org/10.18653/v1/D17-1036
http://aclweb.org/anthology/E06-1011
http://aclweb.org/anthology/E06-1011
http://aclweb.org/anthology/E06-1011
http://www.aclweb.org/anthology/S15-2153
http://www.aclweb.org/anthology/S15-2153
http://www.aclweb.org/anthology/S15-2153
http://www.aclweb.org/anthology/S14-2008
http://www.aclweb.org/anthology/S14-2008
https://doi.org/10.18653/v1/N18-1135
https://doi.org/10.18653/v1/N18-1135

2430

Corentin Ribeyre, Eric Villemonte de la Clergerie, and
Djamé Seddah. 2014. Alpage: Transition-based se-
mantic graph parsing with syntactic features. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 97–
103, Dublin, Ireland. Association for Computational
Linguistics and Dublin City University.

Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-reduce
dependency DAG parsing. In Proceedings of the
22nd International Conference on Computational
Linguistics (Coling 2008), pages 753–760. Coling
2008 Organizing Committee.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the ACL (Short
Papers), pages 231–235.

Valentin I. Spitkovsky, Hiyan Alshawi, Angel X.
Chang, and Daniel Jurafsky. 2011. Unsupervised
dependency parsing without gold part-of-speech
tags. In Proceedings of the 2011 Conference on
EMNLP, pages 1281–1290.

Alper Tokgöz and Eryigit Gülsen. 2015. Transition-
based dependency dag parsing using dynamic ora-
cles. In Proceedings of the ACL Student Research
Workshop., pages 22–27.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Bidi-
rectional inference with the easiest-first strategy for
tagging sequence data. In Proceedings of Hu-
man Language Technology Conference and Confer-
ence on Empirical Methods in Natural Language
Processing, pages 467–474, Vancouver, British
Columbia, Canada. Association for Computational
Linguistics.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting
Liu. 2018. A neural transition-based approach for
semantic dependency graph parsing. In Proceedings
of the Thirty-Second AAAI Conference on Artificial
Intelligence.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. pages 5–32. Springer.

Peng Xu, Jaeho Kang, Michael Ringgaard, and Franz
Och. 2009. Using a dependency parser to improve
smt for subject-object-verb languages. In Proceed-
ings of HLT:NAACL, pages 245–253, Boulder, Col-
orado.

Lidan Zhang and Kwok Ping Chan. 2009. Dependency
parsing with energy-based reinforcement learning.
In Proceedings of the IWPT, pages 234–237, Paris,
France.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency parsing as head selection. In
Proceedings of the ACL, pages 665–676, Valencia,
Spain.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the EMNLP, pages 562–571.

https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.18653/v1/P16-2038
http://www.aclweb.org/anthology/D11-1118
http://www.aclweb.org/anthology/D11-1118
http://www.aclweb.org/anthology/D11-1118
https://www.aclweb.org/anthology/H05-1059
https://www.aclweb.org/anthology/H05-1059
https://www.aclweb.org/anthology/H05-1059
http://www.aclweb.org/anthology/N/N09/N09-1028
http://www.aclweb.org/anthology/N/N09/N09-1028
http://www.aclweb.org/anthology/W09-3838
http://www.aclweb.org/anthology/W09-3838

