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Abstract

Resolving pronoun coreference requires
knowledge support, especially for particular
domains (e.g., medicine). In this paper,
we explore how to leverage different types
of knowledge to better resolve pronoun
coreference with a neural model. To ensure
the generalization ability of our model, we
directly incorporate knowledge in the format
of triplets, which is the most common format
of modern knowledge graphs, instead of
encoding it with features or rules as that in
conventional approaches. Moreover, since not
all knowledge is helpful in certain contexts, to
selectively use them, we propose a knowledge
attention module, which learns to select
and use informative knowledge based on
contexts, to enhance our model. Experimental
results on two datasets from different domains
prove the validity and effectiveness of our
model, where it outperforms state-of-the-art
baselines by a large margin. Moreover, since
our model learns to use external knowledge
rather than only fitting the training data, it
also demonstrates superior performance to
baselines in the cross-domain setting.

1 Introduction

Being an important human language phenomenon,
coreference brings simplicity for human languages
while introducing a huge challenge for machines
to process, especially for pronouns, which are hard
to be interpreted owing to their weak semantic
meanings (Ehrlich, 1981). As one challenging yet
vital subtask of the general coreference resolution,
pronoun coreference resolution (Hobbs, 1978) is
to find the correct reference for a given pronominal
anaphor in the context and has showed its impor-
tance in many natural language processing (NLP)

∗This work was partially done during the internship of
the first author in Tencent AI Lab.

Example A Example B

Sentence The apple on the
table looks great
and I want to eat
it.

Yesterday, the patient
took the CT scan in the
hospital and it showed
that she had recovered.

Pronoun it it

Answer The apple the CT scan

Knowledge We can eat ap-
ples but we can-
not eat a table.

A ‘test’ shows results
to patients; ‘the CT
scan’ is a medical test.

Table 1: Demonstration of two pronoun corefer-
ence examples, which require complex knowledge (ex-
plained in the table) to resolve. Pronouns and their cor-
responding mentions are marked in bold red and under-
line blue fonts, respectively.

tasks, such as machine translation (Mitkov et al.,
1995), dialog systems (Strube and Müller, 2003),
information extraction (Edens et al., 2003), and
summarization (Steinberger et al., 2007), etc.

In general, to resolve pronoun coreferences, one
needs intensive knowledge support. As shown
in Table 1, answering the first question requires
the knowledge on which object can be eaten (ap-
ple v.s. table), while the second question re-
quires the knowledge that the CT scan is a test
(not the hospital) and only tests can show some-
thing. Previously, rule-based (Hobbs, 1978; Na-
sukawa, 1994; Mitkov, 1998; Zhang et al., 2019a)
and feature-based (Ng, 2005; Charniak and Elsner,
2009; Li et al., 2011) supervised models were pro-
posed to integrate knowledge to this task. How-
ever, while easy to incorporate external knowl-
edge, these traditional methods faced the problem
of no effective representation learning models can
handle such complex knowledge. Later, end-to-
end solutions with neural models (Lee et al., 2017,
2018) achieved good performance on the general
coreference resolution task. Although such algo-
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rithms can effectively incorporate contextual in-
formation from large-scale external unlabeled data
into the model, they are insufficient to incorpo-
rate existing complex knowledge into the repre-
sentation for covering all the knowledge one needs
to build a successful pronoun coreference sys-
tem. In addition, overfitting is always observed
on deep models, whose performance is thus lim-
ited in cross-domain scenarios and restricts their
usage in real applications (Liu et al., 2018, 2019).
Recently, a joint model (Zhang et al., 2019b) was
proposed to connect the contextual information
and human-designed features together for pronoun
coreference resolution task (with gold mention
support) and achieved the state-of-the-art perfor-
mance. However, their model still requires the
complex features designed by experts, which is ex-
pensive and difficult to acquire, and requires the
support of the gold mentions.

