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Abstract

Morphological tagging is challenging for mor-
phologically rich languages due to the large
target space and the need for more train-
ing data to minimize model sparsity. Di-
alectal variants of morphologically rich lan-
guages suffer more as they tend to be more
noisy and have less resources. In this pa-
per we explore the use of multitask learning
and adversarial training to address morpho-
logical richness and dialectal variations in the
context of full morphological tagging. We
use multitask learning for joint morphological
modeling for the features within two dialects,
and as a knowledge-transfer scheme for cross-
dialectal modeling. We use adversarial train-
ing to learn dialect invariant features that can
help the knowledge-transfer scheme from the
high to low-resource variants. We work with
two dialectal variants: Modern Standard Ara-
bic (high-resource “dialect’!) and Egyptian
Arabic (low-resource dialect) as a case study.
Our models achieve state-of-the-art results for
both. Furthermore, adversarial training pro-
vides more significant improvement when us-
ing smaller training datasets in particular.

1 Introduction

Morphological tagging for morphologically rich
languages (MRL) involves modeling interdepen-
dent features, with a large combined target space.
Joint modeling of the different features, through
feature concatenation, results in a large target
space with increased sparsity. Whereas total sep-
aration of the different feature models eliminates
access to the other features, which constrains the
model. These issues are further exacerbated for di-
alectal content, with many morphosyntactic varia-
tions that further complicate the modeling.

'We view Arabic as a collective of dialectal variants in
which MSA is the main high-resource dialect, and EGY is

a low-resource dialect. We therefore use “variant” and “di-
alect” interchangeably.

In this paper we work with Modern Standard
Arabic (MSA) and Egyptian Arabic (EGY), both
MRLs, and dialectal variants. Woritten Arabic
text is also highly ambiguous, due to its diacritic-
optional orthography, resulting in several interpre-
tations of the same surface forms, and further in-
creasing sparsity. Joint modeling is particularly
promising for such ambiguous nature as it sup-
ports identifying more complex patterns involving
multiple features. In EGY, for example, the suf-
fix U nA ‘we, us, our” in the word \w > drsnA can
be the subject of the perfective 1st person plural
verb (‘we studied’), the 1st person plural object
clitic of a perfective 3rd person masculine singu-
lar verb (‘he taught us’), or the 1st person plural
possessive pronoun for the nominal (‘our lesson’),
among other possible interpretations.

Morphological tagging models rely heavily
on the availability of large annotated training
datasets. Unlike MSA, Arabic Dialects are gen-
erally low on resources. In this paper we also
experiment with knowledge-transfer models from
high to low-resource variants. The similarities be-
tween the Arabic variants, both for MSA and Di-
alectal Arabic (DA), like EGY, should facilitate
knowledge-transfer, making use of the resources
of the high-resource variants. We use multitask
learning architectures in several configurations for
cross-dialectal modeling. We further investigate
the best approaches and configurations to use word
and character embeddings in the cross-dialectal
multitask learning model, and whether mapping
the various pretrained word embedding spaces is
beneficial. Despite having several contributions
in the literature, the role of mapped embedding
spaces has not been studied in the context of joint
morphological modeling of different dialects.

Finally, we use adversarial training to learn
dialect-invariant features for MSA and EGY. The
intuition is to make the modeling spaces for both
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variants closer to each other, which should facili-
tate the knowledge-transfer scheme from the high-
resource (MSA) to the low-resource (EGY) sides.

Our models achieve state-of-the-art morpholog-
ical disambiguation results for both MSA and
EGY, with up to 10% relative error reduction. Ad-
versarial training proved more useful when us-
ing a smaller EGY training datasets in particu-
lar, simulating lower-resource settings. The con-
tributions of the paper include (1) a joint multi-
feature and cross-dialectal morphological disam-
biguation model for several MRL variants, (2) ad-
versarial training for cross-dialectal morphologi-
cal knowledge-transfer.

2 Linguistic Motivation

MRLs, like Arabic, have many morphemes that
represent several morphological features. The tar-
get space for the combined morphological features
in MRLs therefore tends to be very large. MRLs
also tend to have more inflected words than other
languages. MRLs also usually have a higher de-
gree of ambiguity, with different interpretations of
the same surface form. In Arabic, this ambiguity is
exacerbated by the diacritization-optional orthog-
raphy, which results in having about 12 analyses
per word on average (Habash, 2010).

