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Abstract

Prior researches suggest that neural machine
translation (NMT) captures word alignment
through its attention mechanism, however, this
paper finds attention may almost fail to cap-
ture word alignment for some NMT models.
This paper thereby proposes two methods to
induce word alignment which are general and
agnostic to specific NMT models. Experi-
ments show that both methods induce much
better word alignment than attention. This pa-
per further visualizes the translation through
the word alignment induced by NMT. In par-
ticular, it analyzes the effect of alignment er-
rors on translation errors at word level and its
quantitative analysis over many testing exam-
ples consistently demonstrate that alignment
errors are likely to lead to translation errors
measured by different metrics.

1 Introduction

Machine translation aims at modeling the seman-
tic equivalence between a pair of source and target
sentences (Koehn, 2009), and word alignment tries
to model the semantic equivalence between a pair
of source and target words (Och and Ney, 2003).
As a sentence consists of words, word alignment
is conceptually related to machine translation and
such a relation can be traced back to the birth
of statistical machine translation (SMT) (Brown
et al., 1993), where word alignment is the basis of
SMT models and its accuracy is generally helpful
to improve translation quality (Koehn et al., 2003;
Liu et al., 2005).

In neural machine translation (NMT), it is also
important to study word alignment, because word
alignment provides natural ways to understanding
black-box NMT models and analyzing their trans-
lation errors (Ding et al., 2017). Prior researches

*Work done while X. Li interning at Tencent Al Lab. L. Liu
is the corresponding author.

max.meng @cuhk.edu.hk

observed that word alignment is captured by NMT
through attention for recurrent neural network
based NMT with a single attention layer (Bah-
danau et al., 2014; Mi et al., 2016; Liu et al.,
2016; Li et al., 2018). Unfortunately, we surpris-
ingly find that attention may almost fail to capture
word alignment for NMT models with multiple at-
tentional layers such as TRANSFORMER (Vaswani
et al., 2017), as demonstrated in our experiments.
In this paper, we propose two methods to in-
duce word alignment from general NMT models
and answer a fundamental question that how much
word alignment NMT models can learn (§ 3).
The first method explicitly builds a word align-
ment model between a pair of source and tar-
get word representations encoded by NMT mod-
els, and then it learns additional parameters for
this word alignment model with the supervision
from an external aligner similar to Mi et al. (2016)
and Liu et al. (2016). The second method is more
intuitive and flexible: it is parameter-free and thus
does not need retraining and external aligner. Its
key idea is to measure the prediction difference of
a target word if a source word is removed, inspired
by Arras et al. (2016) and Zintgraf et al. (2017).
Experiments on an advanced NMT model show
that both methods achieve much better word align-
ment than the method by attention (§ 4.1). In addi-
tion, our experiments demonstrate that NMT cap-
tures good word alignment for those words mostly
contributed from source (CFS), while their word
alignment is much worse for those words mostly
contributed from target (CFT). This finding of-
fers a reason why advanced NMT models deliver-
ing excellent translation capture worse word align-
ment than statistical aligners in SMT, which was
observed in prior researches yet without deep ex-
planation (Tu et al., 2016; Liu et al., 2016).
Furthermore, we understand and interpret NMT
from the viewpoint of word alignment induced
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from NMT (§ 4.2). Unlike existing researches on
interpreting NMT by accessing few examples as
case study (Ding et al., 2017; Alvarez-Melis and
Jaakkola, 2017), we aim to provide quantitatively
analysis for interpreting NMT by accessing many
testing examples, which makes our findings more
general. To this end, we firstly compare the effects
of both approaches to interpreting NMT and find
the prediction difference is better for understand-
ing NMT. Consequently, we propose to quantita-
tively analyze the translation errors by using align-
ment from prediction difference. Since it is far
from trivial to measure the translation errors at
the word level, we design experiments by using
two metrics to detect translation errors. Our em-
pirical results consistently show that wrong align-
ment is more likely to induce the translation errors
meanwhile right alignment favors to encourage the
translation quality. Our analysis further suggest
that word alignment errors for CFS words are re-
sponsible for translation errors in some extent.
This paper makes the two-fold contributions:

e It systematically studies word alignment
from NMT and proposes two approaches to
induce word alignment which are agnostic to
specific NMT models.

e [t understands NMT from the viewpoint of
word alignment and investigates the effect
of alignment errors on translation errors via
quantitative analysis over many testing exam-
ples.