To address the limitations of the aforementioned
models, in this paper, we propose a novel end-to-
end model that learns to resolve pronoun corefer-
ences with general knowledge graphs (KGs). Dif-
ferent from conventional approaches, our model
does not require to use featurized knowledge.
Instead, we directly encode knowledge triplets,
the most common format of modern knowledge
graphs, into our model. In doing so, the learned
model can be easily applied across different
knowledge types as well as domains with adopted
KG. Moreover, to address the knowledge match-
ing issue, we propose a knowledge attention mod-
ule in our model, which learns to select the most
related and helpful knowledge triplets according to
different contexts. Experiments conducted on gen-
eral (news) and in-domain (medical) cases shows
that the proposed model outperforms all baseline
models by a great margin. Additional experiments
with the cross-domain setting further illustrate the
validity and effectiveness of our model in lever-
aging knowledge smartly rather than fitting with
limited training data1. To summarize, this paper
makes the following contributions:

1. We explore how to resolve pronoun corefer-
ences with KGs, which outperforms all existing
models by a large margin on datasets from two
different domains.

2. We propose a knowledge attention module,
which helps to select the most related and help-
1All code and data are available at: https://github.

com/HKUST-KnowComp/Pronoun-Coref-KG.

Figure 1: The overall framework of our approach to
pronoun corference resolution with KGs. k1,...,km

represent the retrieved knowledge for each span in the
black boxes. Dotted box represents the span repre-
sentation module, which generates a contextual rep-
resentation for each span. Dashed box represents the
knowledge selection module, which selects appropri-
ate knowledge based on the context and generates an
overall knowledge representation for each span. F (·)
is the overall coreference scoring function.

ful knowledge from different KGs.
3. We evaluate the performance of different pro-

noun coreference models in a cross-domain set-
ting and show that our model has better gener-
alization ability than state-of-the-art baselines.

2 The Task

Given a text D, which contains a pronoun p, the
goal is to identify all the mentions that p refers to.
We denote the correct mentions p refers to as c ∈
C, where C is the correct mention set. Similarly,
each candidate span is denoted as s ∈ S, where
S is the set of all candidate spans. Note that in
the case where no golden mentions are annotated,
all possible spans in D are used to form S . To
exploit knowledge, we denote the knowledge set
as G, instantiated by multiple knowledge triplets2.
The task is thus to identify C out of S with the
support of G. Formally, it optimizes

J =

∑
c∈C e

F (c,p,G,D)∑
s∈S e

F (s,p,G,D)
, (1)

where F (·) is the overall scoring function3 of p
referring to s in D with G. The details of F are
illustrated in the following section.

2Each triplet contains a head, a tail, and a relation from
the head to the tail.

3We omit G and D in the rest of this paper for simplicity.

https://github.com/HKUST-KnowComp/Pronoun-Coref-KG
https://github.com/HKUST-KnowComp/Pronoun-Coref-KG
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Figure 2: The structure of the span representation mod-
ule. BiLSTM and attention are employed to encode the
contextual information.

3 Model

The overall framework of our model is shown in
Figure 1. There are several layers in it. At the
bottom, we encode all mention spans (s) and pro-
nouns (p) into embeddings so as to incorporate
contextual information. In the middle layer, for
each pair of (s, p), we use their embeddings to
select the most helpful knowledge triplets from
G and generate the knowledge representation of s
and p. At the top layer, we concatenate the textual
and knowledge representation as the final repre-
sentation of each s and p, and then use this repre-
sentation to predict whether there exists the coref-
erence relation between them.

3.1 Span Representation

Contextual information is crucial to distinguish
the semantics of a word or phrase, especially for
text representation learning (Song et al., 2018;
Song and Shi, 2018). In this work, a stan-
dard bidirectional LSTM (BiLSTM) (Hochreiter
and Schmidhuber, 1997) model is used to en-
code each span with attentions (Bahdanau et al.,
2014), which is similar to the one used in Lee
et al. (2017). The structure is shown in Figure 2.
Let initial word embeddings in a span si be de-
noted as x1, ...,xT and their encoded representa-
tion be x∗1, ...,x

∗
T . The weighted embeddings of

each span x̂i is obtained by

x̂i =

T∑
t=1

at · xt, (2)

Figure 3: The structure of the knowledge attention
module. The joint representation of the candidate span
and pronoun is used to select knowledge for s and p.

where at is the inner-span attention computed by

at =
eαt∑T
k=1 e

αk

, (3)

where αt is a standard feed-forward neural net-
work4 αt = NNα(x

∗
t ).