One approach to model morphological richness
and ambiguity is to use morphological analyzers,
which are used to encode all potential word in-
flections in the language. The ideal morphological
analyzer should return all the possible analyses of
a surface word (modeling ambiguity), and cover
all the inflected forms of a word lemma (model-
ing morphological richness). The best analysis is
then chosen through morphological disambigua-
tion, which is essentially part-of-speech tagging
for all the features in addition to lemma and di-
acritized form choices.

MSA is the written Arabic that is mainly used in
formal settings. DA, like EGY, on the other hand,
is the primarily spoken language used by native
Arabic speakers in daily exchanges. DA has re-
cently seen an increase in written content, due to
the growing social media use in the region. DA,
similar to MSA, is also morphologically rich, with
a high degree of ambiguity. DA spans many Ara-
bic dialects that are used across the Arab World,
and they vary by the regions and cities they are
used in (Bouamor et al., 2018). The large number
of DA variants, along with it being mainly spoken,

result in DA being usually low on resources.

MSA and DA have many morphological, lexi-
cal and syntactic similarities that a cross-dialectal
model can leverage (Habash et al., 2012). DA has
many MSA cognates, both MSA and DA use the
same script, and DA content in general includes
a lot of code-switching with MSA.?> These sim-
ilarities can be useful in a joint learning model,
enabling a knowledge-transfer scheme, especially
from the high-resource to low-resource variants.

In this paper we focus on EGY as an example
of DA. The set of morphological features that we
model for both MSA and EGY can be:

e Open-Set Features: Lemmas (lex) and dia-
critized forms (diac), henceforth "lexicalized
features". These features are unrestricted and
have large and open vocabularies.

o Closed-Set Features: A set of 14 features, in-
cluding inflectional features and clitics, each
with a corresponding set of values/tags that
are predicted using taggers. The inflectional
features include: part-of-speech (POS), as-
pect (asp), case (cas), gender (gen), person
(per), number (num), mood (mod), state (stt),
voice (vox). The clitics include: enclitics,
like pronominal and negative particle encli-
tics; proclitics, like article proclitic, preposi-
tion proclitics, conjunction proclitics, ques-
tion proclitics.

Morphological disambiguation involves pre-
dicting the values for each of these features, then
using these predictions to rank the different analy-
ses from the morphological analyzer.

3 Background and Related Work

Joint Modeling in NLP Joint NLP modeling
in general has been an active area of research
throughout the past several years, supported by re-
cent updates in deep learning architectures. Mul-
titask learning models have been proven very use-
ful for several NLP tasks and applications, (Col-
lobert et al., 2011; Sggaard and Goldberg, 2016;
Alonso and Plank, 2017; Bingel and Se¢gaard,
2017; Hashimoto et al., 2017). Inoue et al. (2017)
used multitask learning for fine-grained POS tag-
ging in MSA. We extend their work by doing
cross-dialectal modeling and various contributions
for low-resource dialects.

2Although EGY, like DA in general, does not have a stan-
dardized orthography like MSA (Habash et al., 2018).
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Cross-Lingual Transfer Cross-lingual mor-
phology and syntax modeling has also been a very
active NLP research area, with contributions in
morphological reinflection and paradigm comple-
tion (Aharoni et al., 2016; Faruqui et al., 2016;
Kann et al., 2017), morphological tagging (Buys
and Botha, 2016; Cotterell and Heigold, 2017),
parsing (Guo et al., 2015; Ammar et al., 2016),
among others. Cotterell and Heigold (2017) used
multitask learning for multi-lingual POS tagging,
similar in spirit to our approach. Their architec-
ture, however, models the morphological features
in each language in a single task, where each
target value represents all morphological features
combined. This architecture is not suitable for
MRLs, with large target spaces.

Adversarial Domain Adaptation Inspired by
the work of Goodfellow et al. (2014), adversarial
networks have been used to learn domain invari-
ant features in models involving multiple domains,
through domain adversarial training (Ganin and
Lempitsky, 2015; Ganin et al., 2016). Adversar-
ial training facilitates domain-adaptation schemes,
especially in high-resource to low-resource adap-
tation scenarios. The approach is based on an ad-
versarial discriminator, which tries to identify the
domain of the data, and backpropagates the neg-
ative gradients in the backward direction. This
enables the model to learn shared domain fea-
tures. Adversarial domain adaptation has been
used in several NLP applications, including sen-
timent analysis (Chen et al., 2016), POS tagging
for Twitter (Gui et al., 2017), relation extraction
(Fu et al., 2017; Wang et al., 2018), among other
applications. As far as we know, we are the first to
apply adversarial domain adaptation in the context
of dialectal morphological modeling.

