
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1039–1048
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

1039

Global Optimization under Length Constraint for Neural Text
Summarization

Takuya Makino and Tomoya Iwakura
Fujitsu Laboratories, Ltd.

{makino.takuya,iwakura.tomoya}@fujitsu.com

Hiroya Takamura
AIST

takamura.hiroya@aist.go.jp

Manabu Okumura
Tokyo Institute of Technology
oku@pi.titech.ac.jp

Abstract

We propose a global optimization method
under length constraint (GOLC) for neural
text summarization models. GOLC increases
the probabilities of generating summaries that
have high evaluation scores, ROUGE in this
paper, within a desired length. We com-
pared GOLC with two optimization meth-
ods, a maximum log-likelihood and a mini-
mum risk training, on CNN/Daily Mail and a
Japanese single document summarization data
set of The Mainichi Shimbun Newspapers.
The experimental results show that a state-of-
the-art neural summarization model optimized
with GOLC generates fewer overlength sum-
maries while maintaining the fastest process-
ing speed; only 6.70% overlength summaries
on CNN/Daily and 7.8% on long summary
of Mainichi, compared to the approximately
20% to 50% on CNN/Daily Mail and 10% to
30% on Mainichi with the other optimization
methods. We also demonstrate the importance
of the generation of in-length summaries for
post-editing with the dataset Mainich that is
created with strict length constraints. The ex-
perimental results show approximately 30% to
40% improved post-editing time by use of in-
length summaries.

1 Introduction

Automatic text summarization aims at generating
a short and coherent summary of a given text.
In text summarization, while the generated sum-
maries should contain the important content of the
input text, their lengths should also be controlled,
e.g., the summary should be as long as the width
of target devices such as smart-phones and digital
signage. Therefore, editors have to summarize a
source text under a length constraint by reordering
and paraphrasing.

For summarization, both extractive and abstrac-
tive methods have been widely studied. Extractive

methods are based on selection of sentences from
source texts without using reordering or para-
phrasing. In contrast, abstractive methods gener-
ate summaries as new sentences. Therefore, ab-
stractive methods can rely on the reordering and
paraphrasing required for summary and title gen-
eration. However, most abstractive summariza-
tion methods are not able to control the summary
length.

To this problem, Kikuchi et al. (2016) and
Liu et al. (2018) proposed abstractive summariza-
tion models with a capability of summary length
control. One is an LSTM based summarization
model, and the other is a CNN based one. They
proposed to enforce the desired length in the de-
coding of training and generation. Their models,
however, leave much room for improvement, at
least with regard to two aspects. One aspect is that
the summarization performance is still worse than
other state-of-the-art models. The other is that
their models sometimes fail to control the output
length.

In this paper, we address these two issues by in-
corporating global training based on a minimum
risk training (MRT) under the length constraint.
MRT (Och, 2003) is used to optimize a model
globally for an arbitrary evaluation metric. It was
also applied for optimizing the neural summariza-
tion model for headline generation with respect to
ROUGE (Ayana et al., 2017), which is based on an
overlap of words with reference summaries (Lin,
2004). However, how to use MRT under a length
constraint was an open problem; thus we pro-
pose a global optimization under length constraint
(GOLC) for neural summarization models. We
show that neural summarization models trained
with GOLC can control the output length better
than the existing methods. This is because our
training procedure makes use of overlength sum-
maries. While the probabilities of generating sum-
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maries that satisfy the length constraint increase,
overlength summaries are penalized and hence the
probabilities of generating such summaries de-
crease.

We conducted experiments on CNN/Daily Mail
and a Japanese single document summariza-
tion dataset of the Mainichi Shimbun Newspa-
pers. Models trained with GOLC showed bet-
ter ROUGE scores than those of maximum log-
likelihood based methods while generating sum-
maries satisfying the length constraint. In con-
trast to the approximately 20% and 50% of over-
length summaries generated by the other state-of-
the-art models, our method only generated 6.70%
of overlength summaries on CNN/Daily and 7.8%
on long summary of Mainichi while improving
ROUGE scores.