2 Preliminaries

2.1 Neural Machine Translation

Given a source sentence X = (X1, ,X|y|) and
a target sentence y = (yy,- - ,¥y|), NMT aims
at maximizing the following conditional probabil-
o, . 1

ities:

<

P(y|x):4 P(y; | y<i %)
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where y«; = (yy,...,y;_;) denotes a prefix of
y with length 7 — 1, and SZL is the final decod-
ing state of y,. Generally, the conditional distri-
bution P (yz- | sE ) is somehow modeled within an
"Throughout this paper, bold font such as x denotes a se-

quence while regular font such as x denotes an element
which may be a scalar x, vector & or matrix X.

encoder-decoder framework. In encoding stage,
the source sentence x is encoded as a sequence
of hidden vectors h by an encoder according
to specific NMT models, such as a multi-layer
encoder consisting of recurrent neural network
(RNN), convolutional neural network (CNN), or
self-attention layer. In decoding stage, each de-
coding state in I layer sé is computed as follows:

l -1 _l l 0
Si = f (Si 7S<iaci) 9 Si =Y, (2)

where [ € {1,..., L}, y; is the word embedding
of word y;, f is a general function dependent on
a specific NMT model, cﬁ is a context vector in
I™ layer, computed from h and sl<i according to
different NMT models. As the dominant models,
attentional NMT models define the context vec-

tor ¢! as a weighted sum of h, where the weight

-1 _1
i S<i

function. Due to the space limitation, we refer
readers to Bahdanau et al. (2014), Gehring et al.
(2017) and Vaswani et al. (2017) for the details on
the definitions of f and g.

aé =g (s h> is defined by a similarity

2.2 Alignment by Attention

Since the attention weight aé ; measures the sim-

ilarity between séil and hj, it has been widely
used to evaluate the word alignment between y,
and x; (Bahdanau et al., 2014; Ghader and Monz,
2017). Once an attentional NMT model has been
trained, one can easily extract word alignment A
from the attention weight o according to the style
of maximum a posterior strategy (MAP) as fol-
lows:

1 j=argmaxa,j
Am(a) = J’ s (3)
0 o/w

where A; ; = 1indicates y, aligns to x;. For NMT
models with multiple attentional heads attentional
layers as in Vaswani et al. (2017), we sum all at-
tention weights with respect to all heads to a single
« before MAP in equation 3.

3 Methods to Inducing Word Alignment

Although attention might obtain some word align-
ment as described in previous section, it is un-
known whether NMT models contain more word
alignment information than that obtained by at-
tention. In addition, the method using attention
is useful to induce word alignment for attentional
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NMT models, whereas it is useless for general
NMT models. In this section, in order to induce
word alignment from general NMT models, we
propose two different methods, which are agnostic
to specific NMT models.

3.1 Alignment by Explicit Alignment Model

Given a source sentence X, a target sentence y, fol-
lowing Liu et al. (2005) and Taskar et al. (2005),
we explicitly define a word alignment model as
follows:

exp (4 (x5, ;s W)

>jerexp (6 x5y W)

“4)
where 4§ (xj,y;; W) is a distance function
parametrized by W. Ideally, ¢ is able to include
arbitrary features such as IBM model 1 similar
to Liu et al. (2005). However, as our goal is not to
achieve the best word alignment but to focus on
that captured by an NMT model, we only consider
these features completely learned in NMT. Hence,
we define the

Pxjly; W)=

8 (x5, y: W) = (z;|hy) " W (yillsF), ()

where x; and y; are word embeddings of x; and
y; learned in NMT, h; is the hidden unit of x; in
the encoding network and s’ is the hidden unit of
y; in the decoding network, || denotes the concate-
nation of a pair of column vectors of dimension d,
and W is a matrix of dimension 2d x 2d.

