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Abstract

Previous work on end-to-end translation from
speech has primarily used frame-level fea-
tures as speech representations, which cre-
ates longer, sparser sequences than text. We
show that a naı̈ve method to create compressed
phoneme-like speech representations is far
more effective and efficient for translation than
traditional frame-level speech features. Specif-
ically, we generate phoneme labels for speech
frames and average consecutive frames with
the same label to create shorter, higher-level
source sequences for translation. We see im-
provements of up to 5 BLEU on both our high
and low resource language pairs, with a re-
duction in training time of 60%. Our improve-
ments hold across multiple data sizes and two
language pairs.

1 Introduction

The way translation input is represented has been
shown to impact performance as well as how
much data the model requires to train (Sennrich
et al., 2016; Salesky et al., 2018; Cherry et al.,
2018). The current standard approach for text-
based translation is to segment words into sub-
word units as a preprocessing step (Sennrich et al.,
2016). Clustering common character sequences
increases frequency of units in data and improves
generalization to new word forms and rare words.

End-to-end speech-to-text models are showing
competitive results (Weiss et al., 2017; Bansal
et al., 2018a,b; Bérard et al., 2018; Anastasopou-
los and Chiang, 2018), but so far have not com-
pared different ways to represent speech input.
Unlike text, where discrete trainable embeddings
are typically used, speech models typically use
continuous features extracted from sliding win-
dows (frames), held fixed during training. Frame-
level features yield significantly longer, more
sparsely-represented sequences than their text

equivalents, and so speech models stand to benefit
from learning compressed input representations.
Previous works have reduced sequence lengths to
make training more tractable through fixed-length
downsampling. However, phonemes are variable
lengths. Other work has shown promising results
using phonemic representations and unsupervised
term discovery from variable length sequences
in MT and other domains, but as discrete units
(Wilkinson et al., 2016; Bansal et al., 2017; Adams
et al., 2016; Kamper et al., 2016; Dalmia et al.,
2018b; Chung and Glass, 2018). Inspired by these
works, we explore higher-level continuous speech
embeddings for end-to-end speech translation.

Specifically, we use alignment methods to gen-
erate phoneme labels, and average consecutive
frames with the same label to create phoneme-
like feature vectors from variable numbers of
frames. We use the Fisher Spanish-English and
low-resource Mboshi-French datasets. We com-
pare performance on the full Fisher dataset to
smaller subsets as in Bansal et al. (2018b). As it
is not possible to train a high-performing recog-
nizer on many lower-resource tasks, we use a high-
resource model applied cross-lingually to create
phoneme labels for Mboshi. We show signifi-
cant performance improvements and reductions in
training time under all conditions, demonstrating
phoneme-informed speech representations are an
effective and efficient tool for speech translation.

2 Method

While frame-level Mel-frequency cepstral coef-
ficient (MFCC) and filterbank features are in-
formative, they create long, repetitive sequences
which take recurrent models many examples to
learn to model. Higher-level representations like
phonemes can create shorter, better-represented
input sequences to improve training efficiency and
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Figure 1: Example comparing number of frame-level
features (50) to phoneme alignments (8). We saw an
average reduction in sequence length of ∼80%.

model robustness. Here, we average frame-level
features within phoneme-like units to create one
representation from a variable number of frames,
using a trained speech recognizer and alignment.

We extract 40-dimensional Mel filterbank fea-
tures with per-speaker mean and variance nor-
malization using Kaldi (Povey et al., 2011). Us-
ing an HMM/DNN system trained on the full
Fisher Spanish dataset using the Kaldi (Povey
et al., 2011) recipe for Fisher Spanish, we compute
phoneme alignments using the triphone model
(tri3a). 50 phoneme labels are used, including
variants of silence, noise, and laughter. Within
each utterance, we average the feature vectors for
consecutive frames with the same label.

