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Abstract

Advances in learning and representations have
reinvigorated work that connects language
to other modalities. A particularly exciting
direction is Vision-and-Language Navigation
(VLN), in which agents interpret natural lan-
guage instructions and visual scenes to move
through environments and reach goals. De-
spite recent progress, current research leaves
unclear how much of a role language un-
derstanding plays in this task, especially be-
cause dominant evaluation metrics have fo-
cused on goal completion rather than the se-
quence of actions corresponding to the instruc-
tions. Here, we highlight shortcomings of cur-
rent metrics for the Room-to-Room dataset
(Anderson et al., 2018b) and propose a new
metric, Coverage weighted by Length Score
(CLS). We also show that the existing paths in
the dataset are not ideal for evaluating instruc-
tion following because they are direct-to-goal
shortest paths. We join existing short paths to
form more challenging extended paths to cre-
ate a new data set, Room-for-Room (R4R). Us-
ing R4R and CLS, we show that agents that
receive rewards for instruction fidelity outper-
form agents that focus on goal completion.

1 Introduction

In Vision-and-Language Navigation (VLN) tasks,
agents must follow natural language navigation
instructions through either simulated (Macmahon
et al., 2006; Yan et al., 2018; Bisk et al., 2018; Shah
et al., 2018), simulations of realistic (Blukis et al.,
2018; Misra et al., 2018) and real environments
(Anderson et al., 2018b; de Vries et al., 2018; Chen
et al., 2019; Cirik et al., 2018), or actual physi-
cal environments (Skocaj et al., 2016; Thomason
et al., 2018; Williams et al., 2018). Compared to
other tasks involving co-grounding in visual and
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Figure 1: It’s the journey, not just the goal. To give lan-
guage its due place in VLN, we compose paths in the
R2R dataset to create longer, twistier R4R paths (blue).
Under standard metrics, agents that head straight to
the goal (red) are not penalized for ignoring the lan-
guage instructions: for instance, SPL yields a perfect
1.0 score for the red and only 0.17 for the orange path.
In contrast, our proposed CLS metric measures fidelity
to the reference path, strongly preferring the agent with
the orange path (0.87) over the red one (0.23).

language modalities — such as image and video cap-
tioning (Donahue et al., 2017; Fang et al., 2015;
Vinyals et al., 2015; Wang et al., 2018; Yu et al.,
2016), visual question answering (VQA) (Antol
et al., 2015; Yang et al., 2016), and visual dia-
log (Das et al., 2017) — VLN additionally requires
agents to plan their actions, move, and dynamically
respond to changes in their visual field.
Photo-realistic simulations for VLN are espe-
cially promising: they retain messy, real world
complexity and can draw on pre-trained models
and rich data about the world, but do not require in-
vestment in and maintenance of physical robots and
spaces for them. Given this, we focus on the Room-
to-Room (R2R) task (Anderson et al., 2018b). De-
spite significant recent progress on R2R since its
introduction (Fried et al., 2018; Ma et al., 2019;
Wang et al., 2019), the structure of the dataset and
current evaluation metrics greatly diminish the im-
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portance of language understanding for the task.
The core problems are that paths in R2R are all
direct-to-goal shortest paths and metrics are mostly
based on goal completion rather than fidelity to the
described path. To address this, we define a new
metric, Coverage weighted by Length Score (CLS),
and compose path pairs of R2R to create Room-for-
Room (R4R), an algorithmically produced exten-
sion of R2R. Figure 1 illustrates path composition
and the scores of two agent paths for both CLS and
Success weighted by Path Length (SPL), a metric
recently proposed by Anderson et al. (2018a). In
the example, an agent which ignores the language
but gets to the goal receives a perfect SPL score.

Language is not irrelevant for R2R. Thomason
et al. (2019) ablate visual and language inputs and
find that withholding either from an action sam-
pling agent reduces performance on unseen houses.
Also, the generated instructions in the augmented
paths of Fried et al. (2018) improved performance
for several models. However, while many of these
augmented instructions have clear starting or end-
ing descriptions, the middle portions are often dis-
connected from the path they are paired with (see
Huang et al. (2019) for in depth analysis of aug-
mented path instructions). That these low-fidelity
augmented instructions improve results indicates
that current metrics are insensitive to instruction
fidelity. Our new CLS metric measures how closely
an agent’s trajectory conforms with the entire refer-
ence path, not just goal completion.