The explicit word alignment model is trained by
maximizing the objective function with respect to
the parameter matrix W:

max E
w

Vj,i;A;§f =1

log P (x; |y;; W),  (6)

where Alr-]‘f‘f is the reference alignment between
x; and y; for a sentence pair x and y. As the
number of elements in W is up to one million
(i.e., (2 x 512)?), it is not feasible to train it us-
ing a small dataset with gold alignment. There-
fore, following Mi et al. (2016) and Liu et al.
(2016), we run statistical word aligner such as
FAST ALIGN (Dyer et al., 2013) on a large corpus
and then employ resulting word alignment as the
silver alignment A™' for training. Note that our
goal is to quantify word alignment learned by an
NMT model, and thus we only treat W as the pa-
rameter to be learned, which differs from the joint

training all parameters including those from NMT
models as in Mi et al. (2016) and Liu et al. (2016).

After training, one obtains the optimized W
and then easily infers word alignment for a
test sentence pair (x,y) via the MAP strategy
as defined in equation 3 by setting «;j =
P (xj/ | yis W)

Note that if word embeddings and hidden units
learned by NMT models capture enough informa-
tion for word alignment, the above method can ob-
tain excellent word alignment. However, because
the dataset for supervision in training definitely
include some data intrinsic word alignment infor-
mation, it is unclear how much word alignment is
only from NMT models. Therefore, we propose
the other method which is parameter-free and only
dependent on NMT models themselves.

3.2 Alignment by Prediction Difference

The intuition to this method is that if y, aligns
to x;, the relevance between y; and x; should be
much higher than that between y, and any other
X with k = j. Therefore, the key to our method
is that how to measure the relevance between y;,
and x;.

Sampling method Zintgraf et al. (2017) pro-
pose a principled method to measure the relevance
between a pair of tokens in input and output. It is
estimated by measuring how the prediction of y;,
in the output changes if the input token x; is un-
known. Formally, the relevance between y; and x;
for a given sentence pair (x,y) is defined as fol-
lows:

R(yzaxj) = P<y7, ’ y<iax) - P (yZ ‘ Y<iax\j) )
(7)
with

P (Yi | Y<i,X\j)
= ZP (X | y<iaX(j,®)) P (Yi | y<iax(j7x))

~E o p) [P (Vi | yeisX(in)] (®)

where x; vy denotes the sequence by replacing x;
with x in x, particularly X(; &) denotes the se-
quence by removing x; from x, P(y; | y<i,X)
is defined in equation 1 and P (x | y<is X(j7@)) is
approximated by the empirical distribution P(x),
which can be considered as the 1-gram language
model for the source side of the training corpus.
Unlike a computer vision task in Zintgraf et al.
(2017), the size of source vocabulary in NMT is
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up to 30000 and thus summation over this large
vocabulary is challenging in computational effi-
ciency. As aresult, we only sample multiple words
to approximate the expectation in equation 8 by
Monte Carlo (MC) approach.

Deterministic method Inspired by the idea of
dropout (Srivastava et al., 2014), we measure the
relevance by disabling the connection between x;
and the encoder network in a deterministic way.
Formally, R (y;, X;) is directly defined via dropout
effect on x; as follows:

R(y;,xj) = P(y; | y<i»x)—P (yi ‘ Y<i>X(j,0)) )

©)
where x(; ) denotes the sequence by replacing x;
with a word whose embedding is a zero vector. In
this way, the computation in equation 9 is much
faster than the Monte Carlo sampling approach in-
volving multiple samples. It is worth mentioning
that equation 9 resembles the Monte Carlo sam-
pling approach with a single sample in calculation,
but it is significantly better than MC with a sin-
gle sample in alignment quality and is very close
to MC approach with enough samples, as to be
shown in our experiments.

