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Abstract

Dependency trees convey rich structural in-
formation that is proven useful for extract-
ing relations among entities in text. However,
how to effectively make use of relevant infor-
mation while ignoring irrelevant information
from the dependency trees remains a challeng-
ing research question. Existing approaches
employing rule based hard-pruning strategies
for selecting relevant partial dependency struc-
tures may not always yield optimal results. In
this work, we propose Attention Guided Graph
Convolutional Networks (AGGCNs), a novel
model which directly takes full dependency
trees as inputs. Our model can be understood
as a soft-pruning approach that automatically
learns how to selectively attend to the relevant
sub-structures useful for the relation extrac-
tion task. Extensive results on various tasks
including cross-sentence n-ary relation extrac-
tion and large-scale sentence-level relation ex-
traction show that our model is able to bet-
ter leverage the structural information of the
full dependency trees, giving significantly bet-
ter results than previous approaches.

1 Introduction

Relation extraction aims to detect relations among
entities in the text. It plays a significant role in
a variety of natural language processing applica-
tions including biomedical knowledge discovery
(Quirk and Poon, 2017), knowledge base popula-
tion (Zhang et al., 2017) and question answering
(Yu et al., 2017). Figure 1 shows an example about
expressing a relation sensitivity among three enti-
ties L858E, EGFR and gefitinib in two sentences.

Most existing relation extraction models can be
categorized into two classes: sequence-based and
dependency-based. Sequence-based models op-
erate only on the word sequences (Zeng et al.,

∗∗Equally Contributed.

2014; Wang et al., 2016), whereas dependency-
based models incorporate dependency trees into
the models (Bunescu and Mooney, 2005; Peng
et al., 2017). Compared to sequence-based mod-
els, dependency-based models are able to capture
non-local syntactic relations that are obscure from
the surface form alone (Zhang et al., 2018). Var-
ious pruning strategies are also proposed to distill
the dependency information in order to further im-
prove the performance. Xu et al. (2015b,c) apply
neural networks only on the shortest dependency
path between the entities in the full tree. Miwa and
Bansal (2016) reduce the full tree to the subtree
below the lowest common ancestor (LCA) of the
entities. Zhang et al. (2018) apply graph convolu-
tional networks (GCNs) (Kipf and Welling, 2017)
model over a pruned tree. This tree includes to-
kens that are up to distance K away from the de-
pendency path in the LCA subtree.

However, rule-based pruning strategies might
eliminate some important information in the full
tree. Figure 1 shows an example in cross-sentence
n-ary relation extraction that the key tokens par-
tial response would be excluded if the model only
takes the pruned tree into consideration. Ideally,
the model should be able to learn how to main-
tain a balance between including and excluding
information in the full tree. In this paper, we pro-
pose the novel Attention Guided Graph Convo-
lutional Networks (AGGCNs), which operate di-
rectly on the full tree. Intuitively, we develop a
“soft pruning” strategy that transforms the origi-
nal dependency tree into a fully connected edge-
weighted graph. These weights can be viewed as
the strength of relatedness between nodes, which
can be learned in an end-to-end fashion by using
self-attention mechanism (Vaswani et al., 2017).

In order to encode a large fully connected graph,
we next introduce dense connections (Huang et al.,
2017) to the GCN model following (Guo et al.,
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The deletion mutation on exon-19 of EGFR gene was present in 16 patients, while the L858E point mutation on exon-21 was noted.

All patients were treated response.with gefitinib and showed a partial
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Figure 1: An example dependency tree for two sentences expressing a relation (sensitivity) among three entities.
The shortest dependency path between these entities is highlighted in bold (edges and tokens). The root node of
the LCA subtree of entities is present. The dotted edges indicate tokens K=1 away from the subtree. Note that
tokens partial response off these paths (shortest dependency path, LCA subtree, pruned tree when K=1).

2019). For GCNs, L layers will be needed in or-
der to capture neighborhood information that is
L hops away. A shallow GCN model may not
be able to capture non-local interactions of large
graphs. Interestingly, while deeper GCNs can cap-
ture richer neighborhood information of a graph,
empirically it has been observed that the best per-
formance is achieved with a 2-layer model (Xu
et al., 2018). With the help of dense connections,
we are able to train the AGGCN model with a
large depth, allowing rich local and non-local de-
pendency information to be captured.

Experiments show that our model is able to
achieve better performance for various tasks.
For the cross-sentence relation extraction task,
our model surpasses the current state-of-the-
art models on multi-class ternary and binary
relation extraction by 8% and 6% in terms
of accuracy respectively. For the large-
scale sentence-level extraction task (TACRED
dataset), our model is also consistently bet-
ter than others, showing the effectiveness of
the model on a large training set. Our code
is available at http://www.statnlp.org/
research/information-extraction1

Our contributions are summarized as follows:
• We propose the novel AGGCNs that learn a

“soft pruning” strategy in an end-to-end fash-
ion, which learns how to select and discard
information. Combining with dense connec-
tions, our AGGCN model is able to learn a
better graph representation.
• Our model achieves new state-of-the-art re-

sults without additional computational over-

1Implementation is based on Pytorch (Paszke et al., 2017).

head when compared with previous GCNs.2

Unlike tree-structured models (e.g., Tree-
LSTM (Tai et al., 2015)), it can be efficiently
applied over dependency trees in parallel.