The above method requires a recognizer with
reasonable performance to perform alignment, not
possible in low-resource conditions. Therefore, for
Mboshi, we use a method that does not require
language-specific data to generate a phoneme-like
sequence. Specifically, we apply a Connectionist
Temporal Classification (CTC) model trained with
6000 hours of English data (notably, not a related
language), as described in Dalmia et al. (2018b)
with the features from Dalmia et al. (2018a). To
train this model, three frame-level features are
spliced together, so output labels apply to a span
of three frames. Labels comprise a set of 40
phonemes and the CTC ‘blank’ where the model
is uncertain. The CTC ‘blank’ transition label en-
ables all frames to be aligned to a label. As above,
we average the feature vectors for consecutive
frames with the same label within an utterance.

3 Model Architecture

As in Bansal et al. (2018a), we use a sequence-
to-sequence architecture inspired by Weiss et al.
but modified to train within available resources;
specifically, all models may be trained in less
than 5 days on one GPU. We build an encoder-
decoder model with attention in xnmt (Neubig
et al., 2018) with 512 hidden units throughout. We

use a 3-layer BiLSTM encoder. We do not use the
additional convolutional layers from Weiss et al.
and Bansal et al. to reduce temporal resolution, but
rather use network-in-network (NiN) projections
from previous work in sequence-to-sequence ASR
(Zhang et al., 2017; Sperber et al., 2018) to get the
same total 4× downsampling in time. This gives
the benefit of added depth with fewer parameters.
We compare our performance to these two works
in Section 5.1. We closely follow the LSTM/NiN
encoder used in Sperber et al. (2018) for ASR and
use the same training procedure, detailed in Ap-
pendix A. We use an MLP attention with 1 hid-
den layer with 128 units and 64-dimensional target
embeddings, though we use only 1 decoder hidden
layer as opposed to 3 or 4 in previous works. All
models use the same target preprocessing as previ-
ous work on this dataset: lowercasing and remov-
ing punctuation aside from apostrophes.

4 Datasets

Spanish-English. We use the Fisher Spanish
speech corpus (Graff et al.), which consists of 160
hours of telephone speech in multiple Spanish
dialects split into 138K utterances, translated
via crowdsourcing by Post et al. (2013). We use
the standard dev and test sets, each with ∼4k
utterances. We do not use dev2. Four reference
translations are used to score dev and test.

Mboshi-French. Mboshi is a Bantu language spo-
ken in the Republic of Congo with ∼160k speak-
ers. We use the Mboshi-French parallel corpus
(Godard et al., 2017) for our low-resource set-
ting, which contains <5 hours of speech split
into training and development sets of 4616 and
500 utterances respectively. This corpus does not
have a designated test set, so as in Bansal et al.
(2018b) we removed 200 randomly sampled utter-
ances from training for development data and use
the designated development set as test.

5 Results

5.1 Baseline

We first compare our model to previously reported
end-to-end neural speech translation results on the
Fisher Spanish-English task using frame-level fea-
tures. Table 1 shows our results on the full train-
ing set with comparisons to Weiss et al. (2017)
and Bansal et al. (2018a). Weiss et al.’s model is
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Weiss et al. Bansal et al. Ours
dev test dev test dev test

BLEU 46.5 47.3 29.5 29.4 32.4 33.7

Table 1: Single task end-to-end speech translation
BLEU scores on full dataset.

significantly deeper than ours, with 4 more en-
coder layers and 3 more decoder layers. After
more than two weeks of expensive multi-GPU
training, it reaches a 4-reference BLEU score of
47.3 on test. We, like Bansal et al. (2018a,b),
made modifications to our architecture and train-
ing schemes to train on a single GPU in approx-
imately five days. While Bansal et al. use words
on the target side to reduce time to convergence
at a slight performance cost, we are able to use
characters as in Weiss et al. by having a still shal-
lower architecture (2 fewer layers on both the en-
coder and decoder), which allows us to translate
to characters with approximately the same train-
ing time per epoch they observe with words (∼2
hours). We converge to a four-reference test BLEU
of 33.7, showing 3-4 BLEU improvements over
Bansal et al. (2018a) on dev and test. This demon-
strates that our model has reasonable performance,
providing a strong baseline before turning to our
targeted task comparing input representations.