Note that the relevance R(y;, x;) € [—1,1],
where R(y;,x;) = 1 means i" target word
is totally determined by the ;™ source word;
R(y;,xj) = —1 means i target word and j®
source word are mutual exclusive; R(y;,x;) = 0
means ;" source word do not affect generating i
target word. To obtain word alignment for a given
sentence pair (x,y), after collecting R(y;,X;) one
can easily infer word alignment via the MAP strat-
egy as defined in equation 3 by setting «; jy =

R(Yl’ Xj/)'

Remark The above R(y;,X;) in equation 7
quantifies the relevance between a target word y,
and a source word x;. Similarly, one can quantify
the relevance between y; and its history word y,,
as follows:

Ro (y;yi) = Py | y<inx)—P (yi | Y<z‘(k,0)>X) )

(10)
where R, indicates the relevance between two tar-
get words y; and y, with & < ¢, and P(y; |
Y<i(k,0)1 x) is obtained by disabling the connec-
tion between y; and the decoder network, simi-
larly to P (y; | y<i, X(j0)). Unlike R(y;,x;) cap-
turing word alignment information, R,(y;,y}) i8
able to capture word allocation in a target sentence

and it will be used to answer a fundamental ques-
tion why NMT models yields better translation yet
worse word alignment compared with SMT in sec-
tion of experiments.

4 Experiments

In this section, we conduct extensive experi-
ments on ZH=EN and DE=-EN translation tasks
to evaluate different methods for word align-
ment induced from the NMT model and com-
pare them with a statistical alignment model FAST
ALIGN (Dyer et al., 2013). Then, we use the in-
duced word alignment to understand translation
errors both qualitatively and quantitatively.

The alignment performance is evaluated by
alignment error rate (AER) (Mihalcea and Ped-
ersen, 2003; Koehn, 2009). The proposed
methods are implemented on top of TRANS-
FORMER (Vaswani et al., 2017) which is a state-of-
the-art NMT system. We report AER on NISTOS
test set and RWTH data, whose reference align-
ment was manually annotated by experts (Liu
et al., 2016; Ghader and Monz, 2017). More de-
tails on data and training these systems are de-
scribed in Appendix A.

4.1 Inducing Word alignment from NMT

Attention Since the bilingual corpus intrinsi-
cally includes word alignment in some extent,
word alignment by attention should be better than
the data intrinsic alignment if attention indeed cap-
tures alignment. To obtain the data intrinsic word
alignment, we calculate pointwise mutual infor-
mation (PMI) from the bilingual corpus and then
infer word alignment for each bilingual sentence
by using the MAP strategy as in equation 3. 2

It is astonishing that word alignment by atten-
tion is inconsistent for different layers of TRANS-
FORMER, although attention in a single layer
TRANSFORMER obtains decent word alignment.
Referring to Figure 1, for models more than two
layers, alignment captured by attention on mid-
dle layer(s) is reasonable, but that on low or high
layer is obviously worse than PMI. The possible
reasons can be explained as follows. The possible
functionality of lower layers might be constructing
gradually better contextual representation of the
word at each position as suggested in recent con-
textualized embedding works (Peters et al., 2018;
Devlin et al., 2018; Radford et al., 2019). So

2 More details in Appendix B.
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Figure 1: AER of attention at each layer on TRANSFORMER with different number of layers. AER of PMI is
shown as white. Blue and red means AER is better and worse than PMI respectively.

the AERs become better while more unambigu-
ous representations of the corresponding word are
formed. However, for higher layers the represen-
tational redundancy is accumulated (Voita et al.,
2019; Michel et al., 2019) for phrases or other
larger meaning spans in the input, so attention is
not capturing word-to-word align but more com-
plicated semantic correspondence.

Methods Tasks
ZH=EN | DE=EN
FAST ALIGN 36.57 26.58
Attention ™" 56.44 74.59
Attention ™' 45.22 53.98
EAM 38.88 39.25
PD 41.77 42.81

“ Results are measured on TRANSFORMER-L6.

Table 1: AER of the proposed methods.

Models TRANSFORMER
L1 L2 L3 L4 L5 L6
AER | 54.50 | 47.94 | 40.47 | 38.40 | 38.80 | 38.88
BLEU | 36.51 | 44.83 | 45.63 | 47.19 | 46.35 | 46.95

* Results are measured on ZH=>EN task.

Table 2: EAM on translation models with different
number of layer.