2 Attention Guided GCNs

In this section, we will present the basic compo-
nents used for constructing our AGGCN model.

2.1 GCNs
GCNs are neural networks that operate directly
on graph structures (Kipf and Welling, 2017).
Here we mathematically illustrate how multi-layer
GCNs work on a graph. Given a graph with n
nodes, we can represent the graph with an n × n
adjacency matrix A. Marcheggiani and Titov
(2017) extend GCNs for encoding dependency
trees by incorporating directionality of edges into
the model. They add a self-loop for each node in
the tree. Opposite direction of a dependency arc is
also included, which means Aij = 1 and Aji = 1
if there is an edge going from node i to node j,
otherwise Aij = 0 and Aji = 0. The convolu-
tion computation for node i at the l-th layer, which
takes the input feature representation h(l−1) as in-
put and outputs the induced representation h

(l)
i ,

can be defined as:

h
(l)
i = ρ

( n∑
j=1

AijW
(l)h

(l−1)
j + b(l)

)
(1)

where W(l) is the weight matrix, b(l) is the
bias vector, and ρ is an activation function (e.g.,
RELU). h(0)

i is the initial input xi, where xi ∈ Rd

and d is the input feature dimension.
2The size of the adjacency matrix representing the fully

connected graph is the same as the one of the original tree.

http://www.statnlp.org/research/information-extraction
http://www.statnlp.org/research/information-extraction
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Figure 2: The AGGCN model is shown with an example sentence and its dependency tree. It is composed of
M identical blocks and each block has three types of layers as shown on the right. Every block takes node
embeddings and adjacency matrix that represents the graph as inputs. Then N attention guided adjacency matrices
are constructed by using multi-head attention as shown at bottom left. The original dependency tree is transformed
into N different fully connected edge-weighted graphs (self-loops are omitted for simplification). Numbers near
the edges represent the weights in the matrix. Resulting matrices are fed into N separate densely connected layers,
generating new representations. Top left shows an example of the densely connected layer, where the number (L) of
sub-layers is 3 (L is a hyper-parameter). Each sub-layer concatenates all preceding outputs as the input. Eventually,
a linear combination is applied to combine outputs of N densely connected layers into hidden representations.

2.2 Attention Guided Layer

The AGGCN model is composed of M identical
blocks as shown in Figure 2. Each block consists
of three types of layers: attention guided layer,
densely connected layer and linear combination
layer. We first introduce the attention guided layer
of the AGGCN model.

As we discuss in Section 1, most existing prun-
ing strategies are predefined. They prune the full
tree into a subtree, based on which the adjacency
matrix is constructed. In fact, such strategies can
also be viewed as a form of hard attention (Xu
et al., 2015a), where edges that connect nodes not
on the resulting subtree will be directly assigned
zero weights (not attended). Such strategies might
eliminate relevant information from the original
dependency tree. Instead of using rule-based prun-
ing, we develop a “soft pruning” strategy in the at-
tention guided layer, which assigns weights to all
edges. These weights can be learned by the model
in an end-to-end fashion.

In the attention guided layer, we transform the
original dependency tree into a fully connected
edge-weighted graph by constructing an attention
guided adjacency matrix Ã. Each Ã corresponds
to a certain fully connected graph and each entry
Ãij is the weight of the edge going from node i to
node j. As shown in Figure 2, Ã(1) represents a

fully connected graph G(1). Ã can be constructed
by using self-attention mechanism (Cheng et al.,
2016), which is an attention mechanism (Bah-
danau et al., 2015) that captures the interactions
between two arbitrary positions of a single se-
quence. Once we get Ã, we can use it as the in-
put for the computation of the later graph convolu-
tional layer. Note that the size of Ã is the same as
the original adjacency matrix A (n × n). There-
fore, no additional computational overhead is in-
volved. The key idea behind the attention guided
layer is to use attention for inducing relations be-
tween nodes, especially for those connected by in-
direct, multi-hop paths. These soft relations can be
captured by differentiable functions in the model.

Here we compute Ã by using multi-head at-
tention (Vaswani et al., 2017), which allows the
model to jointly attend to information from differ-
ent representation subspaces. The calculation in-
volves a query and a set of key-value pairs. The
output is computed as a weighted sum of the val-
ues, where the weight is computed by a function
of the query with the corresponding key.

Ã(t) = softmax(
QWQ

i × (KWK
i )T√

d
)V (2)

where Q and K are both equal to the collective
representation h(l−1) at layer l − 1 of the AG-
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GCN model. The projections are parameter ma-
trices WQ

i ∈ Rd×d and WK
i ∈ Rd×d. Ã(t) is

the t-th attention guided adjacency matrix corre-
sponding to the t-th head. Up to N matrices are
constructed, where N is a hyper-parameter.