Because the reference paths in R2R are all direct-
to-goal, the importance of the actual journey taken
from start to finish is diminished; as a result, fi-
delity between instructions and their corresponding
paths is harder to evaluate. In longer, twistier paths,
the importance of not always going directly to the
goal becomes much clearer. We take advantage of
the fact that the original R2R data contains many
paths that have goals that coincide with the start
points of other paths. By concatenating pairs of
paths and their corresponding instructions, we cre-
ate longer paths that allow us to better gauge the
ability of an agent to stick to the path as described.
With this data, Reinforced Cross-modal Matching
models (Wang et al., 2019) that use CLS as a re-
ward signal dramatically improve not only CLS
(from 20.4% for the agent with goal-oriented re-
wards to 34.6%), but navigation error also reduces
from 8.45m to 8.08m on the the Validation Unseen
dataset. Furthermore, we find that the agent with

goal-oriented rewards obtains the same CLS (20.4)
on R4R regardless of whether the full instruction
or only the last five tokens are provided to it. In
contrast, the CLS-rewarded agent drops from CLS
of 34.6 to 25.3 when given only the last five tokens.

2 Extending R2R to create R4R

Instructions such as “Turn left, walk up the stairs.
Enter the bathroom.” are easy for people but chal-
lenging for computational agents. Agents must
segment instructions, set sub-goals based on under-
standing them and ground the language and their
actions in real world objects and dynamics. An
agent may need expectations for how spatial scenes
change when turning. Additionally, it must recog-
nize visual and environmental features that indicate
it has entered or encountered something referred to
as “the bathroom” and know to stop.

2.1 Room-to-Room (R2R)

Room-to-Room (R2R) supports visually-grounded
natural language navigation in a photo-realistic
environment (Anderson et al., 2018b). R2R con-
sists of an environment and language instructions
paired to reference paths. The environment defines
a graph where nodes are possible positions an agent
may inhabit. Edges indicate that a direct path be-
tween two nodes is navigable. For each node, R2R
provides an egocentric panoramic view. All images
are collected from buildings and house interiors.
The paths paired with language instructions are
composed by sequences of nodes in this graph.
For data collection, starting and goal nodes are
sampled from the graph and the shortest path be-
tween those nodes is taken, provided it is no shorter
than 5Sm and contains between 4 and 6 edges. Each
path has 3 associated natural language instructions,
with an average length of 29 words and a total vo-
cabulary of 3.1k words. Apart from the training set,
the dataset includes two validation sets and a test
set. One of the validation sets includes new instruc-
tions on environments overlapping with the train-
ing set (Validation Seen), and the other is entirely
disjoint from the training set (Validation Unseen).
Fried et al. (2018) propose a follower model
which is trained using student forcing, where ac-
tions are sampled from the agent’s decisions, but
supervised using the action that takes the agent
closest to the goal. During inference, the follower
generates candidate paths which are then scored by
a speaker model. The speaker model was also used
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Figure 2: An example of an extended path in the R4R
dataset, where the dotted blue arrow connects two blue
paths with solid arrows, corresponding to the instruc-
tions “Make a left down at the narrow hall beside the
office and walk straight to the exit door. Go out the door
and wait.” and “Turn around and enter the bedroom.
Walk to the other side of the room and turn left. Walk
into the doorway leading out and stop.”. The shortest-
to-goal path from the starting point is shown in orange.

for creating an augmented dataset that is used as
an extension of training data by the follower model
as well as by many subsequently published models.
Wang et al. (2019) train their agents using policy
gradients. At every step, the agent is rewarded for
getting closer to the target location (extrinsic re-
ward) as well as for choosing an action that reduces
cycle-reconstruction error between instruction gen-
erated by a matching critic and ground-truth instruc-
tion (intrinsic reward). In both papers, there is little
analysis presented about the generative models.