Finally, the starting (x∗start) and ending (x∗end)
embedding of each span is concatenated with the
weighted embedding (x̂i) and the length feature
(φ(i)) to form its final representation e:

ei = [x∗start,x
∗
end, x̂i, φ(i)]. (4)

Thus the span representation of s and p are marked
as es and ep, respectively.

3.2 Knowledge Representation
For each candidate span s and the target pronoun
p, different knowledge from a KG can be extracted
with various methods. For simplicity and gener-
alization consideration, we use the string match
in our model for knowledge extraction. Specifi-
cally, for each triplet t ∈ G where the head and
tail of t are both lists of words, if its head is the
same as the string of s, we consider it to be a re-
lated triplet. Therefore, we encode the informa-
tion of t by the averaging embeddings of all words
in its tail. For example, if s is ‘the apple’ and the
knowledge triplet (‘the apple’, IsA, ‘healthy food’)
is found by searching the KG, we represent this re-
lation from the averaged embeddings of ‘healthy’
and ‘food’. Consequently, for s and p, we denote
their retrieved knowledge set asKs andKp respec-
tively, where Ks contains ms related knowledge
embeddings k1,s, k2,s, ..., kms,s and Kp contains
mp of them k1,p, k2,p, ..., kmp,p.

4We use NN to present feed-forward neural networks.
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To incorporate the aforementioned knowledge
embeddings into our model, we face a challenge
that there are a huge number of such embeddings
while most of them are useless in certain contexts.
To solve it, a knowledge attention module is pro-
posed to select the appropriate knowledge.

For each pair of (s, p), as shown in Figure 3,
we first concatenate es and ep to get the overall
(span, pronoun) representation es,p, which is used
to select knowledge for both s and p. Taking that
for s as example, we compute the weight of each
ki ∈ Ks by

wi =
eβki∑

kj∈Ks
e
βkj

, (5)

where βk = NNβ([es,p,k]). As a result, the
knowledge of s is summed by

os =
∑

ki∈Ks

wi · ki. (6)

to represent the overall knowledge for s. A similar
process is also conducted for p with its knowledge
representation op.

3.3 Scoring

The final score of each pair (s, p) is computed by

F (s, p) = fm(s) + fc(s, p), (7)

where fm(s) = NNm([es,os]) is the scoring
function for s to be a valid mention and fc(s, p) =
NNc([en,on, ep,op, en � ep,on � op]) is the
scoring function to identify whether there exists a
coreference relation from p to s, with � denoting
element-wise multiplication.

After getting the coreference score for all men-
tion spans, we adopt a softmax selection on the
most confident candidates for the final prediction,
which is formulated as

F̂ (s, p) =
eF (s,p)∑

si∈S e
F (si,p)

. (8)

where candidates with score F̂ higher than a
threshold t are selected.

4 Experiments

Experiments are illustrated in this section.

Dataset TP Poss Dem All

CoNLL
train 21,828 7,749 2,229 31,806
dev 2,518 1,007 222 3,747
test 2720 1,037 321 4,078

i2b2 train 2,024 685 270 2,979
test 1,244 367 166 1,777

Overall 30,334 10,845 3,208 44,387

Table 2: Statistics of the two datasets. ‘TP’, ‘Poss’, and
‘Dem’ refer to third personal, possessive, and demon-
strative pronouns, respectively.