We also demonstrate the importance of the gen-
eration of in-length summaries for post-editing.
The experimental results of post-editing generated
summaries showed that generated in-length sum-
maries contributed to an approximately 30% to
40% improved post-editing time.

2 Related Work

There are many models for text summariza-
tion such as rule-based models (Dorr et al.,
2003) and statistical models (Banko et al., 2000;
Zajic et al., 2004; Filippova and Strube, 2008;
Woodsend et al., 2010; Filippova and Altun,
2013). Recently, abstractive summarization
models based on neural encoder-decoders have
been proposed (Rush et al., 2015; Chopra et al.,
2016; Zhou et al., 2017; Paulus et al., 2018).
There are mainly two research directions: model
architectures and optimization methods.

Pointer networks (Vinyals and Le, 2015;
Gulcehre et al., 2016; See et al., 2017) and
copy mechanisms (Gu et al., 2016; Zeng et al.,
2016) have been proposed for overcoming the
unknown word problem. Other methods for
the improvement of abstractive summarization
models include use of existing summaries as
soft templates with a source text (Li et al.,
2018) and extraction of actual fact descrip-
tions from a source text (Cao et al., 2018).
Although summary length control of abstrac-
tive summarization has been studied, previous
studies focus on incorporation of a length
controlling method to neural abstractive summa-
rization models (Kikuchi et al., 2016; Fan et al.,

2018; Liu et al., 2018; Fevry and Phang, 2018;
Schumann, 2018). In contrast, our research
focuses on a global optimization method.

Optimization methods for optimizing a model
with respect to evaluation scores, such as re-
inforcement learning (Ranzato et al., 2015;
Paulus et al., 2018; Chen and Bansal, 2018;
Wu and Hu, 2018) and minimum risk train-
ing (Ayana et al., 2017), have been proposed
for summarization models based on neural
encoder-decoders. Our method is similar to that
of Ayana et al. (2017) in terms of applying MRT
to neural encoder-decoders. There are two dif-
ferences between our method and Ayana et al.’s:
(i) our method uses only the part of the summary
generated by a model within the length constraint
for calculating the ROUGE score and (ii) it
penalizes summaries that exceed the length of the
reference regardless of its ROUGE score.

3 Summary Length Controllable Models

In this section, we describe two summarization
models that are optimized by GOLC for gener-
ating summaries within length constraints. These
two models are also optimized with maximum log-
likelihood estimation (MLE) that is widely applied
for training neural encoder-decoders of the orig-
inal papers of the summarization models and a
minimum risk training (MRT).

3.1 LSTM based Model (PG w/ LE)

Kikuchi et al. (2016) proposed LenEmb (LE) that
is a variant of LSTM that takes into account the re-
maining length of a summary in training and gen-
eration. The remaining length of a summary is ini-
tialized as the length of the reference summary in
training and as the desired length in generation.
For each time step in decoding, the length of a
generated word is subtracted from the remaining
length of a summary.

We integrate LE into a pointer-generator net-
work (See et al., 2017), which is a state-of-the-
art neural summarization model. A pointer-
generator consists of a pointer network and an
LSTM encoder-decoder. A pointer network can
copy words of a source text into a summary even
if they are out-of-vocabulary. Probability of gener-
ating a word is calculated based on linear interpo-
lation between probability distribution of vocab-
ulary, and attention distribution of source words.
We replaced an LSTM decoder of a pointer-



1041

generator with LenEmb, which we call this model
PG w/ LE.

3.2 CNN based Model (LC)

Liu et al. (2018) proposed CNN based encoder-
decoders for controlling summary length. This
model uses the variant of a CNN decoder that takes
into account the desired length of a summary.
In CNN based encoder-decoders, the representa-
tions of words are the concatenation of word em-
beddings and position embeddings (Gehring et al.,
2017). This model is trained to generate <EOS>,
which is the end of a sentence, when the number
of generated words in a summary is the desired
length.