Recently, Anderson et al. (2018a) pointed out
weaknesses in the commonly used metrics for eval-
uating the effectiveness of agents trained on these
tasks. A new metric, Success weighted by Path
Length (SPL) was proposed that penalized agents
for taking long paths. Any agent using beam search
(e.g. Fried et al. (2018)), is penalized heavily by
this metric. There have also been concerns about
structural biases present in these datasets which
may provide hidden shortcuts to agents training on
these problems. Thomason et al. (2019) presented
an analysis on R2R dataset, where the trained agent
continued to perform surprisingly well in the ab-
sence of language inputs.

2.2 Room-for-Room (R4R)

Due to the process by which the data are gener-
ated, all R2R reference paths are shortest-to-goal
paths. Because of this property, conformity to the
instructions is decoupled from reaching the de-
sired destination — and this short-changes the lan-
guage perspective. In a broader scope of reference
paths, the importance of following language in-

#samples PL(R) d(r1,7|p|)

Train 14039 991 9.91
R2R Val. seen 1021 10.2 10.2
Val. unseen 2249 9.50 9.50
Train 233613 20.6 10.5
R4R Val. seen 1035 204 11.1
Val. unseen 45162 20.2 10.1

Table 1: Comparison of R2R to R4R. PL(R) repre-
sents the mean path length of the reference paths and
d(ry,7|R|) is mean length of the shortest-to-goal path.

structions in their entirety becomes clearer, and
proper evaluation of this conformity can be bet-
ter studied. Additionally, the fact that the largest
path in the dataset has only 6 edges exacerbates the
challenge of properly evaluating conformity. This
motivates the need for a dataset with larger and
more diverse reference paths.

To address the lack of path variety, we propose
a data augmentation strategy' that introduces
long, twisty paths without additional human or
low-fidelity machine annotations (e.g. those from
Fried et al. (2018)). Existing paths in the dataset
can be extended by joining them with other paths
that start within some threshold of where they end.
Formally, two paths A=(a1,a2,---,a),) and

B:(bl, by, - - 7b|B|) are joined if d(aw, b1)<dth.
The resulting extended paths are thus
R=(a1,--+ ,aja;,¢1, €0 b1, 7, bB))s

where C' = (c1,¢2, -+ ,¢|¢|) is the shortest path
between a4 and by. (If a|4j=b1, C'is empty.)

Each combination of instructions correspond-
ing to paths A and B is included in R4R. Since
each path maps to multiple human-annotated in-
structions, each extended path willmapto N4 - Np
joined instructions, where IV 4 and N are the num-
ber of annotations associated with paths A and B,
respectively. Figure 2 shows an example of an
extended path and the corresponding instructions,
compared to the shortest-to-goal path.

3 Evaluation Metrics in VLN

Historically, the performance of VLN models has
been evaluated with respect to the objective of
reaching the goal location. The nature of the path
an agent takes, however, is of clear practical impor-
tance: it is undesirable for any robotic agent in the
physical world to reach the destination by taking a

'R2R-to-R4R code is at https://github.com/google-
research/google-research/tree/master/r4r
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Figure 3: From left to right, the distribution of the number of steps, path lengths, direct-to-goal path lengths and
instruction lengths in the original R2R and extended R4R datasets.

different path than what it was instructed to follow;
failure to comply with instructions might lead to
navigating unwanted and potentially dangerous lo-
cations. Here, we propose a series of desiderata for
VLN metrics and introduce Coverage weighted by
Length Score (CLS). Table 2 provides a high level
summary of this section’s contents.

3.1 Desiderata

Commonly, navigation tasks are defined in a dis-
crete space: the environment determines a graph
where each node is a position the agent could be
in and each edge between two nodes represents
that there is a navigable step between them. Let
the predicted path P = (p1, p2, ps, .-, p|p|) be the
sequence of nodes visited by the agent and refer-
ence path R = (r1,72,73, ..., 7| g|) be the sequence
of nodes in the reference trajectory. Generally,
p1 = 71, since in many VLN tasks, the agent begins
at the reference path’s start node. The following
desiderata characterize metrics that gauge the fi-
delity of P with respect to R rather than just goal
completion. Throughout the paper, we refer to the
subsequent desired properties as Desideratum (i).
(1) Path similarity measure. Metrics should char-
acterize a notion of similarity between a predicted
path P and a reference path . This implies that
metrics should depend on all nodes in P and all
nodes in R, which contrasts with many common
metrics which only consider the last node in the
reference path (see Section 3.2). Metrics should
penalize deviations from the reference path, even if
they lead to the same goal. This is not only prudent,
as agents might wander around undesired terrain
if this is not enforced, but also explicitly gauges
the fidelity of the predictions with respect to the
provided language instructions.