Arabic Morphological Modeling Morphologi-
cal modeling for Arabic has many contributions in
both MSA (Diab et al., 2004; Habash and Ram-
bow, 2005; Pasha et al., 2014; Abdelali et al.,
2016; Khalifa et al., 2016), and Dialectal Ara-
bic (Duh and Kirchhoff, 2005; Al-Sabbagh and
Girju, 2012; Habash et al., 2013). There were
also several neural extensions that show impres-
sive results (Zalmout and Habash, 2017; Zalmout
et al., 2018). These contributions use separate
models for each morphological feature, then apply
a disambiguation step, similar to several previous
models for Arabic (Habash and Rambow, 2005;

Pasha et al., 2014). Shen et al. (2016) use LSTMs
with word/character embeddings for Arabic tag-
ging. Darwish et al. (2018) use a CRF model for
a multi-dialect POS tagging, using a small anno-
tated Twitter corpus. Alharbi et al. (2018) also use
neural models for Gulf Arabic, with good results.

4 Baseline Tagging and Disambiguation
Architecture

In this section we present our baseline tagging and
disambiguation architectures. We extend this ar-
chitecture for joint modeling in the section that
follows.

4.1 Morphological Feature Tagging

We use a similar tagging architecture to Zalmout
et al. (2018), based on a Bi-LSTM tagging model,
for the closed-set morphological features. Given a
sentence of length L {wy, wo, ..., wp }, every word
wyj is represented by vector v;. We use two LSTM
layers to model the relevant context for each direc-
tion of the target word, using:

—

N

ﬁ
hj;=g(vj, hj1)

<
hj=g(v;. )

where h; is the context vector from the LSTM for
each direction. We join both sides, apply a non-
linearity function, output layer, and softmax for
a probability distribution. The input vector v; is
comprised of:

vj = [wjis;ial]

Where w; is the word embedding vector, s; is a
vector representation of the characters within the
word, and af is a vector representing all the can-
didate morphological tags (from an analyzer), for
feature f.

We pre-train the word embeddings with
Word2Vec (Mikolov et al., 2013), using a large ex-
ternal dataset. For the character embeddings vec-
tor s; we use an LSTM-based architecture, applied
to the character sequence in each word separately.
We use the last state vector as the embedding rep-
resentation of the word’s characters.

The morphological feature vector a;c embeds
the candidate tags for each feature. We use a
morphological analyzer to obtain all possible fea-
ture values of the word to be analyzed, embed the
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Figure 1: The overall tagging architecture, with the in-
put vector as the concatenation of the word, characters,
and candidate tag embeddings.

values using a feature-specific embedding tensor,
then sum all the resulting vectors for each feature:

Ny
f_ f
a; = Za',n
n=1

Where Ny is the maximum number of possible
candidate tags for the word j (from the analyzer),
for feature f. We sum the vectors because the tags
are alternatives, and do not constitute a sequence.

The a;.c vector does not constitute a hard con-
straint and can be discarded if a morphological
analyzer is not used. Figure 1 shows the overall
tagging architecture.

4.2 Lemmatization and Diacritization

The morphological features that are non-lexical,
like POS, gender, number, among others, are han-
dled by the model presented so far, using the mul-
titask learning architecture. Lexical features, like
lemmas and diacritized forms, on the other hand,
are handled with neural language models, as pre-
sented by Zalmout and Habash (2017) and Zal-
mout et al. (2018). The lexical features are more
difficult to model jointly with the non-lexical fea-
tures, as they have large target spaces, and model-
ing them as classification tasks is not feasible.

4.3 Full Morphological Disambiguation

The predicted feature values for each word,
whether from the tagger or the language models,
can be returned directly if we do not use a mor-
phological analyzer, without an explicit ranking
step. If a morphological analyzer is used, the
disambiguation system selects the optimal anal-
ysis for the word from the set of analyses re-

turned by the morphological analyzer. We use
the predicted feature values from the taggers and
language models to rank the analyses, and se-
lect the analysis with highest number of matched
feature values. We also use weighted matching;
where instead of assigning ones and zeros for the
matched/mismatched features, we use a feature-
specific matching weight. We replicate the mor-
phological disambiguation pipeline presented in
earlier contributions (Zalmout and Habash, 2017,
Zalmout et al., 2018), and use the same parameter
values and feature weights.