Explicit Alignment Model (EAM) As shown
in Table 1, EAM outperforms alignment induced
from attention by a large margin. However, since
EAM employs silver alignment annotations from
FAST ALIGN for training the additional param-
eters, its final AER includes contributions from
both the aligned data and the model. To elimi-
nate contribution from the data, we investigate the

AERs over different pre-trained translation models
with their EAMs trained on the same FAST ALIGN
annotated data. We find that a stronger (higher
BLEU) translation model generally obtains bet-
ter alignment (lower AER). As shown in Table 2,
TRANSFORMER-L6 generates much better align-
ment than TRANSFORMER-L1, highly correlated
with their translation performances. This sug-
gests that supervision is not enough to obtain
good alignment and the hidden units learned by a
translation model indeed implicitly capture align-
ment knowledge by learning translation. In addi-
tion, EAM can be thought as a kind of agnostic
probe (Belinkov et al., 2017; Hewitt and Manning,
2019) to investigate how much alignment are im-
plicitly learned in the hidden representations.

Prediction Difference (PD) As shown in Ta-
ble 1, PD also delivers better word alignment than
attention. PD can be implemented by sampling
method or deterministic method. As shown in
Table 3, the alignment performance of sampling
method is improving as growing of the sample
size, because the accuracy of Monte Carlo ap-
proach is dependent on the number of samples.
And no matter what sample size is, the variance
of AER is always ignorable. The reason might
be that the arg max operation in equation 3 elim-
inates the fluctuation of probability matrix. Al-
though using large sample size can achieve nice
alignment performance, it is costly in computa-
tion. Fortunately, the deterministic method, which
employs a single zero embedding rather than em-
bedding of random words, can also achieve nice
alignment performance with the same computa-
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Methods Sampling method Deterministic method
Sample size 1 2 4 20 50
AER 44.92 43.30 42.42 41.83 41.73 41.77
Variance | 0.004 | <107° | <107° | <107° | <107° N/A

* Results are measured on TRANSFORMER-L6 and ZH=>EN task

Table 3: Comparison between sampling and deterministic methods for prediction difference.

tional. One possible reason is that using zero em-
bedding in inference is exactly the same way as
dropout in training, making the trained parameters
perform well in inference. In the rest of this paper,
we employ the deterministic version as the default
for PD in this paper.

Alignment on CFT words It is well-known that
NMT outperforms SMT a lot in translation, and
thus it is natural to ask why NMT yields worse
alignment than the aligner FAST ALIGN in SMT,
as shown in Table 1. Because the probability of
a target word typically employs the mixed contri-
butions from both source and target sides, NMT
may capture good alignment for the target words
mostly contributed from source (CFS, such as con-
tent words) while bad alignment for the target
words mostly contributed from target (CFT, such
as function words). To this end, we divide the tar-
get words into two categories: for a given sentence
pair (x,y), CFS and CFT are formally defined as
two sets containing the target word y; satisfies fol-
lowing conditions respectively,

maXxex R(yw X) — MaXyey,; Ro(yi, y) > €,

maxyey_; Ro(y;,y) — maxgex R(y;,X) > €,
(11)
where € € [0,1) is a probability margin between
CFS and CFT words.

After dividing the target words into two cate-
gories of CFS and CFT words according to the
criterion defined above, 3 we evaluate alignment
performance for each category and the results are
shown in Table 4. We find that NMT indeed
captures better alignment for CFS words than the
alignment for CFT words, and FAST ALIGN gen-
erates much better alignment than NMT for CFT
words. Therefore, this fact indicates that CFT
words are the reason why NMT generate worse
alignment than FAST ALIGN.

3Without affecting main conclusions, ¢ = 0 in this experi-
ment for covering all words in analysis. Experiments with
different margins are in Appendix C.

Methods Target Tasks
Words | ZH=EN | DE=EN

ALL 41.77 42.81

PD CFS 32.97 33.86
CFT 63.28 65.24

ALL 38.88 39.25

EAM CFS 34.44 36.03
CFT 49.73 47.34

ALL 36.57 27.05

iSSGTN CFS 31.02 22.56
CFT 50.80 38.48

* For both tasks the ratio between CFS word count and CFT
word count is about 7 : 3.

Table 4: AER of CFS and CFT words.

Confidence-binned AER Since confidence can
reflect translation quality to some extent, we also
use the confidence of each target word (the predic-
tive probability) during forced decoding to group
the targets into ten bins and report the AER of
them in Figure 2. We can find the AER generally
decreases as the probability increases. This also
indicates that alignment analysis on real transla-
tion instead of ground truth may lead to more re-
liable conclusion since beam search always finds
high confidence candidates.