(2) Soft penalties. Metrics should penalize differ-
ences from the reference path according to a soft
notion of dissimilarity that depends on distances in

the graph. This ensures that larger discrepancies
are penalized more severely than smaller ones and
that metrics should not rely only on dichotomous
views of intersection. For instance, a predicted path
that has no intersection to the reference path, but
follows it closely, as illustrated in Figure 1 should
not be penalized too severely.

(3) Unique optimum. Metrics should yield a perfect
score if and only if the reference and predicted
paths are an exact match. This ensures that the
perfect score is unambiguous: the reference path R
is therefore treated as a golden standard. No other
path should have the same or higher score as the
reference path itself.

(4) Scale invariance. Metrics should be consistent
over different datasets.

(5) Computational tractability. Metrics should be
pragmatic, allowing fast automated evaluation of
performance in navigation tasks.

3.2 Existing Navigation Metrics

Table 2 defines previous navigation metrics and
how they match our desiderata. We denote by
d(n,m) the shortest distance between two nodes
along the edges of the graph and d(n,P) =
min,cp d(n,p) the shortest distance between a
node and a path. All distances are computed along
the edges of the graph determined by the environ-
ment, which are not necessarily equal to the eu-
clidean distance between the nodes.

Path Length (PL) measures the total length of
the predicted path, which has the optimal value
equal to the length of the reference path. Naviga-
tion Error (NE) measures the distance between the
last node in the predicted path and the last refer-
ence path node. Oracle Navigation Error (ONE)
measures the shortest distance from any node in
the predicted path to the last reference path node.
Success Rate (SR) measures how often the last node
in the predicted path is within a threshold distance
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Desiderata coverage

Metric 1] Definition D@ G @ 6
Path Length (PL) - Zl§i<\P| d(pi, pi+1) v v
Navigation Error (NE) VL d(pp),7iR) v v
Oracle Navigation Error (ONE) } minpep d(p, rg|) v v
Success Rate (SR) 1+ 1[NE(P, R) < dy) v 7/
Oracle Success Rate (OSR) 1 1[ONE(P, R) < dsp]
Success weighted by PL (SPL) + SR(P,R)- dp1;7im) v o/
max{PL(é-’]%,(cé(pé,)mR‘)}
Success weighted by Edit Distance (SED) 1 SR(P, R) (1 - TPl iR‘} — 1) v
Coverage weighted by LS (CLS) 1T PC(P,R)-LS(P,R) 7/

Table 2: Definition and desiderata coverage of navigation metrics.

dyp, of the last reference path node. Oracle Success
Rate (OSR) measures how often any node in the
predicted path is within a threshold distance dy;, of
the last node in the reference path.

Success weighted by Path Length (SPL) (Ander-
son et al., 2018a) takes into account both Success
Rate and the normalized path length. It was pro-
posed as a single summary measure for navigation
tasks. Note that the agent should maximize this
metric, and it is only greater than O if the success
criteria was met. While this metric is ideally suited
when the evaluating whether the agent successfully
reached the desired destination, it does not take into
account any notion of similarity between the pre-
dicted and reference trajectories and fails to take
into account the intermediary nodes in the refer-
ence path. As such, it violates Desideratum (1).
Since there could exist more than one path with
optimal length to the desired destination, it also
violates Desideratum (3).

Success weighted by Edit Distance (SED) (Chen
etal., 2019) is based on the edit distance ED(P, R)
between the two paths, equal to the Levenshtein
distance between the two sequences of actions
Ap = ((p1,p2), (P2,3); -, (P\Pwl,P\P\)) and
Arp = ((r1,72),(r2,73), -+, ("|R|=1,7|R))). The
Levenshtein distance is the minimum number of
edit operations (insertion, deletion and substitu-
tion of actions) that can transform path Ap into
Ap. Similarly to SPL, SED is also multiplied by
SR(P, R), so only paths that meet the success crite-
ria receive a score greater than 0. This metric natu-
rally satisfies Desideratum (1), (3) and (4). Further,
it is possible to compute it using dynamic program-
ming in O(|P||R|), further satisfying Desideratum

.\._’.___’./’O_b.\

Figure 4: With respect to the blue path, SED yields zero
for both the orange and red paths, while CLS yields a
score of 0.89 for orange and 0.48 for red.