5 Multitask Learning Architecture

Most of the previous approaches for morpholog-
ical tagging in Arabic learn a separate model for
each morphological feature, and combine the pre-
dicted tags for disambiguation (Pasha et al., 2014;
Zalmout and Habash, 2017; Zalmout et al., 2018).
This hard separation eliminates any knowledge
sharing among the different features when train-
ing and tagging. Joint learning, through param-
eter sharing in multitask learning, helps prune the
space of target values for some morphological fea-
tures, and reduce sparsity. The separation of the
morphological models is also inefficient in terms
of execution complexity. Training 14 different
models, and running them all during runtime, is
very wasteful in terms of execution time, memory
footprint, and disk space.

Multitask learning is particularly useful in tasks
with relatively complementary models, and usu-
ally involves primary and auxiliary tasks. We use
multitask learning for joint training of the various
morphological features. We extend the morpho-
logical tagging architecture presented at the previ-
ous section into a multitask learning model. We
learn the different morphological features jointly
through sharing the parameters of the hidden lay-
ers in the Bi-LSTM network. The input is also
shared, through the word and character embed-
dings. We also use a unified feature-tags vector
representation for all features, through concatenat-

ing the aj.c vectors for each feature of each word:

a; = [P’ . a

num., . g VoT
ARV a;

;.ialo]

The output layer is separate for each morpho-
logical feature, with separate softmax and argmax
operations. The loss function is the average of the
individual feature losses, which are based on min-
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| Bi-LSTM

Figure 2: The multitask learning architecture, having
separate output layers for each feature.

imizing cross entropy H for each feature f:

. 1 R
H(T,T) = 7| > H(ty tg)
feFr

Where T represents the combined morphologi-
cal tags for each word, and F' is the set of features
{pos, asp, ..., vox}. Figure 2 shows the overall ar-
chitecture for tagging using multitask learning.

6 Cross-Dialectal Model

Joint morphological modeling of high-resource
and low-resource languages can be very benefi-
cial as a knowledge-transfer scheme. Knowledge-
transfer is more viable for languages that share
linguistic similarities. In the context of DA, the
linguistic similarities between MSA and the di-
alects, along with the MSA cognates common in
DA, should allow for an efficient transfer model.
We train the model through dividing the datasets
of each variant into batches, and running one
variant-specific batch at a time. We introduce var-
ious extensions to the multitask learning architec-
ture for cross-dialectal modeling. These include
sharing the embeddings for the pretrained word
embeddings and character embeddings, sharing
the output layers for the different features, and ad-
versarial training as a form of dialect adaptation.
The decisions of shared vs joint modeling through-
out the various architecture choices will also affect
the size of the model and number of parameters.

6.1 Shared Embeddings

Pretrained embeddings have been shown to be
very beneficial for several NLP tasks in Arabic
(Zalmout and Habash, 2017; Erdmann et al., 2018;
Watson et al., 2018). In the context of joint mod-
eling of different variants, pretrained embeddings

can either be learnt separately or jointly, with sev-
eral different configurations that include:

e Separate embedding spaces, through separate
models for the different dialects, trained on
separate datasets.

e Merged embedding datasets, by merging the
datasets for the different dialects and train a
single embedding model. This approach is
viable because the different Arabic variants
use the same script, and DA usually involves
a lot of code-switching with MSA.

e Mapped embedding spaces, by training sep-
arate models for each dialect, then mapping
the embedding spaces together.

We use VECMAP (Artetxe et al., 2016, 2017) to
map the embedding spaces of the different variants
(MSA and DA). VECMAP uses a seed dictionary to
learn a mapping function that minimizes the dis-
tances between seed dictionary unigram pairs.

In addition to shared word embeddings, the
character-level embeddings can also be learned
separately or jointly. We do not use pretrained em-
beddings for the characters, and the embeddings
are learnt as part of the end-to-end system.