4.1 Datasets
Two datasets are used in our experiments, where
they are from two different domains:

• CoNLL: The CoNLL-2012 shared task (Prad-
han et al., 2012) corpus, which is a widely used
dataset selected from the Ontonotes 5.05.
• i2b2: The i2b2 shared task dataset (Uzuner

et al., 2012), consisting of electronic medi-
cal records from two different organizations,
namely, Partners HealthCare (Part) and Beth
Israel Deaconess medical center (Beth). All
records have been fully de-identified and manu-
ally annotated with coreferences.

We split the datasets into different proportions
based on their original settings. Three types of
pronouns are considered in this paper following
Ng (2005), i.e., third personal pronoun (e.g., she,
her, he, him, them, they, it), possessive pronoun
(e.g., his, hers, its, their, theirs), and demonstra-
tive pronoun (e.g., this, that, these, those). Table 2
reports the number of the three types of pronouns
and the overall statistics of the experiment datasets
with proportion splittings. Following conventional
approaches (Ng, 2005; Li et al., 2011), for each
pronoun, we consider its candidate mentions from
the previous two sentences and the current sen-
tence it belongs to. According to our selection
range of the candidate mentions, each pronoun in
the CoNLL data and i2b2 data has averagely 1.3
and 1.4 correct references, respectively.

4.2 Knowledge Resources
As mentioned in previous sections, our model is
designed to leverage general KGs, where it takes
triplets as the input of knowledge representations.
For all knowledge resources, we format them as
triplets and merge them together to obtain the final

5https://catalog.ldc.upenn.edu/LDC2013T19
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knowledge set. Different knowledge resources are
introduced as follows.

Commonsense knowledge graph (OMCS). We
use the largest commonsense knowledge base,
the open mind common sense (OMCS) (Singh,
2002) in this paper. OMCS contains 600K crowd-
sourced commonsense triplets such as (food,
UsedFor, eat) and (wind, CapableOf, blow to
east). All relations in OMCS are human-defined
and we select those highly-confident ones (confi-
dence score larger than 2) to form the OMCS KG,
with 62,730 triplets.

Medical concepts (Medical-KG). Being part of
the i2b2 contest, the related knowledge about med-
ical concepts such as (the CT scan, is, test) and (in-
travenous fluids, is, treatment) are provided. The
annotated triplets are used as the medical concept
KG, which contains 22,234 triplets.

Linguist features (Ling). In addition to manu-
ally annotated KGs, we also consider linguist fea-
tures, i.e., plurality and animacy & gender (AG),
as one important knowledge resources. Stanford
parser6 is employed to generate plurality, animacy,
and gender markups for all the noun phrases, so as
to automatically generate linguistic knowledge (in
the form of triplets) for our data. Specifically, the
plurality feature denotes each s and p to be singu-
lar or plural. The animacy & gender (AG) feature
denotes whether the n or p is a living object, and
being male, female, or neutral if it is alive. For
example, a mention ‘the girls’ is labeled as plu-
ral and female; we use triplets (‘the girls’, plural-
ity, Plural) and (‘the girls’, AG, female) to repre-
sent them. As a result, we have 40,149 and 40,462
triplets for plurality and AG, respectively.

Selectional Preference (SP). Selectional prefer-
ence (Hobbs, 1978) knowledge is employed as the
last knowledge resource, which is the semantic
constraint for word usage. SP generally refers to
that, given a predicate (e.g., verb), people have
the preference for the argument (e.g., its object or
subject) connected. To collect SP knowledge, we
first parse the English Wikipedia7 with the Stan-
ford parser and extract all dependency edges in the
format of (predicate, argument, relation, number),
where predicate is the governor and argument the
dependent in each dependency edge8. Following

6https://stanfordnlp.github.io/CoreNLP/
7https://dumps.wikimedia.org/enwiki/
8In the Stanford parser, an ‘nsubj’ edge is created between

its predictive and subject when a verb is a linking verb (e.g.,

(Resnik, 1997), each potential SP pair is measured
by a posterior probability

Pr(a|p) =
Countr(p, a)

Countr(p)
, (9)

where Countr(p) and Countr(p, a) refer to how
many times p and the predicate-argument pair (p,
a) appear in the relation r, respectively. In our ex-
periment, if Pr(a|p) > 0.1 and Countr(p, a) >
10, we consider the triplet (p, r, a) (e.g., (‘dog’,
nsubj, ‘barks’)) a valid SP relation. Finally, we se-
lect two SP relations, nsubj and dobj, to form the
SP knowledge graph, including 17,074 and 4,536
frequent predicate-argument pairs for nsubj and
dobj, respectively.