5.2 Frames vs Phonemes

On our target task, we compare different subsets
of the data to see how our method compares un-
der different data conditions, using the full 160
hours as well as 40 and 20 hour subsets. Table 2
shows our results using frame vs phoneme-level
speech input. When we use our phoneme-like em-
beddings, we see relative performance improve-
ments of 13% on all data sizes, or up to 5.2 BLEU
on the full dataset. Further, in reducing source
lengths by ∼80%, training time is improved. We
saw an average reduction in training time of 61%,
which for the full dataset means we were able to
train our model in 39.5 hours rather than 118.2.

Frames Phonemes BLEU Time
Data dev test dev test ∆ ∆

Full 32.4 33.7 37.6 38.8 +5.2 –67%
40hr 19.5 17.4 21.0 19.8 +2.0 –52%
20hr 9.8 8.9 11.1 10.0 +1.2 –65%

Table 2: Comparison of frame vs phoneme input on
Spanish-English SLT, with average BLEU improve-
ment and average reduction in training time.

We compare our variable-length downsampling
to fixed-stride downsampling by striding input
frames. With a fixed stride of 2, performance de-
creases on 40 hours by ∼2 BLEU from 19.5 to
17.0 on dev and 17.4 to 15.6 on test. With a fixed
stride of 3, performance drops further to 13.7 and
11.8, respectively. By contrast, we saw improve-
ments of +2 BLEU on 40 hours using our variable-
length downsampling, though it lead to greater re-
ductions in the number of input feature vectors.
Clearly phoneme-informed reduction is far more
effective than fixed schedule downsampling.

5.3 Analysis

To better understand our improvements, we target
three points. Does making source and target se-
quence lengths more well-matched improve per-
formance? To test we compare target preprocess-
ing granularities. Second, reducing source lengths
will impact both the encoder and attention. To in-
vestigate, we look at both encoder downsampling
and ASR, where unlike MT, sequences are mono-
tonic. Finally, we look at our low-resource case,
Mboshi-French, where we must get phoneme la-
bels from a cross-lingual source.

Previous work on sequence-to-sequence speech
translation has used encoder downsampling of 4×,
while 8× is more common among sequence-to-
sequence ASR systems (Zhang et al., 2017), mo-
tivated by reducing parameters and creating more
one-to-one relationships between lengths of target
sequence (typically characters) and the final en-
coder states to which the model attends. We use
encoder downsampling of 4×, concatenating ad-
jacent states after each layer. Table 3 shows target
sequence lengths and results with different prepro-
cessing. By averaging frames per local phoneme
label in addition to encoder downsampling, source
sequence lengths are further reduced on average
by 79%, yielding final encoder state lengths of 22,
closest in length to 1k BPE targets (14) rather than
characters (50). Given that the 1k BPE model per-

Target Target Frames Phonemes
Preproc. Length dev test dev test

chars 50.2 18.8 17.3 20.0 18.4
1k bpe 13.7 19.5 17.4 21.0 19.8
10k bpe 10.6 16.2 14.7 18.4 17.5
words 10.4 16.4 14.6 18.2 17.4

Table 3: Comparing effects of target preprocessing with
different sources on BLEU, Spanish-English 40hr
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forms best, it does appear that more similar source
and target lengths boost performance.

For Spanish, we found that the mean number
of frames per phone was 7.6, while the median
was 6. Silence in this dataset skews these statistics
higher; silence-marked frames account for 10.7%
of phone occurrences. Reducing multiple frames
per phone to a single feature vector allows faster
parameter optimization, as shown by improve-
ments in early epochs in Figure 2.