We note that the length of a summary
is the number of words in the summary in
Liu et al. (2018), while the length of a summary
is the number of characters in the summary in
Kikuchi et al. (2016),

4 Conventional Optimization Methods

In this section, we describe MLE, and MRT that
are used for training summarization models. We
denote a source sentence as x = ⟨x1, ..., xN ⟩,
where xi(1 ≤ i ≤ N) is a word in x and a sum-
mary as y = ⟨y1, ..., yM ⟩, where yj(1 ≤ j ≤ M)
is a word in y.

4.1 Maximum Log-likelihood Estimation

MLE aims at maximizing log-likelihood on train-
ing data D:

LMLE(θ) =
∑

(x,y)∈D

log pθ(y|x), (1)

where pθ(y|x) =
∏M

t=1 p(yt|y<t,x). For each
time step in decoding, a model calculates the prob-
ability of generating a target word in a reference
summary, then, the target word is used as the next
input of a decoder. We see that a model never gen-
erates overlength summaries since words in a ref-
erence summary are used as inputs of a decoder.
Thus, the way of decreasing the probability of gen-
erating overlength summaries is not trivial.

4.2 Minimum Risk Training

In MRT, unlike MLE, the probability of a word at
each step is calculated using previously generated
words as in the test phase. MRT aims at optimiz-
ing a model for an evaluation metric by minimiz-

(a) Example of the original ∆(y,y′).

(b) Example of the proposed ∆̃(y,y′).

Figure 1: Examples of ∆(y,y′) of the original MRT
and ∆̃(y,y′) of GOLC where ROUGE-1 recall is
calculated based on unigrams. In the two examples, a
reference y is ⟨malaysia,markets, closed, for, holiday⟩
and a sampled summary y′ is
⟨markets, in,malaysia, closed, for, holiday⟩ and
cb(y) = len(’ ’.join(y)) = 38 and
cb(y

′) = len(’ ’.join(y′)) = 35.

ing the expected loss on D:

LMRT (θ) =
∑

(x,y)∈D

∑
y′∈S̃(x)

Qθ(y
′|x)∆(y,y′),

(2)

where Qθ(y
′|x) ∝ pθ(y

′|x)γ . ∆(y,y′) is a loss
function of the negative ROUGE between a ref-
erence summary y and a summary to be evaluated
y′, γ is a smoothing factor and S̃(x) = S(x)∪{y}
(Shen et al., 2016). S(x) is a set of summaries that
can be generated by a model for a given x. Includ-
ing reference summaries into the set of sampled
summaries can increase the probabilities of gener-
ating reference summaries, which will be analyzed
in Section 6.

From Equation (2), we see that the probabil-
ity of generating a summary is weighted by its
ROUGE score. Since MRT optimizes summariza-
tion models in terms of a ROUGE score, the length
of summaries generated by models depends on the
type of a ROUGE score, i.e., summary lengths
will be long if we choose ROUGE recall as ∆,
while summary lengths will be short if we choose
ROUGE precision as ∆. By choosing the ROUGE
F score as ∆, the length of a generated summary
will be balanced, though there is no relation with
whether or not the summary is overlength.

Therefore, output length controllable models
lose the ability of generating summaries with a
desired length. These models assume generating
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<EOS> when the remaining length of a summary
is 0, or the length of a summary reaches the desired
length by using words in a reference summary in
MLE.

5 Global Optimization under Length
Constraint

Compared to conventional methods, the proposed
method (GOLC) optimizes models under length
constraint. To take into account the length con-
straint, we modify ∆ of the original MRT to ∆̃
that has an overlength penalty. We formalize loss
function for optimization under length constraint
as follows:

LGOLC(θ) =
∑

(x,y)∈D

∑
y′∈S̃(x)

Qθ(y
′|x)∆̃(y,y′),

(3)

where Qθ(y
′|x) ∝ pθ(y

′|x)γ . ∆̃(y,y′) is formal-
ized as follows:

∆̃(y,y′) = −ROUGE(y,trim(y′, c∗(y)))

+ max(0, c∗(y
′)− c∗(y)), (4)

where ROUGE calculates the ROUGE score be-
tween two texts. We used ROUGE-L recall
as a score function. trim(y′, c∗(y)) extracts
the longest subsequence of words in y′ under
the length constraint c∗(y). c∗(y) denotes the
length of y. The number of characters in a
summary cb(y) is used for PG w/ LE: cb(y) =
len(’ ’.join(y)) for English, and cb(y) =
len(’’.join(y)) for Japanese1. The number
of words in a summary is used for LCs: cw(y) =
|y|.