(5). Desideratum (2), however, is left unsatisfied,
as SED does not take into account how two actions
differ from each other (considering, for instance,
the graph distance between their end nodes), but
only if they are the same or not. This subtle but
important difference is illustrated in Figure 4.

3.3 Coverage weighted by Length Score

We introduce Coverage weighted by Length Score
(CLS) as a single summary measure for VLN. CLS
is the product of the Path Coverage (PC) and
Length Score (LS) of the agent’s path P with re-
spect to reference path R:

CLS(P,R) =PC(P,R)-LS(P,R) (1)

PC replaces SR as a non-binary measure of how
well the reference path is covered by the agent’s
path. It is the average coverage of each node in the
reference path R with respect to path P:

PC(P,R) = ’;' 3 exp (—d(r’ P>> )

d
reR th
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where d(r, P)=min,ep d(r, p) is the distance to
reference path node r from the nearest node in
P. The coverage contribution for each node r is
an exponential decay of this distance. (1/dy, is a
decay constant to account for graph scale.)

LS compares the predicted path length PL(P) to
EPL, the expected optimal length given R’s cov-
erage of P. If say, the predicted path covers only
half of the reference path (i.e., PC = 0.5), then
we expect the optimal length of the predicted path
to be half of the length of the reference path. As a
result, EPL is given by:

EPL(P,R) =PC(P,R)-PL(R)  (3)

LS for a predicted path P is optimal only if
PL(P) is equal to the expected optimal length —
it is penalized when the predicted path length is
shorter or longer than the expected path length:

EPL(P, R)
LS(P R) = EPL(P, R) + |[EPL(P, R) — PL(P)|
“4)
There is a clear parallel between the terms of
CLS and SPL. CLS replaces success rate, the first
term of SPL, with path coverage, a continuous in-
dicator for measuring how well the predicted path
covered the nodes on the reference path. Unlike SR,
PC is sensitive to the intermediary nodes in the ref-
erence path R. The second term of SPL penalizes
the path length PL(P) of the predicted path against
the optimal (shortest) path length d(p1, 7|g|); CLS
replaces that with length score LS, which penal-
izes the agent path length PL(P) against EPL, the
expected optimal length for its coverage of R.

CLS naturally covers Desideratum (1) and (2).
Assuming that the reference path is acyclic and that
p1 = 1y, i.e., reference and predicted path start
at the same node, Desideratum (3) is also satis-
fied. Additionally, CLS also covers Desideratum
(4) because PC and LS are both invariant to the
graph scale (due to the term d;;,). Finally, the dis-
tances from each pair of nodes in the graph can
be pre-computed using Dijkstra’s algorithm (Dijk-
stra, 1959) for each node, resulting in a complexity
of O(EV + V2log(V)), where V and FE are the
number of vertices and edges in the graph, respec-
tively. PC(P, R) can be computed in O(|P||R|),
and LS(P, R) can be computed in O(|P| + |R]),
making CLS satisfy Desideratum (5).

4 Agent

We reimplement the Reinforced Cross-Modal
Matching (RCM) agent of Wang et al. (2019) and
extend it to use a reward function based on both
CLS (Section 3.3) as well as success rate.

4.1 Navigator

The reasoning navigator of Wang et al. (2019)
learns a policy my over parameters # that map the
natural language instruction X and the initial vi-
sual scene v; to a sequence of actions aj 7. At
time step ¢, the agent state is modeled using a
LSTM (Hochreiter and Schmidhuber, 1997) that en-
codes the trajectory of past visual scenes and agent
actions, hy=LSTM ([v;; ay—1], hy—1), where vy is
the output of visual encoder as described below.

Language Encoder Language instructions X =
x1.n are initialized with pre-trained GloVe word
embeddings (Pennington et al., 2014) that are fine-
tuned during training. We restrict the GloVe vocab-
ulary to tokens that occur at least five times in the
instruction data set. All out of vocabulary tokens
are mapped to a single OOV identifier. Using a
bidirectional recurrent network (Schuster and Pali-
wal, 1997) we encode the instruction into language
contextual representations wy .