Figure 2: Dev BLEU over training with frames vs
phonemes. Single-reference BLEU on 1k lines of dev.

We also compare the best phoneme models
without encoder downsampling; with reduced se-
quence lengths, this becomes more tractable to
train. On the full data, we see this improves our
scores slightly, from 37.6 to 38.1 on dev and 38.8
to 39.2 on test. We see further improvements on
40 hours (22.4 dev & 20.3 test), and on 20 hours,
similar dev performance but slight improvements
on test (10.3 dev & 9.6 test). It is possible that with
less data, the additional encoder parameters with-
out downsampling do not receive enough updates
to be well-trained.

To test whether the approach is a generally more
effective input representation or only an aid in the
particularly complex learning task of speech trans-
lation where it helps to reduce the distance be-
tween inputs and outputs, we apply our method
to ASR, where are alignments are monotonic. We
see similar levels of improvement, suggesting this
approach produces generally more effective input
representations: ∼18% relative improvements on
all three dataset sizes, or up to –9 absolute WER
on 40 and 20 hours, as detailed in Table 4. We
note that Weiss et al. (2017) reported 25.7, 23.2
on dev and test, respectively, with a considerably

larger network, which we are now able to match
on test. We note that this neural model also out-

Frames Phonemes WER Time
Data dev test dev test ∆ ∆

Full 33.4 30.0 28.0 23.4 –6.0 –43%
40hr 44.8 46.7 36.6 36.6 –9.2 –40%
20hr 56.3 59.1 48.2 49.1 –9.1 –50%

Table 4: Comparison of frame vs phoneme input on
Spanish ASR, with average reduction in WER and av-
erage reduction in training time.

performs the Kaldi models; the Kaldi model using
the tri3a alignments we use for phoneme bound-
aries yields 45.7 dev WER, and using more sophis-
ticated alignment models, achieves 29.8.

On our low-resource Mboshi task, we do not
have enough data to train a high-quality recog-
nizer to produce phoneme alignments. Instead, we
use a model from an unrelated language (English)
applied cross-lingually. With small training and
evaluation sets, scores are less stable and changes
must be taken with a grain of salt. We see very
low scores with frames, but still see improvements
with phonemes, though the labels were produced
by an English model. Bansal et al. (2018b) re-
ported 3.5 BLEU using frames, which they im-
proved to 7.1 by pretraining their encoder with 300
hours of English and decoder with 20 hours of
French. Creating phoneme-level embeddings, we
are able to get similar levels of improvement with-
out training the network on more data, though we
use an unadapted foreign language model.

Frames Phonemes
Data dev test dev test
Mboshi (chars) 0.0 0.0 5.2 3.6
Mboshi (1k bpe) 2.3 1.4 7.0 5.6
Mboshi (words) 1.8 1.4 7.8 5.9

Table 5: Comparison of frame vs phoneme input on
Mboshi-French SLT. Mboshi phoneme labels produced
with English CTC phoneme recognizer.

While LSTM-based sequence-to-sequence
models are able to learn from long, redundant
sequences, we show that they learn more ef-
ficiently and effectively across multiple data
conditions when given sequences reduced using
phoneme boundaries. This is evidenced by our
improvements across all data sizes, and significant
improvements in early epochs, shown in Figure 2.
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We compared two methods for alignment, an
HMM-based model and a CTC-based model, the
first applied monolingually and the second cross-
lingually. The CTC model yields blank alignments
for some frames, reducing the range of frames to
be averaged, though the center of mass often re-
mains the same. We hypothesize that this does not
greatly impact results, and previous work has ex-
plored using the middle HMM state for alignments
rather than all (Stuker et al., 2003), but this would
benefit from a more robust comparison. As well,
a deeper comparison of monolingual versus cross-
lingual alignments applied to a greater number of
test languages would be beneficial.