The first term in Equation (4) decreases the loss
when a part of a generated summary within the
length constraint covers word n-grams of the ref-
erence summary. The part of a generated sum-
mary that exceeds the length constraint does not
affect the calculation of the ROUGE score. The
second term increases the loss if a generated sum-
mary is longer than the reference summary. Fig-
ure 1 shows examples of ∆(y,y′) of the method
by Ayana et al. (2017) (a) and our loss function
(b).

1A difference between calculating the number of char-
acters in an English summary and that in a Japanese one is
whether or not the length of space between words is counted.

6 Analysis of GOLC

In this section, we argue that GOLC is more suit-
able for training neural encoder-decoders under a
length constraint by comparing our objective func-
tion with the existing ones. In addition, we analyze
the contribution of reference summaries in MRT.
LMRT (θ) of Equation (2) can be written as:

LMRT (θ) =
∑

(x,y)∈D

{
−Qθ(y|x)+∑

y′∈S(x)

Qθ(y
′|x)∆(y,y′)

}
, (5)

because ∆(y,y) = −1 for a reference summary
y. From this equation, if negative ROUGE recall
is used as the loss function, we observe that the
probability of each reference summary, which has
the best ROUGE score and readability, largely in-
creases. However, the probability of generating
overlength summaries may increase from decreas-
ing LMRT (θ) because a longer summary tends to
result in a higher ROUGE recall score.

In contrast, LGOLC(θ) of Equation (3) can
take into account overlength penalties and can be
rewritten with ∆̃(y,y) = −1 as:

LGOLC(θ) =
∑

(x,y)∈D

{
−Qθ(y|x)

−
∑

y−∈S−(x)

Qθ(y
−|x)

∣∣∣∆̃(y,y−)
∣∣∣

+
∑

y+∈S+(x)

Qθ(y
+|x)∆̃(y,y+)

}
,

(6)

where S−(x) = {y′|y′ ∈ S(x) ∧ ∆̃(y,y′) < 0}
and S+(x) = {y′|y′ ∈ S(x) ∧ ∆̃(y,y′) ≥
0}. Note that in the second term of the right-
hand side, the absolute value |∆̃(y,y−)| is used.
Since Qθ(y

′|x) ≥ 0 holds true for any y′ by
definition and ∆̃(y,y′) ≥ 0 also holds true for
overlength summary y′, we see the following
for minimizing LGOLC(θ). Each Qθ(y

−|x) for
summaries shorter than the length constraint in-
creases because ∆̃(y,y−) < 0. In contrast, each
Qθ(y

+|x) for overlength summaries decreases be-
cause ∆̃(y,y+) > 0. As a result, the possibil-
ity of generating overlength summaries is reduced.
Of course, the probability of each reference sum-
mary in LGOLC(θ) also largely increases because
∆̃(y,y) = −1.
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(a) CNN/Daily (b) Mainichi (short) (c) Mainichi (long)

Figure 2: Summary length distributions on CNN/Daily and Mainichi. Summary length is the number of characters.

7 Experimental Settings

We compare our optimization method GOLC with
two different optimization methods, MLE and
MRT by applying the optimization methods to
LSTM and CNN-based summarization models
on an English and a Japanese dataset. We im-
plemented summarization models with Chainer
(Tokui et al., 2015) and all summarization models
were trained on NVIDIA Tesla P100.

7.1 Dataset

CNN/Daily: We created the non-anonymized
version of the summarization dataset follow-
ing See et al. (2017) from the CNN/Daily
Mail corpus. These data contain news docu-
ments paired with multi-sentence summaries.
We obtained 287,226 training pairs, 13,368
development pairs, and 11,490 test pairs.
The vocabulary was created by collecting top
500,000 words in terms of their frequency in
training data as in (See et al., 2017).