Visual Features As in Fried et al. (2018), at each
time step ¢, the agent perceives a 360-degree
panoramic view of its surroundings from the cur-
rent location. The view is discretized into m view
angles (m = 36 in our implementation, 3 eleva-
tions x 12 headings at 30-degree intervals). The
image at view angle ¢, heading angle ¢ and ele-
vation angle @ is represented by a concatenation
of the pre-trained CNN image features with the
4-dimensional orientation feature [sin ¢; cos ¢; sin
0; cos 0] to form v; ;. The visual encoder pools
the representation of all view angles vy 1., using
attention over the previous agent state h;_.

vy = Attention(h¢—1,V¢,1..m) 5)

The actions available to the agent at time ¢ are
denoted as uy,1.;, where u; ; is the representation
of navigable direction j from the current location
obtained similarly to v; ; (Fried et al., 2018). The
number of available actions, [, varies for different
locations, since nodes in the graph have different
number of connections.

Action Predictor As in Wang et al. (2019), the
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model predicts the probability py, of each navigable
direction k using a bilinear dot product.

pr = softmax([hs; i ¢/ We(ue Wu)™)  (6)

text

e = Attention(hy, w1..n) @)

C;isual — Attention(cttext’ ’UtJ.fm) (8)

4.2 Learning

Training is performed using two separate phases,
(1) behavioral cloning (Bain and Sammut, 1999;
Wang et al., 2019; Daftry et al., 2016) and (2) REIN-
FORCE policy gradient updates (Williams, 1992).
As is common in cases where expert demonstra-
tions are available, the agent’s policy is initialized
using behavior cloning to constrain the learning
algorithm to first model state-action spaces that are
most relevant to the task, effectively warm starting
the agent with a good initial policy. No reward
shaping is required during this phase as behav-
ior cloning corresponds to solving the following
maximum-likelihood problem,

max log mg(als) 9)
’ (s%éb
where D is the demonstration data set.

After warm starting the model with behavioral
cloning, we obtain standard policy gradient updates
by sampling action sequences from the agent’s be-
havior policy. As in standard policy gradient up-
dates, the model is optimized by minimizing the
loss function £PS whose gradient is the negative
policy gradient estimator (Williams, 1992).

LP6 = —Fy[log mo(ar]se) Ayl (10)

where the expectation &, is taken over a finite batch
of sample trajectories generated by the agent’s
stochastic policy my. To reduce variance, we
scale the gradient using the advantage function
Ay=R;—b;. (Ry= 22, vty is the observed -
discounted episodic return and b, is the estimated
value of the agent’s current state at time ¢.)

The models are trained using mini-batch gradi-
ent descent. Our experiments show that interleav-
ing behavioral cloning and policy gradient training
phases improves performance on the validation set.
Specifically we interleaved each policy gradient
update batch with K behaviour cloning batches,
with the value of K decaying exponentially, such
that the training strategy asymptotically becomes
only policy gradient updates.

4.3 Reward

For consistency with the established benchmark
(Wang et al., 2019), we implemented a dense goal-
oriented reward function that optimizes the success
rate metric. This includes an immediate reward at
time step ¢ in an episode of length T, given by:

d(st,7|R))—
T’(St, at) = d(3t+17 Y"R|) ift<T
]l[d(ST,T'|R|) < dth] ift="T
(11)

where d(s¢,7|g|) is the distance between s; and
target location 7|, 1[-] is the indicator function,
dyp, 1s the maximum distance from T|R| that the
agent is allowed to terminate for success.

To incentivize the agent to not only reach the
target location but also to conform to the refer-
ence path, we also train our agents with following
fidelity-oriented sparse reward:

0 ift<T
(st ar) = § L[d(s, ) < do]+
CLS(SL”T, R) ift="1T
(12)

where R is the reference path in the dataset associ-
ated with the instruction X'. This rewards actions
that are consistent both with reaching the goal and
following the path corresponding to the language
instructions. It is worth noting here that, similar to
Equation 11, a relative improvement in CLS can
be added as a reward-shaping term for time steps
t < T, however empirically we did not find notice-
able difference in the performance of agents trained
with or without the shaping term. For simplicity,
all of the experiments involving fidelity-oriented
reward use the sparse reward in Equation 12.