— PDIDE=EN
EAM:DE=EN
—— FADE=EN

55 — PDZH=EN
EAMZH=EN

— FAZH=EN

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Probability Probability

(a) ZH=EN (b) DE=EN

Figure 2: Confidence-binned AER on the two datasets.

4.2 Understanding NMT via PD Alignment

Which method is better for understanding?
Previous experiments mainly consider the align-
ment for the reference, and show that EAM is bet-
ter at aligning a reference word to source words
than PD. However, in order to better understand
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san xia gong chéng di xia dian zhan ji jlang kai gong jian she

=l T W (1 N 14

R: Three gorges project ’s underground powerhouse to

T: Three gorges project ’s underground powerhouse

(a) Forced Decoding Error

begin construction R: Basescu elected romanian president ,

ba xié s1 gi dang xuin lué ma ni ya zong tong chéu zi zhéng fi mian lin tido zhan

[RA%1 iy Bk B R pEC A HUF T Pk

challenge of forming goverment

start construction T: Romanian president elected to form goverment

(b) Real Decoding Error

Figure 3: Two examples of showing the translation errors caused by word alignment errors both in forced decoding

and real decoding on TRANSFORMER-L6.
alignment.

the translation process of a NMT model, it is help-
ful to analyze the alignment of real translations
derived from the NMT model itself. This is also
in accordance with the confidence-binned obser-
vation previously. The alignment of the real trans-
lation actually provides some insight on the causal
relationship among source and target words. To
obtain AER on real decoding, we manually an-
notate word alignment of the real translations for
200 source sentences randomly selected from the
ZH=-EN test set. As shown in Table 5, PD yields
better alignment for the real translation than EAM,
and we even surprisingly find that its alignment
performance is better than FAST ALIGN. * This
quantitative finding demonstrates PD is better for
understanding the real translation in general rather
than only for some special case.

Models AER

PD & TRANSFORMER-L6 20.44
EAM & TRANSFORMER-L6 | 29.77
FAST ALIGN 25.23

* Results are measured on sampled 200 sentences
of ZH=-EN task, and golden alignment for real
translation are human labeled (Appendix D)

Table 5: Alignment of Real Translation.

It is worth noting that EAM does not only
deliver worse word alignment for real transla-
tions than PD, but also be dangerous to under-
stand NMT through its word alignment. The
main reason is that EAM relies on an external
aligned dataset with supervision from statistical
word aligner FAST ALIGN, and thus the charac-
teristic of its alignment result are similar to that of
FAST ALIGN, leading to the understanding biased
to FAST ALIGN. In contrast, PD only relies on
prediction from a neural model to define the rele-
vance, it has been successfully used to understand
“The numbers in Table 5 are not comparable to those in Ta-
ble 1 and Figure 2, because they employ different trans-

lations in the target side leading to different ground-truth
alignments, which are crucial for evaluating alignment.

means wrong alignment while
means translation error. ‘R’ denotes reference sentence and ‘T’ denotes translation sentence.

means the golden

and interpret a neural model (Zintgraf et al., 2017).
Therefore, in the rest of this subsection, we try to
understand NMT by using PD both qualitatively
and quantitatively.

Analyze translation errors in forced decoding
We consider the forced decoding translation er-
ror as follows. We fix the translation history as
the prefix of the reference y_; at each timestep
¢ and then check whether the 1-best word y, =
argmax, P(yly;, x) is exactly y,;. If §; # y; we
say the NMT model makes an error decision at this
timestep. We give a case of this kind of error in
Figure 3(a). After visualizing the alignment of y,
by PD, we find that its alignment in red color is not
correct compared to the ground-truth alignment in
green color. As a result, the NMT model can not
capture the sufficient context to accurately predict
the reference word y, and thereby generates an in-
correct word ‘construction’.