Mainichi: Mainichi contains Japanese news ar-
ticles with their summaries from 2012 to
2017 of the Japanese newspaper company
The Mainichi Newspapers Co, Ltd. For each
news article which consists of a headline and
a body, two summaries are included: a short
summary with the maximum length of 17
characters, and that of 54 characters. For tok-
enizing Japanese texts, we used MeCab2. We
used the first 200 words of each news arti-
cle, which is concatenation of a headline and
a body, for the input of an encoder. We cre-
ated training data from all data from 2012 to
2016 and some of the data from 2017. The
rest of the 2017 data were used as test data.

2https://github.com/taku910/mecab

Hyperparameter Data PG LC

batch size of MLE
C 16 8
M 30 8

batch size of MRT,GOLC C, M 5 5
word embedding size C, M 128 128
hidden state size C, M 256 256
number of hidden layers C, M 1 4
sample size of S̃ C, M 10 10
smoothing factor γ C, M 5e-3 5e-3
gradient clip C, M 2.0 0.1
dropout C, M 0 0.2

Table 1: Hyperparamters used in experiments of
CNN/Daily (C) and Mainichi (M).

Note that the test data were randomly sam-
pled from the 2017 data. The sizes of the
training data and test data are 163,220 and
2,000. Half of the dataset is document-long
summary pairs, and the rest of the dataset is
document-short summary pairs. The vocabu-
lary was created by collecting words that oc-
cur more than two times in the training data.
Words that are not included in the vocabulary
were replaced with the special token, <UNK>.

Figure 2 shows summary length distributions on
CNN/Daily and Mainichi. Compared to the length
distribution of summaries in CNN/Daily, the one
of long summaries in Mainichi has a low variance.
Almost all long summaries are 50-54 characters
in Mainichi while lengths of almost all summaries
are 102-103 in CNN/Daily.

7.2 Summarization Models to be Compared
We compared a state-of-the-art model that is not
capable of controlling summary length, and two
length controllable models and simple baselines
that extract the first part of source text.
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LEAD extracts the first part of source text.
For CNN/Daily, we used reported scores
of LEAD-3sent that extracts first three sen-
tences of a source text (See et al., 2017).
For long summaries and short summaries
in Mainichi, we used the first 54 charac-
ters (LEAD-54chars) and 17 characters of a
source text (LEAD-17chars).

PG is an LSTM-based standard pointer-generator
that does not have capability of summary
length control. PG showed state-of-the-art
performances on CNN/Daily. Therefore, we
used PG in our evaluation. We trained two
models of PG for short summaries and long
summaries on Mainichi because this model
cannot control summary length.

PG w/ LE is an extension of the PG with
length embeddings (LenEmb) proposed by
Kikuchi et al. (2016). We set the dimension
of remaining summary length embeddings to
100 and the number of length types to 401
(i.e., 0 to 400). If the remaining length of a
summary is larger than 400, we kept using
400 as the input of LenEmb until the actual
remaining length is less than 401.

LC (Liu et al., 2018) is a convolutional encoder-
decoder-based summarizing model for con-
trolling the summary length. In contrast to
PG w/ LE, we use the number of the remain-
ing words to be outputted instead of the num-
ber of characters by following the original
settings.

7.3 Optimization Methods to be Compared
MLE is the optimization method based on the

maximum log-likelihood estimation of Equa-
tion (1).

MRT optimizes models with respect to a
ROUGE score of Equation (2).

GOLC is our method for globally optimizing
length controllable models under a length
constraint of Equation (3).

Before applying MRT and GOLC to summa-
rization models, they are trained with MLE. We
used Adam (Kingma and Ba, 2014) (α = 0.0001,
β1 = 0.9, β2 = 0.999, ϵ = 10−8) for updat-
ing the LenEmbs, and Nesterovs Accelerated Gra-
dient (Bengio et al., 2013) for updating the LCs.