4.3 Baselines
Several baselines are compared in this paper, in-
cluding three widely used pre-trained models:

• Deterministic model (Raghunathan et al.,
2010), which is an unsupervised model and
leverages manual rules to detect coreferences.
• Statistical model (Clark and Manning, 2015),

which is a supervised model and trained on
manually crafted entity-level features between
clusters and mentions.
• Deep-RL model (Clark and Manning, 2016),

which uses reinforcement learning to directly
optimize the coreference matrix instead of the
loss function of supervised learning.

The above models are included in the Stanford
CoreNLP toolkit9. We also include a state-of-the-
art end-to-end neural model as one of our base-
lines:

• End2end (Lee et al., 2018), which is the current
state-of-the-art model performing in an end-to-
end manner and leverages both contextual infor-
mation and a pre-trained language model (Pe-
ters et al., 2018).

We use their released code10. In addition, to show
the importance of incorporating knowledge, we
also experiment with two variations of our model:

• Without KG removes the KG component and
keeps all other components in the same setting
as that in our complete model.

am, is); the predicative is thus treated as the predicate for the
subject (argument) in this paper.

9https://stanfordnlp.github.io/CoreNLP/coref.html
10https://github.com/kentonl/e2e-coref
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Model Third Personal Possessive Demonstrative All
P R F1 P R F1 P R F1 P R F1

Deterministic 25.5 58.9 35.6 22.9 64.3 33.8 3.4 5.7 4.2 23.4 57.0 33.4
Statistical 25.8 62.1 36.5 28.9 64.9 40.0 9.8 6.3 7.6 25.4 59.3 36.5
Deep-RL 78.6 63.9 70.5 73.3 68.9 71.0 3.7 2.9 5.5 76.4 61.2 68.0

End2end 70.6 75.7 73.1 73.0 76.2 74.6 58.4 17.6 27.0 71.1 72.1 71.6

Without KG 78.2 72.4 75.2 80.0 66.4 72.6 46.7 62.5 53.4 75.7 70.1 72.8
Without Attention 76.6 77.9 77.2 79.0 73.5 76.2 42.4 72.6 53.5 73.6 76.4 74.9
Our Complete Model 78.8 77.8 78.1 80.7 72.5 76.4 45.3 66.7 53.9 75.9 75.6 75.7

(a) CoNLL

Model Third Personal Possessive Demonstrative All
P R F1 P R F1 P R F1 P R F1

Deterministic 25.7 57.4 35.5 25.2 61.6 35.7 6.6 4.0 5.0 25.1 54.0 34.3
Statistical 19.3 35.9 25.1 25.7 50.5 34.0 6.7 4.5 5.4 20.5 36.6 26.3
Deep-RL 78.2 48.0 59.5 78.6 57.7 66.5 9.1 5.1 9.6 77.8 46.3 58.1

End2end 95.0 93.4 94.2 95.3 96.0 95.7 74.8 52.5 61.7 93.9 90.7 92.3

Without KG 96.8 95.9 96.3 97.1 97.5 97.3 66.5 68.2 67.3 94.3 94.0 94.2
Without Attention 96.1 97.2 96.6 96.3 98.2 97.2 66.7 77.8 71.8 93.4 95.9 94.6
Our Complete Model 97.5 96.3 96.9 98.5 97.8 98.2 71.9 72.2 72.0 95.6 94.7 95.2

(b) i2b2

Table 3: The performance of pronoun coreference resolution with different models on two evaluation datasets.
Precision (P), recall (R), and the F1 score are reported, with the best one in each F1 column marked as bold.