5 Results

We obtain the performance of models trained under
two training objectives. The first is goal oriented
(Equation 11): agents trained using this reward are
encouraged to pursue only the last node in the refer-
ence path. The second is fidelity oriented (Equation
12): agents trained using this reward receive credit
not only for reaching the target location success-
fully but also for conforming to the reference path.
We report the performance on standard metrics (PL,
NE, SR, SPL) as well as the new CLS metric.
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To further explore the role of language, we per-
form ablation studies, where agents are trained us-
ing the full language instructions and evaluated
on partial (last 5 tokens) or no instructions. With
no instructions, the agent only has the full visual
input, similar to the unimodal ablation studies of
Thomason et al. (2019). To eliminate the effect
observed due to distribution shift during evaluation
and preserve the length distribution of the input
instructions, we further conducted studies where
agents are given arbitrary instructions from the val-
idation set, with the reference path remaining unal-
tered. We observed that experiments with arbitrary
instruction had similar results to studies where in-
structions where fully removed.

On the R4R dataset, the fidelity oriented agent
significantly outperforms the goal oriented agent
(> 14% absolute improvement in CLS), demon-
strating that including CLS in the reward signal
successfully produces better conformity to the ref-
erence trajectories. Furthermore, on Validation Un-
seen, when all but the last 5 tokens of instructions
are removed, the goal oriented agent yields the
same CLS as with the full instructions, while the fi-
delity oriented agent suffers significantly, decaying
from 34.6% to 25.3%. This indicates that includ-
ing fidelity measurements as reward signals im-
prove the agent’s reliance on language instructions—
thereby better keeping the L in VLN.

5.1 R2R Performance

Table 3 summarizes the experiments on R2R.?
There are not major differences between goal ori-
ented and fidelity oriented agents, highlighting the
problematic nature of R2R paths with respect to
instruction following: essentially, rewards that only
take into account the goal implicitly signals path
conformity—Dby the construction of the dataset it-
self. As aresult, an agent optimized to reach the

2Our goal oriented results match the RCM benchmark
on validation unseen but are lower on validation seen. We
suspect this is due to differences in implementation details
and hyper-parameter choices.

3For the random evaluation, we first sample the number
of edges in the trajectory from the distribution of number of
edges in the reference paths of the training dataset. Then, for
each node, we uniformly sample between its neighbors and
move the agent there. We report the average metrics for 1
million random trajectories.

*As in Wang et al. (2019), we report the performance of
Speaker-Follower model from Fried et al. (2018) that utilizes
panoramic action space and augmented data but no beam
search (pragmatic inference) for a fair comparison.

>We report the performance of the RCM model without
intrinsic reward as the benchmark.

target destination may incidentally appear to be
conforming to the instructions. The results shown
in Section 5.2 further confirm this hypothesis by
training and evaluate goal oriented and target ori-
ented agents on R4R dataset.

As evidenced by the ablation studies, models
draw some signal from the language instructions.
However, having the last five tokens makes up for
a significant portion of the gap between no instruc-
tions and full instructions, again highlighting prob-
lems with R2R and the importance in R2R of iden-
tifying the right place to stop rather than following
the path. The performance of both the agents de-
grade in similar proportions when instructions are
partially or fully removed.

Finally, as expected, the SPL metric appears con-
sistent with CLS on R2R, since all reference paths
are shortest-to-goal. As highlighted in Section 5.2,
this breaks in settings where paths twist and turn.

5.2 R4R Performance

Table 4 shows the results on R4R. Overall, the
scores for all model variants on R4R are much
lower than R2R, which highlights the additional
challenge of following longer instructions for
longer paths. Most importantly, the fidelity oriented
agent significantly outperforms the goal oriented
agent for both CLS and navigation error, demon-
strating the importance of both measuring path fi-
delity and using it to guide agent learning.

On the experiments, the goal oriented agent con-
tinues to exploit biases and the underlying struc-
ture in the environment to reach the goal. When
the instructions are removed during evaluation, the
agent’s performance on the CLS metric barely de-
grades, showing that the agent does not rely signif-
icantly on the instructions for its performance. In
contrast, the fidelity oriented agent learns to pursue
conformity to the reference path, which in turn re-
quires attending more carefully to the instructions.
When instructions are removed during evaluation,
performance of the fidelity oriented agent degrades
considerably on the CLS metric. In fact, the fidelity
oriented agent performs better on CLS metric with-
out instructions as the goal oriented agent performs
with the full instructions.