6 Conclusion

Previous work on end-to-end speech translation
has used frame-level speech features. We have
shown that a naı̈ve method to create higher-level
speech representations for translation can be more
effective and efficient than traditional frame-level
features. We compared two input representations
for two unrelated languages pairs, and a variety
of differently-resourced conditions, using both a
supervised alignment method and a cross-lingual
method for our low-resource case. Our method
does not introduce additional parameters: we hope
to motivate future work on learning speech repre-
sentations, with continued performance on lower-
resource settings if additional parameters are in-
troduced.
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bastian Stüker, and Alex Waibel. 2018. Self-
attentional acoustic models. Proc. of EMNLP.
ArXiv:1803.09519.

Sebastian Stuker, Tanja Schultz, Florian Metze, and
Alex Waibel. 2003. Multilingual articulatory fea-
tures. In 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003.
Proceedings.(ICASSP’03)., volume 1, pages I–I.
IEEE.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision.

Ron J Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui
Wu, and Zhifeng Chen. 2017. Sequence-to-
sequence models can directly transcribe foreign
speech. arXiv:1703.08581.

Andrew Wilkinson, Tiancheng Zhao, and Alan W
Black. 2016. Deriving phonetic transcriptions
and discovering word segmentations for speech-to-
speech translation in low-resource settings. In IN-
TERSPEECH.

Yu Zhang, William Chan, and Navdeep Jaitly. 2017.
Very deep convolutional networks for end-to-end
speech recognition.

A Appendix. LSTM/NiN Encoder and
Training Procedure Details

A.1 Encoder Downsampling Procedure

Weiss et al. (2017) and Bansal et al. (2018a)
use two strided convolutional layers atop three
bidirectional long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) layers to
downsample input sequences in time by a total
factor of 4. Weiss et al. (2017) additionally down-
sample feature dimensionality by a factor of 3
using a ConvLSTM layer between their convo-
lutional and LSTM layers. This is in contrast to
the pyramidal encoder (Chan et al., 2016) from
sequence-to-sequence speech recognition, where
pairs of consecutive layer outputs are concatenated
before being fed to the next layer to halve the num-
ber of states between layers.

To downsample in time we instead use the
LSTM/NiN model used in Sperber et al. (2018)
and Zhang et al. (2017), which stacks blocks con-
sisting of an LSTM, a network-in-network (NiN)
projection, layer batch normalization and then a
ReLU non-linearity. NiN denotes a simple lin-
ear projection applied at every timestep, perform-
ing downsampling by a factor of 2 by concate-
nating pairs of adjacent projection inputs. The
LSTM/NiN blocks are extended by a final LSTM
layer for a total of three BiLSTM layers with
the same total downsampling of 4 as Weiss et al.
(2017) and Bansal et al. (2018a). These blocks
give us the benefit of added depth with fewer pa-
rameters.

A.2 Training Procedure

We follow the training procedure from Sperber
et al. (2018). The model uses variational recurrent
dropout with probability 0.2 and target charac-
ter dropout with probability 0.1 (Gal and Ghahra-
mani, 2016). We apply label smoothing (Szegedy
et al., 2016) and fix the target embedding norm to
1 (Nguyen and Chiang, 2018). For inference, we
use a beam size of 15 and length normalization
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with exponent 1.5. We set the batch size dynami-
cally depending on the input sequence length such
that the average batch size was 36. We use Adam
(Kingma and Ba, 2015) with initial learning rate of
0.0003, decayed by 0.5 when validation BLEU did
not improve over 10 epochs initially and 5 epochs
after the first decay. We do not use L2 weight
decay or Gaussian noise, and use a single model
replica. All models use the same preprocessing as
previous work on this dataset: lowercasing and re-
moving punctuation aside from apostrophes. We
use input feeding (Luong et al., 2015), and we ex-
clude utterances longer than 1500 frames to man-
age memory requirements.