Other hyperparameters of models and optimiza-
tion methods used in our experiments are summa-
rized in Table 1. We halve the word embedding
size, hidden state size, and the number of layers of
LC from the original setting of Liu et al. (2018).
This is because avoiding out-of-memory error on
our GPU when applying MRT, and GOLC, and our
objective of the experiments with LC is the evalu-
ation of length control ability of each optimization
method.

7.4 Evaluation Metrics
ROUGE We used ROUGE F-score on

CNN/Daily. When calculating ROUGE
F-score, full-length summaries are used. We
also used ROUGE recall on Mainichi with
a length constraint, which is the length of a
reference summary. Overlength summaries
are truncated to the length constraint for
evaluating ROUGE recall scores.

We used pyrouge3, which is the same
evaluation script used by See et al. (2017),
scores on CNN/Daily. This is because the
pyrouge does not support Japanese. There-
fore, we used sumeval4 with the MeCab
on the ROUGE evaluation of the Mainichi
dataset.

Length controllability For evaluating the capa-
bility of summary length control, we use two
metrics. The first one is the variance of a
summary length c∗(yi) against the desired
length li (Liu et al., 2018):

V ar∗ = 0.001 ∗ 1

n

n∑
i=0

|li − c∗(yi)|2. (7)

The other is %over that is calculated by divid-
ing the number of overlength summaries with
the number of test data. Because of the dif-
ference of the length unit between LenEmb
and LC, Var and %over of LenEmb and those
of LC are not comparable. Since GOLC op-
timizes length controllable models, we com-
pare models optimized by GOLC with mod-
els trained with other optimization methods.

Average time of generation (avg. time) We
evaluated average time of generation of sum-
maries on CPU per new article.

3https://github.com/andersjo/pyrouge
4https://github.com/chakki-works/sumeval
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pointer-generator (PG)
Sum. Model (Opt. Method) R-1 F R-2 F R-L F V arb %over avg. time (sec.)
LEAD-3sents (See et al., 2017) 40.34 17.70 36.57 - - -
PG (MLE) 37.74 15.78 34.35 19.35 58.35 15.25
PG w/ LE (MLE) 37.45 15.31 34.28 4.50 19.11 12.83
PG w/ LE (MRT) 38.47 16.30 35.30 18.74 43.32 24.13
PG w/ LE (GOLC) 38.27 16.22 34.99 5.13 6.70 10.31

length control CNN (LC)
Sum. Model (Opt. Method) R-1 F R-2 F R-L F V arw %over avg. time (sec.)
LC (MLE) 30.67 11.00 28.97 0.17 44.67 16.93
LC (MRT) 31.02 11.29 28.54 0.21 61.67 17.19
LC (GOLC) 29.38 10.38 27.18 0.22 21.55 16.41

Table 2: Experimental results of three summarization models (Sum. Model), PG and LC on CNN/Daily, with three
optimization methods (Opt. Method), MLE, MRT and GOLC. The best score in each column is shown in bold.
The length of a reference summary was used as a desired length for length controllable models. LC originally
has capability of summary length control. Therefore, we only compare the differences obtained with optimization
methods. The avg. time indicates a number for the average summary generation time (seconds).

Human Evaluation We also evaluate post-
editing time of automatically generated sum-
maries for human post-editing.

8 Experimental Results

8.1 ROUGE

Table 2 shows ROUGE scores (F-scores of
full length summaries), Var, and %over on
CNN/Daily. PG w/ LE trained with GOLC shows
better ROUGE scores and better %over than those
of MLE. Although ROUGE scores of PG w/ LE
trained with MRT showed better ROUGE scores
than GOLC, %overs are higher than those of
GOLC. From these results, we see that GOLC im-
proves ability to generate summaries under length
constraints while maintaining ROUGE scores.
ROUGE scores of LCs are lower than those of
pointer-generator (See et al., 2017) and PG of our
implementation. This is because LC could not
copy words of a source text into its target text. The
difference between ROUGE scores and V arw of
LC and reported scores in Liu et al. (2018) is due
to differences of hyperparameters between ours
and the original paper.