Furthermore, we highlight that historically dom-
inant metrics are ineffective — even misleading —
for measuring agents’ performance: for instance,
especially for reference paths that begin and end
at close locations, SPL is a poor measure of suc-
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Validation Seen

Validation Unseen

# Model PL NEJ| SRt SPLT CLSt PL NEJ SRT SPL1T CLS*
0 Random’ 104 9.82 50 37 294 932 932 52 40 290
1 Speaker-Follower (Fried et al., - 3.36 664 - - - 6.62 355 - -
2018)*

2 RCM (Wang et al., 2019)° 12.1 325 67.6 - - 15.0 6.01 406 - -

3 Speaker-Follower 155 498 50.1 40.1 548 152 636 353 28.1 429
4 RCM, goal oriented 13.7 448 553 479 611 148 6.00 41.1 327 474
5  last 5 tokens 169 7.35 265 222 390 151 816 222 172 35.1
6  no instructions 21.1 778 223 11.6 275 17.7 869 130 94 26.1
7 RCM, fidelity oriented 122 463 573 50.7 602 132 638 40.8 351 509
8 last5 tokens 134 8.08 27.8 235 424 144 829 232 177 355
9 o instructions 20.1 895 182 88 248 205 876 143 6.2 227

Table 3: Results on R2R Validation Seen and Validation Unseen sets. Rows 0 and 3-9 shows numbers from our

implementations. SR, SPL and CLS are reported as percentages and NE and PL in meters.

Validation Seen

Validation Unseen

# Model PL NE| SRt SPLT CLStT PL NE| SRt SPL?T CLS?T
0 Random’ 21.8 114 131 20 23.1 236 104 138 22 223
1 Speaker-Follower 154 535 519 373 464 199 847 238 122 29.6
2 RCM, goal oriented 245 511 555 323 404 325 845 28.6 102 204
3 last 5 tokens 29.5 873 264 124 351 295 9.04 234 45 204
4 no instructions 323 9.50 207 80 333 340 945 190 23 17.4
5 RCM, fidelity oriented 188 537 526 306 553 285 8.08 261 7.7 34.6
6  last 5 tokens 17.1 888 248 11.7 393 255 852 189 56 253
7  no instructions 12.7 105 121 54 372 228 941 155 49 23.0

Table 4: Results on R4R Validation Seen and Validation Unseen sets (see Section 2). SR, SPL and CLS are reported

as percentages and NE and PL in meters.

cess since it assumes the optimal path length is the
shortest distance between the starting and ending
positions (as illustrated in Figure 1, for example).
This is particularly noticeable from the results: the
goal oriented agent gets better SPL scores than the
fidelity oriented agent, even when it has massively
poorer performance on conformity (CLS).

6 Conclusion

The CLS metric, R4R, and our experiments provide
a better toolkit for measuring the impact of better
language understanding in VLN. Furthermore, our
findings suggests ways that future datasets and met-
rics for judging agents should be constructed and
set up for evaluation. The R4R data itself clearly
still has considerable headroom: our reimplemen-
tation of the RCM model gets only 34.6 CLS on
paths in R4R’s Validation Unseen houses. Keeping
in mind that humans have an average navigation
error of 1.61 in R2R (Anderson et al., 2018b), the
average navigation error of 8.08 meters for R4R by
our best agent leaves plenty of headroom. Future

agents will need to make effective use of language
and its connection to the environment to both drive
CLS up and bring NE down in R4R.

We expect path fidelity to not only be interesting
with respect to grounding language, but to be cru-
cial for many VLN-based problems. For example,
future extensions of VLN will likely involve games
(Baldridge et al., 2018) where the instructions be-
ing given take the agent around a trap or help it
avoid opponents. Similar constraints could hold
in search-and-rescue human-robot teams (Kruijff
et al., 2014; Kruijff-Korbayov et al., 2016), where
the direct path could take a rolling robot into an
area with greater danger of collapse. In such sce-
narios, going straight to the goal could be literally
deadly to the robot or agent.
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