Besides the case study, we try to quantitatively
interpret that alignment errors may lead to trans-
lation errors. To this end, we divide all timesteps
from the reference of the test dataset into two cat-
egories, i.e. one with right alignment and the
other with wrong alignment. Then we calculate
the forced decoding translation error rates for each
category, i.e. the ratio between the number of
timesteps making error decisions in one category
and the total number of timesteps, as depicted in
Table 6. From the table, it is clear that wrong
alignment is more likely to cause a translation er-
ror while correct alignment is likely to make a cor-
rect translation decision. Particularly, compared
with right alignment, when alignment is wrong,
the forced decoding translation error rate of CFS
words increases much more than CFT words (A).
This observation indicates word alignment errors
of CFS words are mainly responsible for transla-
tion errors instead of CFT words.
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zheng hé shi shi jie zht ming héng hai jia
g J 2 J

B2 MR EA AR B

[ A W R

Zheng he is

PATA

world famous navigator

(a) Gold Alignment

Figure 4: An example of word alignment and translation produced by TRANSFORMER-L6.
means the prediction is attributed to a target word. The word in
means wrong translation.

wrong alignment and
align to any source word, while

Tasks &ﬁg AliI;:gnl;tent AnVZfﬁ'egm A
ALL | 3487 4924 | 1437
ZH=EN | CES | 3534 5391 | 18.57
CFT | 3286 4399 | 1113
ALL | 2363 3564 | 1101
DE=EN | CFS | 2421 3825 | 14.04
CFT | 2640 3238 | 598

* Results are measured on TRANSFORMER-L6.

Table 6: Forced decoding translation error rate for
CFS/CFT words with right/wrong alignment.

Analyze translation errors in real decoding
Besides the forced decoding translation error, we
care more about search-aware statistics in real de-
coding. Specifically, we identify words in the ref-
erence which are recalled through the real trans-
lation, and those unrecalled words are called real
decoding translation errors defined as {y} \ {y}.
the difference between the two sets where {y} is
the set of words in y. As shown in the case in Fig-
ure 3(b), the identified translation error ‘faces’ is
wrongly aligned by PD to ‘ba xié si gii’, which
may strongly correlate to the under translation of
‘mian lin’ at the source side.

zheng hé shi shi jie zht ming héng hai jia
g J 2 J

o2 mE FEH

Zheng he is a world famous navigator

(b) Alignment to Source Side

Tasks 3;555; Aligilgrlrll:ent Al‘;:]gfl(::llegnt A
ALL 31.72 40.73 9.01
ZH=EN | CFS 31.03 41.44 10.41
CFT 34.67 39.92 5.25
ALL 23.84 40.09 16.25
DE=-EN | CFS 22.31 39.04 16.73
CFT 30.53 41.40 10.87

" Results are measured on TRANSFORMER-L6.

Table 7: Real decoding translation error rate for
CFS/CFT words with right/wrong alignment.

For quantitative analysis, the same as the forced
decoding, we split all target words into two parts,
i.e. right alignment and wrong alignment, and then
we evaluate the real decoding translation error rate

for each of them via 3=, [{y'} \ {3}/ X; Hy'}-

zheng hé shi shi jie zht ming héng hai jia

AR B2 R EA AR

A W A W B

Zheng is « world famous navigator

(c) Alignment with CFS & CFT

means
do not

As shown in Table 7, there is an obvious gap be-
tween the real decoding translation error of right
alignment and wrong alignment, which shows
alignment errors have adverse effect on translation
quality. For CFS and CFT words, Table 7 demon-
strates that alignment errors cause decreasing of
translation quality for both sets. Same as forced
decoding, the real decoding translation error are
also mainly attributed to CFS words. This sug-
gests improving the ability of learning word align-
ment for CFS words is potential to improve trans-
lation quality for neural machine translation.

Interpret Translation via CFT Alignment As
the translation error has been shown related to
the alignment error, the translation success can
also be understood by word alignment. Previ-
ous research (Ding et al., 2017; Alvarez-Melis
and Jaakkola, 2017) have attempted to interpret
the decision-making of translation by aligning tar-
get words to source words. However, there is
nonignorable amount of translated target words
are mostly contributed from target side instead of
source side.