• Without Attention removes the knowledge at-
tention module and concatenates all the knowl-
edge embeddings. All other components are
identical as our complete model.

4.4 Implementation
Following the previous work (Lee et al., 2018), we
use the concatenation of the 300d GloVe embed-
dings (Pennington et al., 2014) and the ELMo (Pe-
ters et al., 2018) embeddings as the initial word
representations for computing span representa-
tions. For knowledge triplets, we use the GloVe
embeddings to encode tail words in them. Out-
of-vocabulary words are initialized with zero vec-
tors. The hidden state of the LSTM module is
set to 200, and all the feed-forward networks have
two 150-dimension hidden layers. The selection
thresholds are set to 10−2 and 10−8 for the CoNLL
and i2b2 dataset, respectively.

For model training, we use cross-entropy as the
loss function and Adam (Kingma and Ba, 2014)
as the optimizer. All the aforementioned hyper-
parameters are initialized randomly, and we apply
dropout rate 0.2 to all hidden layers in the model.
For the CoNLL dataset, the model training is per-
formed with up to 100 epochs, and the best one is
selected based on its performance on the develop-
ment set. For the i2b2 dataset, because no dev set
is provided, we train the model up to 100 epochs

and use the final converged one.

4.5 Results

Table 3 reports the performance of all models,
with the results for CoNLL and i2b2 in (a) and
(b), respectively. Overall, our model outperforms
all baselines on two datasets with respect to all
pronoun types. There are several interesting ob-
servations. In general, the i2b2 dataset seems sim-
pler than the CoNLL dataset, which might because
that i2b2 only involves clinical narratives and its
training data is highly similar to the test data. As
a result, all neural models perform dramatically
good, especially on the third personal and posses-
sive pronouns. In addition, we also notice that
it is more challenging for all models to resolve
demonstrative pronouns (e.g., this, that) on both
datasets, because such pronouns may refer to com-
plex things and occur with low frequency.

Moreover, there are significant gaps in the per-
formance of different models, with the following
observations. First, models with manually de-
fined rules or features, which cannot cover rich
contextual information, perform poorly. In con-
trast, deep learning models (e.g., End2end and our
proposed models), which leverage text represen-
tations for context, outperform other approaches
by a great margin, especially on the recall. Sec-
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CoNLL i2b2
F1 ∆F1 F1 ∆F1

The Complete Model 75.7 - 95.2 -

–OMCS 74.8 -0.9 95.1 -0.1
–Medical-KG 74.5 -1.2 94.6 -0.6
–Ling 73.8 -1.9 94.9 -0.3
–SP 74.0 -1.7 94.7 -0.5

Table 4: The performance of our model with removing
different knowledge resources. The F1 of each case and
the difference of F1 between each case and the com-
plete model are reported.

ond, adding knowledge in an appropriate man-
ner within neural models is helpful, which is sup-
ported by that our model outperforms the End2end
model and the Without KG one on both datasets,
especially CoNLL, where the external knowledge
plays a more important role. Third, the knowl-
edge attention module ensures our model to pre-
dict more precisely, which also results in the over-
all improvement on F1. To summarize, the results
suggest that external knowledge is important for
effectively resolving pronoun coreference, where
rich contextual information determines the appro-
priate knowledge with a well-designed module.

5 Analysis

Further analysis is conducted in this section re-
garding the effect of different knowledge re-
sources, model components, and settings. Details
are illustrated as follows.

5.1 Ablation Study

We ablate different knowledge for their contribu-
tions in our model, with the results reported in Ta-
ble 4. It is observed that all knowledge resources
contribute to the final success of our model, where
different knowledge types play their unique roles
in different datasets. For example, the Ling knowl-
edge contributes the most to the CoNLL dataset
while the medical knowledge is the most impor-
tant one for the medical data.