6.2 Shared Output Layers

In the multitask learning architecture, each of the
different morphological features needs a separate
output layer. In our experiments with Arabic, we
are modeling 14 morphological features, which re-
quires 14 output layers. For cross-dialectal mod-
eling, we can have separate output layers for each
dialect, which results in 28 output layers for MSA
and EGY. Another design choice in this case is
to share the output layers between the different di-
alects, regardless of how many dialects are mod-
eled jointly, with 14 shared output layers only.
Despite the morphological features being sim-
ilar across the dialects, the target space for each
feature might vary slightly for each dialect (as in
proclitics and enclitics). In the case of shared out-
put layers, we have to merge the target space val-
ues for the features of the different dialects, and
use this combined set as the target vocabulary.

6.3 Adversarial Dialect Adaptation

Similar to adversarial domain adaptation, the goal
of the adversarial dialect adaptation approach is
to learn common features for the different di-
alects through an adversarial discriminator. Learn-
ing dialect-invariant features would facilitate a
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richer knowledge-transfer scheme from the high-
resource to the low-resource variants, since they
are both modeled in the same invariant space.
Adversarial adaptation can make use of a large
annotated dataset from the high-resource dialect,
unlabeled low-resource dialect data, and a small
annotated low-resource dialect dataset. Adver-
sarial adaptation learns dialect invariant features
through backpropagating the negative gradients in
the backward direction for the discriminator. The
backward/forward propagation is managed by the
Gradient Reversal Layer. Figure 3 shows the ar-
chitecture with the discriminator task.

Gradient Reversal Layer Presented by Ganin
and Lempitsky (2015), the gradient reversal layer
(GRL) passes the identity function in the forward
propagation, but negates the gradients it receives
in backward propagation, i.e. g(F'(x)) = F(z) in
forward propagation, but Ag(F'(z)) = —AAF(x)
in backward propagation. A is a weight parameter
for the negative gradient, which can have an up-
date schedule. X is used to control the dissimilarity
of features at the various stages of training. It can
be small at the beginning of training to facilitate
better morphological modeling, then increased to
learn domain invariant features later on.

f{lzalcct fﬁiulect

| Bi-LSTM |

Figure 3: The adversarial adaptation architecture, with
a discriminator task that backpropagates negative gra-
dients using the Gradient Reversal Layer (GRL).

Training Process For each of the training
batches, we populate half of the batch with sam-
ples from the morphologically labeled data, and
the other half with the unlabeled data. The model
calculates the morphological tagging loss for the
first half, and the discriminator loss with the other,
and optimizes for both jointly.

7 Experiments and Results

In this section we first discuss the datasets that we
use, along with the experimental setup for the vari-
ous experiments. We then discuss the results of the
different models, using the full training datasets,
and a learning curve over the EGY dataset, to sim-
ulate low-resource settings.

7.1 Data

Labeled Data For MSA we use the Penn Ara-
bic Treebank (PATB parts 1, 2, and 3) (Maamouri
et al., 2004). For EGY, we use the ARZ Tree-
bank (ARZTB) annotated corpus from the Lin-
guistic Data Consortium (LDC), parts 1, 2, 3, 4,
and 5 (Maamouri et al., 2012). The annotation
process and features are similar to those of MSA.
We follow the data splits recommended by Diab
et al. (2013) for training, development, and test-
ing, for both MSA and EGY. Table 1 shows the
data sizes. Throughout the different experiments
in this paper, the DEV TEST dataset is used during
the system development to assess design choices.
The BLIND TEST dataset is used after finalizing
the architecture, to evaluate the system and present
the overall results. We use Alif/Ya and Hamza nor-
malization, and we remove all diacritics (besides
for lemmas and diacritized forms) for all variants.

[ [ TRAIN | DEV TEST [ BLIND TEST |

MSA | 503K 63K 63K
EGcy 134K 21K 20K

Table 1: Word count statistics for MSA and EGY.

The morphological analyzers that we use in-
clude SAMA (Graff et al., 2009) for MSA, and a
combination of SAMA, CALIMA (Habash et al.,
2012), and ADAM (Salloum and Habash, 2014)
for EGY, as used in the MADAMIRA (Pasha et al.,
2014) system.