As shown in Figure 4(a), as a functional word,
‘a’ should not be aligned to any source word.
However, in Figure 4(b) PD incorrectly aligned ‘a’
to ‘hdng hdi jia’ by only considering the contri-
butions from the source side, and this leads to a
misunderstanding for why ‘a’ is translated. For-
tunately, according to equation 11, PD is good at
distinguishing where the contributions come from
for both source and target sides. As shown in Fig-
ure 4(c), considering alignment of words in CFS,
‘a’ is superbly not aligned to any source word be-
cause it belongs to CFT and should be aligned to
‘is’, which explains why NMT correctly translates

[

a .

Although the ambiguous Chinese word ‘hé’
mostly means ‘and’, TRANSFORMER is able to
translate it perfectly as a given name ‘hé’ as shown
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in Figure 4(c). > The main reason is that NMT
captures the context of the surname ‘zheng’ by PD
over target side besides the context of ‘hé’ by PD
over source side, thanks to its more powerful lan-
guage model effect.

5 Related Work

In NMT, there are many notable researches which
mention word alignment captured by attention in
some extent. For example, Bahdanau et al. (2014)
is the first work to show word alignment exam-
ples by using attention in an NMT model. Tu
et al. (2016) quantitatively evaluate word align-
ment captured by attention and find that its quality
is much worse than statistical word aligners. Mo-
tivated by this finding, Chen et al. (2016), Mi et al.
(2016) and Liu et al. (2016) improve attention with
the supervision from silver alignment results ob-
tained by statistical aligners, in the hope that the
improved attention leads to better word alignment
and translation quality consequently. More re-
cently, there are also works (Alkhouli et al., 2018)
that directly model the alignment and use it to
sharpen the attention to bias translation. Despite
the close relation between word alignment and at-
tention, Koehn and Knowles (2017) and Ghader
and Monz (2017) discuss the differences between
word alignment and attention in NMT. Most of
these works study word alignment for the same
kind of NMT models with a single attention layer.
One of our contribution is that we propose model-
agnostic methods to study word alignment in a
general way which deliver better word alignment
quality than attention method. Moreover, for the
first time, we further understand NMT through
alignment and particularly quantify the effect of
alignment errors on translation errors for NMT.
The prediction difference method in this paper
actually provides an avenue to understand and in-
terpret neural machine translation models. There-
fore, it is closely related to many works on visual-
izing and interpreting neural networks (Lei et al.,
2016; Bach et al., 2015; Zintgraf et al., 2017). In-
deed, our method is inherited from (Zintgraf et al.,
2017), and our advantage is that it is computa-
tionally efficient particularly for those tasks with a
large vocabulary. In sequence-to-sequence tasks,
Ding et al. (2017) focus on model interpretabil-
ity by modeling how influence propagates across

31t is interesting that SMT (MOSES) incorrectly translates
this word into ‘and’ in our preliminary experiment.

hidden units in networks, which is often too re-
strictive and challenging to achieve as argued by
Alvarez-Melis and Jaakkola (2017). And instead,
Alvarez-Melis and Jaakkola (2017) concentrate on
prediction interpretability with only oracle access
to the model generating the prediction. To achieve
this effect, they propose a casual learning frame-
work to measure the relevance between a pair of
source and target words. Our method belongs
to the type of prediction interpretability similar
to Alvarez-Melis and Jaakkola (2017), but ours is
a unified and parameter-free method rather than
a pipeline and parameter-dependent one. In ad-
dition, both Ding et al. (2017) and Alvarez-Melis
and Jaakkola (2017) qualitatively demonstrate in-
terpretability by showing some sentences, while
we exhibit the interpretability by quantitatively
analyzing all sentences in a test set.

6 Conclusions and Future Work

This paper systematically studies the word align-
ment from NMT. It firstly reveals that attention
may not capture word alignment for an NMT
model with multiple attentional layers. There-
fore, it proposes two methods (explicit model and
prediction difference) to acquire word alignment
which are agnostic to specific NMT models. Then
it suggests prediction difference is better for un-
derstanding NMT and visualizes NMT from word
alignment induced by prediction difference. In
particular, it quantitatively analyzes that alignment
errors which are likely to lead to translation errors
at word level measured by different metrics. In the
future, we believe more work on improving CFS
alignment is potential to improve translation qual-
ity, and we will investigate on using source context
and target history context in a more robust manner
for better predicting CFS and CFT words.
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