5.2 Effect of the Selection Threshold

We experiment with different thresholds t for the
softmax selection. The effects of t against overall
performance are shown in Figure 4. In general,
with the increase of t, fewer candidates are se-
lected. Therefore, the overall precision increases
and the recall drops. Consider that both the preci-
sion and recall are important for resolving pronoun

Figure 4: Effect of different softmax selection thresh-
olds with respect to our model performance on two
datasets. In general, with the threshold becoming
larger, less candidates are selected, the precision thus
increases while the recall drops.

Model Setting CoNLL i2b2

End2end Original 71.6 92.3
+ Gold mention 77.8 94.4

Our Model Original 75.7 95.2
+ Gold mention 80.7 96.0

(Zhang et al., 2019b) + Gold mention 79.9 -

Table 5: Influence of gold mentions. F1 scores on dif-
ferent test sets are reported. Adding human-annotated
gold mentions help both the End2end and our model.
Best performed model are indicated with the bold font.

coreference, we select different thresholds for dif-
ferent datasets to ensure the balance between pre-
cision and recall. In detail, for the CoNLL dataset,
we set r = 10−2 to select the most confident pre-
dictions; and for the i2b2 dataset, we set r = 10−8

so as to keep more predictions.

5.3 Effect of Gold Mentions

The effect of adding gold mentions is shown in
Table 5. Providing gold mentions to the End2end
model can significantly boost its performance by
6.2 F1 and 2.1 F1 on the CoNLL and i2b2 dataset,
respectively. Yet, the performance gain from gold
mentions is less for our model. Such results
clearly illustrate that our model is able to ben-
efit the mention detection with the help of KG
incorporation. Besides that, with the help of
gold mentions, our model achieves the compara-
ble (slightly better) performance with the context-
and-knowledge model (Zhang et al., 2019b). As
their features are originally designed for CoNLL,
we only report the performance on CoNLL in Ta-
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Model Training data Test data
CoNLL i2b2

End2end CoNLL 71.6 75.2
i2b2 20.0 92.3

Our Model CoNLL 75.7 80.9
i2b2 42.7 95.2

Table 6: Cross-domain performance of different mod-
els. F1 on the target domain test sets are reported.

ble 5. As we also included one new challeng-
ing pronoun type, the demonstrative pronoun, the
overall performance of their model is lower than
the one reported in the original paper. The reason
of our model being better is that more knowledge
resources (e.g., OMCS) can be incorporated into
our model due to its generalizable design. More-
over, it is more difficult for their method (Zhang
et al., 2019b) to incorporate mention detection into
the model, because in this case we need to enumer-
ate all mention spans and generate corresponding
features for all spans. which is expensive and dif-
ficult to acquire.

5.4 Cross-domain Evaluation

Considering that neural models are intensive data-
driven and normally restricted by data nature, they
are not easily applied in a cross-domain setting.
However, if a model is required to perform in
real applications, it has to show promising per-
formance on those cases out of the training data.
Herein we investigate the performance of different
models with training and testing in different do-
mains, with the results reported in Table 6. Over-
all, all models perform significantly worse if they
are used cross domains. Specifically, if we train
the End2end model on the CoNLL dataset and test
it on the i2b2 dataset, it only achieves 75.2 F1. As
a comparison, our model can achieve 80.9 F1 in
the same case. This observation confirms the ca-
pability of knowledge where our model is able to
handle. A similar observation is also drawn for the
reversed case. However, even though our model
outperforms the End2end model by 22.7 F1 from
i2b2 to CoNLL, its overall performance is still
poor, which might be explained by that the i2b2
is an in-domain dataset and the knowledge con-
tained in its training data is rarely useful for the
general (news) domain dataset. Nevertheless, this
experiment clearly shows that the generalization
ability of deep models is still crucial for building
a successful coreference model, and learns to use
knowledge is a promising solution to it.

Example A Example B

Sentence He walks into the
room with one
magazine and
drops it on the
couch.

... A small area of
erythema around his
arm ... This will be
treated empirically.