Unlabeled Data The pretrained word embed-
dings for MSA are trained using the LDC’s Gi-
gaword corpus (Parker et al., 2011). For EGY we
use about 410 million words of the Broad Opera-
tional Language Translation (BOLT) Arabic Fo-
rum Discussions (Tracey et al., 2018). We use
the MADAR corpus (Bouamor et al., 2018) as the
seed dictionary for embedding space mapping. We
use the EGY data from the work by Zbib et al.
(2012) as the unlabeled corpus for EGY.
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7.2 Experimental Setup

Tagging Architecture We use two hidden lay-
ers of size 800 for the Bi-LSTM network (two for
each direction), and a dropout wrapper with keep
probability of 0.7, and peephole connections. We
use Adam optimizer (Kingma and Ba, 2014) with
a learning rate of 0.0005, and cross-entropy cost
function. We run the various models for 70 epochs
(fixed number of epoch since we use dropout).
The LSTM character embedding architecture uses
two LSTM layers of size 100, and embedding size
50. We use Word2Vec (Mikolov et al., 2013) to
train the word embeddings. The embedding size
is 250, and the embedding window is of size two.

Adversarial Adaptation For the adversarial
adaptation experiments we first observed that the
average sentence length in the unlabeled EGY
dataset is very short compared to the MSA dataset
(5 words per sentence for the unlabeled dataset,
and 31 words per sentence for MSA). The dif-
ference in sentence length results in the unla-
beled EGY dataset being four times the number
of batches compared to MSA, for the same num-
ber of tokens, and the model was not converging.
We therefore use a minimum sentence length of
14 words for the unlabeled dataset, which results
in about 9K sentences (~185K tokens). We also
found that a constant A value of one performed
better than scheduling the value starting from zero.

Metrics The evaluation metrics we use include:

e POS accuracy (POS): The accuracy of the
POS tags, of a tagset comprised of 36 tags
(Habash et al., 2013).

e The non-lexicalized morphological features
accuracy (FEATS): The accuracy of the com-
bined 14 closed morphological features.

e Lemmatization accuracy (LEMMA): The ac-
curacy of the fully diacritized lemma.

e Diacritized forms accuracy (DIAC): The ac-
curacy of the diacritized form of the words.

e Full Analysis Accuracy (FULL):  The
overall accuracy over the full analysis;
FEATS (including POS)+LEMMA+DIAC,
which is the strictest evaluation approach.

Baselines The baselines are based on separate
models for the different features. The first base-
line is MADAMIRA (Pasha et al., 2014), which
is a popular morphological disambiguation tool

for Arabic. MADAMIRA uses SVM taggers
for the different non-lexical features, and n-gram
language models for the lemmas and diacritized
forms. We also use the neural extensions of
MADAMIRA (Zalmout and Habash, 2017; Zal-
mout et al., 2018), which are based on a similar
architecture, but use LSTM taggers instead of the
SVM models, and LSTM-based language models
instead of the n-gram models.

7.3 Results

To evaluate the performance of the knowledge-
transfer scheme, we present the results in two
parts. The first presents the results for the full
MSA and EGY datasets, evaluating the accuracy
of the various architecture configurations. We then
present the results of a learning curve over the
size of the EGY training dataset, modeling various
degrees of low-resource performance. The goal
is to assess the multitask learning and adversar-
ial training models in particular, and the degree of
knowledge-transfer, which should be more helpful
when the size of the EGY training data is lower.

7.3.1 Joint Morphological Modeling

Table 2 shows the results of the joint modeling of
MSA and EGY. Based on the results, we make the
following observations:

Multi-Feature Modeling The results for the
multi-feature models show consistent and signif-
icant improvement compared to the separate mod-
els for each feature, especially for MSA. This sup-
ports the assumption that multi-feature modeling
can identify more complex patterns involving mul-
tiple features, that separate models cannot.

Cross-Dialectal Modeling: Merged Training
Data vs Multitask Learning For the cross-
dialectal MSA and EGY models, we first experi-
ment with merging the training datasets for both,
and train a single model over the merged datasets.
This model is a simple baseline for the cross-
dialectal models, but imposes hard joint modeling
that might lead to some knowledge loss.