Table 3 shows ROUGE scores (recall of trun-
cated summaries), Var, and %over on Mainichi.
ROUGE scores of PG w/ LE are higher than those
of PG. This is because PG w/ LE was able to
trained with two times larger training data com-
pared to PG. Since PG cannot control summary
length, two models were trained for short sum-

maries and for long summaries separately. Al-
though ROUGE scores of neural summarization
models are lower than those of LEAD-3sents on
CNN/Daily, ROUGE scores of neural summa-
rization models are higher than those of LEAD-
54chars and LEAD-17chars. These results come
from the difference between the writing rules of
summaries and ones of news articles in Mainichi.
For example, yomigana that indicates phonetic
symbols of Japanese kanji characters sometimes
follow person names and location names of kanji
characters in a news article but not in a summary.
Furthermore, noun phrases are often rewritten to
shorter paraphrases.

8.2 Length Controllability

We evaluated the length controllability of each op-
timization method. On CNN/Daily, we used the
length of each summary as the length constraint.
On Mainichi, for PG w/ LE, we used 17 for short
summaries and 54 for long summaries as their
length constraints. For LC, we used the number of
words in a reference summary as the length con-
straint because no length constraints with respect
to the number of words are given.

We see that ROUGE scores of PG w/ LE
trained with GOLC are higher than those of
MLE on CNN/Daily and Mainichi. Furthermore,
GOLC contributes to reduced generation of over-
length summaries compared to other optimization
methods on CNN/Daily and long summary on
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pointer-generator (PG)
Sum. Model (Opt. Method) R-1 R R-2 R R-L R V arb %over avg. time (sec.)
LEAD-54chars 48.71 24.33 31.84 - - -
PG (MLE) 56.11 36.95 48.66 0.05 29.3 4.65
PG w/ LE (MLE) 56.22 36.58 48.49 0.03 27.1 5.06
PG w/ LE (MRT) 57.10 36.93 49.28 1.102 18.0 9.47
PG w/ LE (GOLC) 56.44 36.94 49.14 0.0007 7.8 4.64

length control CNN (LC)
Sum. Model (Opt. Method) R-1 R R-2 R R-L R V arw %over avg. time (sec.)
LC (MLE) 48.40 28.87 41.53 0.0063 16.0 14.57
LC (MRT) 49.82 30.69 43.02 0.007 11.7 14.69
LC (GOLC) 42.69 24.83 36.61 0.048 0.5 12.79

(a) long summary

pointer-generator (PG)
Sum. Model (Opt. Method) R-1 R R-2 R R-L R V arb %over avg. time (sec.)
LEAD-17chars 51.94 33.21 49.46 - - -
PG (MLE) 54.75 40.92 53.70 0.017 1.9 1.20
PG w/ LE (MLE) 61.31 46.43 59.32 0.007 8.2 1.54
PG w/ LE (MRT) 64.60 48.52 62.14 2.53 30.4 10.11
PG w/ LE (GOLC) 62.71 46.88 60.23 0.01 12.2 1.51

length control CNN (LC)
Sum. Model (Opt. Method) R-1 R R-2 R R-L R V arw %over avg. time (sec.)
LC (MLE) 46.96 31.43 45.72 0.004 0. 3.36
LC (MRT) 51.27 35.81 49.85 0.003 0. 3.33
LC (GOLC) 44.72 29.99 43.53 0.006 0. 3.23

(b) short summary

Table 3: Experimental results of (a) long summary and (b) short summary on Mainichi with three optimization
methods. The meaning of each item in the first column is the same as Table 2. Summaries generated by mod-
els were truncated to the length constraints for calculating ROUGE scores. Length constraints are 17 for short
summaries and 54 for long summaries for PG and the number of words in a reference summary in LC.