Prediction magazine erythema

Knowledge (‘magazine’,
dobj, ‘drop’)

(‘erythema’, IsA,
‘disease’)

Table 7: The case study on two examples from the
test data, i.e., A: from the CoNLL and B: from the
i2b2. Pronouns and correct mentions are marked by red
bold and blue underline font respectively. Knowledge
triplets used for them are listed in the bottom row.

6 Case Study

To better illustrate the effectiveness of incorporat-
ing different knowledge in this task, two exam-
ples are provided for the case study in Table 7.
In example A, our model correctly predicts that
‘it’ refers to the ‘magazine’ rather than the ‘room’,
because we successfully retrieve the knowledge
that compared with the ‘room’, the ‘magazine’ is
more likely to be the object of drop. In example
B, even though the distance between ‘erythema’
and ‘This’ is relatively far11, our model is able to
determine the coreference relation between them
because it successfully finds out that ‘erythema’ is
a kind of disease, while a lot of diseases appear as
the context of ‘be treated’ in the training data.

7 Related Work

Detecting mention spans in linguistic expressions
and identifying coreference relations among them
is a core task, namely, coreference resolution, for
natural language understanding. Mention detec-
tion and coreference prediction are the two major
focuses of the task as listed in Lee et al. (2017).
Compared to general coreference problem, pro-
noun coreference resolution has its unique chal-
lenge since pronouns themselves have weak se-
mantics meanings, which make it the most chal-
lenging sub-task in general coreference resolution.
To address the unique difficulty brought by pro-
nouns, we thus focus on resolving pronoun coref-
erences in this paper.

Resolving pronoun coreference relations often
requires the support of manually crafted knowl-
edge (Rahman and Ng, 2011; Emami et al., 2018),

11We omit the intermediate part of the long sentence in the
table for a clear presentation.
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especially for particular domains such as medicine
(Uzuner et al., 2012) and biology (Cohen et al.,
2017). Previous studies on pronoun coreference
resolution incorporated external knowledge in-
cluding human defined rules (Hobbs, 1978; Ng,
2005), e.g., number/gender requirement of dif-
ferent pronouns, domain-specific knowledge such
as medical (Jindal and Roth, 2013) or biologi-
cal (Trieu et al., 2018) ones, and world knowl-
edge (Rahman and Ng, 2011), such as selectional
preference (Wilks, 1975). Later, end-to-end so-
lutions (Lee et al., 2017, 2018) were proposed
to learn contextual information and solve coref-
erences synchronously with neural networks, e.g.,
LSTM. Their results proved that such knowledge
is helpful when appropriately used for coreference
resolution. However, external knowledge is of-
ten omitted in their models. Consider that con-
text and external knowledge have their own advan-
tages: the contextual information covering diverse
text expressions that are difficult to be predefined
while the external knowledge being usually more
precisely constructed and able to provide extra in-
formation beyond the training data, one could ben-
efit from both sides for this task. Different from
previous studies, we provide a generic solution
to resolving pronoun coreference with the support
of knowledge graphs based on contextual mod-
eling, where deep learning models are adopted
in our work to incorporate knowledge into pro-
noun coreference resolution and achieve remark-
ably good results.

8 Conclusion

In this paper, we explore how to build a
knowledge-aware pronoun coreference resolution
model, which is able to leverage different external
knowledge for this task. The proposed model is
an attempt of the general solution of incorporating
knowledge (in the form of KG) into the deep learn-
ing based pronoun coreference model, rather than
using knowledge as features or rules in a dedicated
manner. As a result, any knowledge resource pre-
sented in the format of triplets, the most widely
used entry format for KG, can be consumed in our
model with a proposed attention module. Experi-
mental results on two different corpora from two
domains demonstrate the superiority of the pro-
posed model to all baselines. Moreover, as our
model learns to use knowledge rather than just fit-
ting the training data, our model achieves much

better and more robust performance than state-of-
the-art models in the cross-domain scenario.
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