The results indicate that the multitask learning
architecture performs much better, especially for
MSA. The accuracy for POS tagging for EGY in
particular was higher or similar though. This is
probably because POS behaves very similarly in
both MSA and EGY, unlike other morphological
features that might converge slightly. So the added
MSA training samples were generally helpful.
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MODEL DEV TEST BLIND TEST
FULL [ FEATS [ DIAC [ LEX [ POS [ FULL [ FEATS [ DIAC [LEX [ POS
MADAMIRAwmsa (Pasha et al., 2014) 85.6 | 87.1 | 87.7 |96.3]97.1 | 85.6 | 87.3 | 87.6 |{96.3|97.0
MS Aeparate features (Zalmout and Habash, 2017) 904 | 923 | 924 1969|979 90.1 | 92.3 | 92.1 |96.6 | 97.8
MSAMTL:MSA 90.8 | 92.7 | 92.7 {969(97.9|| 90.8 | 93.0 | 92.5 |96.7|97.9
MSAwmsa+Ecy merged training datasets 90.1 | 919 | 91.8 {96.9]97.8 || 89.8 | 92.0 | 91.4 |96.5|97.7
MSAwmrL:MsA+Ecy mapped embedding spaces 90.6 | 925 | 924 |196.8|97.8 | 90.3 | 92.5 | 91.9 |96.5| 97.7
MSAwmTL:Msa+Ecy merged embedding corpora 91.1 | 93.0 | 929 969|979 | 91.0 | 93.2 | 92.6 |96.7 | 98.0
MSAMmrL:MsA+EGy Separate embedding spaces 91.2 | 93.1 | 929 |97.0|98.0 || 91.1 | 93.3 | 92.7 |96.7 | 98.0
+ shared output layers per feature 914 | 933 | 93.1 |97.0|98.0 || 91.2 | 934 | 92.8 | 96.8 | 98.0
+ shared character embeddings 91.2 | 93.1 | 93.0 {97.0]98.0 || 91.1 | 933 | 92.7 | 96.7|97.9
MSAwmTL:Msa+Ecy Adversarial Dialect Adaptation® | 91.3 | 93.2 | 93.0 | 97.0| 98.0 | 91.2 | 93.3 | 92.8 [96.7|97.9
MADAMIRAEGy (Pasha et al., 2014) 76.2 | 86.7 | 824 [86.4|91.7| 77.3 | 86.9 | 83.3 |87.3|91.8
EG Y separate features (Zalmout et al., 2018) 77.0 | 88.8 | 82.9 [87.6]929 | 78.0 | 88.8 | 83.6 | 87.8|93.3
EGYwmrL:Ecy 77.2 | 88.8 | 829 [87.6(93.1 || 78.1 | 88.8 | 83.5 |88.0|93.4
EGYwmsa+ecy merged training datasets 77.1 | 889 | 82.7 |87.6]93.5| 782 | 89.0 | 83.5 |88.0|93.8
EGYwmrL:Msa+Ecy mapped embedding spaces 76.7 | 88.3 | 82.6 |87.3]92.7 | 78.0 | 88.6 | 83.3 |87.8|93.3
EGYwmrL:Msa+Ecy merged embedding corpora 772 | 89.0 | 829 |87.7|93.1 | 78.1 | 88.9 | 83.5 |88.0|93.5
EGYwmrL:Msa+EGy separate embedding spaces 773 | 89.0 | 83.0 |87.7|93.1 || 784 | 89.2 | 83.7 |88.0|93.6
+ shared output layers per feature 77.4 | 89.1 | 83.0 |87.793.2 | 785 | 89.3 | 83.8 | 88.0|93.7
+ shared character embeddings 773 | 89.0 | 829 |87.7|93.2 | 782 | 89.1 | 83.6 |88.1|93.7
EGYwmrLmsa+Ecy Adversarial Dialect Adaptation* | 77.5 | 89.3 | 83.1 |87.7|93.3 | 78.6 | 89.4 | 83.8 |88.1|93.8

Table 2: Disambiguation results for joint MSA and EGY modeling. MTL is Multitask Learning. *Best adversarial

result was with merged embedding spaces.

Embedding Models Joint embedding spaces
between the dialects, whether through embedding
space mapping or through learning the embed-
dings on the combined corpus, did not perform
well. Using separate embedding models (whether
for word or character embeddings) for each dialect
shows better accuracy. Embedding models learn
properties and morphosyntactic structures that are
specific to the training data. Mapping the embed-
ding spaces likely results in some knowledge loss.
Unlike the adversarial training model though, at
which the merged embedding datasets model per-
formed better. This is expected since the goal of
adversarial training is to bring the overall feature
spaces closer to learn dialect-invariant features.

Shared Output Layers The results indicate that
using shared output layers for the different dialects
improves the overall accuracy. Shared output lay-
ers are more likely to learn shared morphosyntac-
tic structures from the other dialect, thus helping
both. Having separate layers wastes another joint
learning potential. The shared output layers fur-
ther reduce the size of the overall model.