Mainichi. %over of PG w/ LE (GOLC) is larger
than that of PG (MLE) and PG w/ LE (MLE).
Since short summary lengths distribute approx-
imately 10 to 17, lengths of summaries gener-
ated by PG (MLE), which does not has capabil-
ity of controlling summary length, are less than
the length constraint 17. In contrast, PG w/ LE
(MLE) and PG w/ LE (GOLC) tend to generate
as the same length of summary as the length con-
straint. As a result, some summaries were over-
lengthed.

By training LC with GOLC, ROUGE scores de-
graded while %over was improved on Table 2 and
Table 3. LC trained with GOLC sometimes gener-
ated much shorter summaries against length con-
straints. Thus, recall scores were lower and hence
F-scores were also lower than those of other meth-
ods.

8.3 Summarization Speed

We evaluated generation time of models
trained with different optimization methods
on CNN/Daily and Mainichi. The rightmost
columns of Table 2 and Table 3 show average time
of summary generation with beamsearch of the
beam width 5. We see that GOLC-based summa-
rization is faster than the other methods. One of
the reasons is models trained with GOLC usually
generate summaries within length constraints.
In contrast, the avg. times of the MRT-based
models is slower than other methods because the
models trained with MRT often generate longer
summaries than those of other methods.

We evaluated generation time of models
trained with different optimization methods on
CNN/Daily and Mainichi. Table 2 and Table 3



1047

Over or Not \ LC 17 chars. 54 chars.
Overlength 21.3 sec. 78.6 sec.
In-length 12.90 sec. 55.7 sec.

Table 4: Human post-editing time on Mainichi Shim-
bun. LC indicates the number of maximum characters
and each time is the average time of post-editing.

also show average time of generation with beam-
search of the beam width 5. Since models trained
with GOLC usually generate summaries within
length constraints, generation time of GOLC is
faster than those of MRT.

8.4 Post-Edit Evaluation

In order to demonstrate the importance of the gen-
eration of in-length summaries, we evaluate the
post-editing time of generated summaries. We re-
cruited 7 Japanese native speakers for this evalu-
ation as editors. The editors are required to edit
summaries generated by summarization models if
they are overlength and have grammatical errors
and factual errors.

We randomly collected 10 overlength sum-
maries and 10 in-length summaries from sum-
maries generated by PG, PG w/LE (MLE), PG
w/LE (MRT) and PG w/LE (GOLC) because our
objective is to evaluate the importance of the gen-
eration of in-length summaries, not comparison of
optimization methods.

Table 4 shows the average time of post-editing.
The experimental results show that overlength
summaries require longer editing time. The re-
duction is approximately 39.4% for 17 chars and
29.1% for 54 chars. This result indicates that
the generation of in-length summaries is important
when we use generated summaries for assisting
workers. Combined with the Table 3 and Table 4,
we estimate use of GOLC-based summarizer con-
tributed to approximately 10% reduction of post-
editing time compared with MRT-based one.

We used readability and informativeness for
subjective evaluation of the articles of post-
editing: Readability (Read.) is evaluation of gram-
matical correctness of summaries. Informative-
ness (Info.) is evaluation of coverage of important
parts of the original source text under the length
constraint. We asked the editors to assign a five
scale of 1 (bad) to 5 (good) to summaries of read-
ability and informativeness. Table 5 shows read-
ability and informativeness are improved by post-

17 chars. 54 chars.
Sum. Read. Info. Read. Info.

no-edit
In-length 2.8 2.4 3.4 2.8

Overlength 2.6 3.2 3.6 3.8
edit

In-length 4.2 4.2 4.0 4.2
Overlength 3.8 4.4 4.8 4.6

Table 5: Evaluation results of Readability (Read.) and
Informativeness (Info.).

editing. Therefore, we see the post-editing results
were reasonable.

9 Conclusion

We proposed a global optimization method for
neural text summarization under a length con-
straint. Our methods outperformed the conven-
tional methods in terms of both ROUGE, while
maintaining the ability to generate a summary
within a length constraint. We also demonstrated
the importance of the generation of summaries in
a length constraint for real use. The post-edit eval-
uation with automatically generated summaries
showed that in-length summaries contributed to
approximately 30% to 40% improved post-editing
time compared with use of the baselines.
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