Adversarial Dialect Adaptation The adversar-
ial adaptation experiments show slightly higher re-
sults for EGY, but very close results to the mul-
titask learning model for MSA. Since MSA is
resource-rich it is expected that adversarial train-
ing would not be beneficial (or even hurtful), as the

dialect-invariant features would hinder the full uti-
lization of the rich MSA resources. For EGY, we
expect that the knowledge-transfer model would
be more beneficial in lower-resource scenarios, we
therefore experiment with a learning curve for the
training dataset size in the next section.

7.3.2 Modeling Training Data Scarcity

MSA-EGY
EGY TRAIN SIZE EGY MTL [ ADV
2K (1.5%) 29.7 61.9 71.1
8K (6%) 62.5 73.5 78.3
16K (12%) 74.7 78.1 81.5
33K (25%) 80.7 81.6 83.5
67K (50%) 83.3 82.0 84.0
134K (100%) 84.5 85.4 85.6

Table 3: The results (FEATS) of the learning curve over
the EGY training dataset, for the EGY dataset alone,
multitask learning (MTL), and the adversarial training
(ADV). We do not use morphological analyzers here,
so the results are not comparable to Table 2.

Knowledge-transfer schemes are more valuable
in low-resource settings for the target language.
To simulate the behavior of the multitask and ad-
versarial learning architectures in such setting, we
train the model using fractions of the EGY train-
ing data. We reduce the training dataset size by a
factor of two each time. We then simulate extreme
scarcity, having only 2K EGY annotated tokens.

Low-resource dialects will have very limited
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or no morphological analyzers, so we also simu-
late the lack of morphological analyzers for EGY.
Since we are not using an EGY morphological an-
alyzer, we evaluate the models on the set of non-
lexicalized and clitics features only, without the
diacritized forms and lemmas. We also do not
perform an explicit disambiguation step through
analysis ranking, and we evaluate on the combined
morphological tags directly for each word.

Table 3 shows the results. Multitask learning
with MSA consistently outperforms the models
that use EGY data only. The accuracy almost dou-
bles in the 2K model. We also notice that the accu-
racy gap increases as the EGY training dataset size
decreases, highlighting the importance of joint
modeling with MSA in low-resource DA settings.
The adversarial adaptation results in the learning
curve further show a significant increase in ac-
curacy with decreasing training data size, com-
pared to the multitask learning results. The model
seems to be facilitating more efficient knowledge-
transfer, especially for the lower-resource EGY
experiments. We can also observe that for the
extreme low-resource setting, we can double the
accuracy through adversarial multitask learning,
achieving about 58% relative error reduction.

The results also indicate that with only 2K EGY
annotated tokens, and with adversarial multitask
learning with MSA, we can achieve almost the
same accuracy as 16K tokens using EGY only.
This is a significant result, especially when com-
missioning new annotation tasks for other dialects.

Error Analysis We investigated the results in
the learning curve to understand the specific ar-
eas of improvement with multitask learning and
adversarial training. We calculated the accura-
cies of each of the features, for both models, and
across all the dataset sizes. We observed that the
POS and Gender features benefited the most of the
joint modeling techniques. Whereas features like
Mood and Voice benefited the least. This is proba-
bly due to the relatively similar linguistic behavior
for POS and Gender in both MSA and EGY, un-
like Mood or Voice, which are less relevant to DA,
and can be somewhat inconsistent with MSA. The
improvement was consistent for both approaches,
and across the training data sizes, with POS hav-
ing almost 61% relative error reduction in the 2K
dataset with adversarial training, and Mood (the
least improving feature) of about 8%. And 8% for
POS, and 0% for Mood, in the full size dataset.

8 Conclusions and Future Work

In this paper we presented a model for joint mor-
phological modeling of the features in morpho-
logically rich dialectal variants. We also pre-
sented several extensions for cross-dialectal mod-
eling. We showed that having separate embedding
models, but shared output layers, performs the
best. Joint modeling for the features within each
dialect performs consistently better than having
separate models, and joint cross-dialectal model-
ing performs better than dialect-specific models.
We also used adversarial training to facilitate a
knowledge-transfer scheme, providing the best re-
sult for EGY, especially in lower-resource cases.
Our models result in state-of-the-art results for
both MSA, and EGY. Future work includes joint
and cross-dialectal lemmatization models, in addi-
tion to further extension to other dialects.
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