Figure 2 shows an example that the original ad-
jacency matrix is transformed into multiple atten-
tion guided adjacency matrices. Accordingly, the
input dependency tree is converted into multiple
fully connected edge-weighted graphs. In prac-
tice, we treat the original adjacency matrix as an
initialization so that the dependency information
can be captured in the node representations for
later attention calculation. The attention guided
layer is included starting from the second block.

2.3 Densely Connected Layer
Unlike previous pruning strategies, which lead
to a resulting structure that is smaller than the
original structure, our attention guided layer out-
puts a larger fully connected graph. Following
(Guo et al., 2019), we introduce dense connections
(Huang et al., 2017) into the AGGCN model in or-
der to capture more structural information on large
graphs. With the help of dense connections, we
are able to train a deeper model, allowing rich lo-
cal and non-local information to be captured for
learning a better graph representation.

Dense connectivity is shown in Figure 2. Direct
connections are introduced from any layer to all its
preceding layers. Mathematically, we first define
g
(l)
j as the concatenation of the initial node repre-

sentation and the node representations produced in
layers 1, · · · , l − 1:

g
(l)
j = [xj ;h

(1)
j ; ...;h

(l−1)
j ]. (3)

In practice, each densely connected layer has
L sub-layers. The dimensions of these sub-layers
dhidden are decided by L and the input feature di-
mension d. In AGGCNs, we use dhidden = d/L.
For example, if the densely connected layer has 3
sub-layers and the input dimension is 300, the hid-
den dimension of each sub-layer will be dhidden =
d/L = 300/3 = 100. Then we concatenate the
output of each sub-layer to form the new repre-
sentation. Therefore, the output dimension is 300
(3 × 100). Different from the GCN model whose
hidden dimension is larger than or equal to the in-
put dimension, the AGGCN model shrinks the hid-
den dimension as the number of layers increases in
order to improves the parameter efficiency similar
to DenseNets (Huang et al., 2017).

Since we have N different attention guided ad-
jacency matrices, N separate densely connected
layers are required. Accordingly, we modify the
computation of each layer as follows (for the t-th
matrix Ã(t)):

h
(l)
ti

= ρ
( n∑

j=1

Ã
(t)
ij W

(l)
t g

(l)
j + b

(l)
t

)
(4)

where t = 1, ..., N and t selects the weight ma-
trix and bias term associated with the attention
guided adjacency matrix Ã(t). The column di-
mension of the weight matrix increases by dhidden
per sub-layer, i.e., W(l)

t ∈ Rdhidden×d(l) , where
d(l) = d+ dhidden × (l − 1).

2.4 Linear Combination Layer
The AGGCN model includes a linear combination
layer to integrate representations from N different
densely connected layers. Formally, the output of
the linear combination layer is defined as:

hcomb = Wcombhout + bcomb (5)

where hout is the output by concatenating out-
puts from N separate densely connected layers,
i.e., hout = [h(1); ...;h(N)] ∈ Rd×N . Wcomb ∈
R(d×N)×d is a weight matrix and bcomb is a bias
vector for the linear transformation.

2.5 AGGCNs for Relation Extraction
After applying the AGGCN model over the depen-
dency tree, we obtain hidden representations of all
tokens. Given these representations, the goal of re-
lation extraction is to predict a relation among en-
tities. Following (Zhang et al., 2018), we concate-
nate the sentence representation and entity repre-
sentations to get the final representation for classi-
fication. First we need to obtain the sentence rep-
resentation hsent. It can be computed as:

hsent = f(hmask) = f(AGGCN(x)) (6)

where hmask represents the masked collective
hidden representations. Masked here means we
only select representations of tokens that are not
entity tokens in the sentence. f : Rd×n → Rd×1

is a max pooling function that maps from n output
vectors to 1 sentence vector. Similarly, we can ob-
tain the entity representations. For the i-th entity,
its representation hei can be computed as:

hei = f(hei) (7)
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where hei indicates the hidden representation cor-
responding to the i-th entity.3 Entity representa-
tions will be concatenated with sentence represen-
tation to form a new representation. Following
(Zhang et al., 2018), we apply a feed-forward neu-
ral network (FFNN) over the concatenated repre-
sentations inspired by relational reasoning works
(Santoro et al., 2017; Lee et al., 2017):

hfinal = FFNN([hsent;he1 ; ...hei ]) (8)

where hfinal will be taken as inputs to a logistic
regression classifier to make a prediction.

3 Experiments

3.1 Data
We evaluate the performance of our model on two
tasks, namely, cross-sentence n-ary relation ex-
traction and sentence-level relation extraction.

For the cross-sentence n-ary relation extraction
task, we use the dataset introduced in (Peng et al.,
2017), which contains 6,987 ternary relation in-
stances and 6,087 binary relation instances ex-
tracted from PubMed.4 Most instances contain
multiple sentences and each instance is assigned
with one of the five labels, including “resistance
or nonresponse”, “sensitivity”, “response”, “resis-
tance” and “none”. We consider two specific tasks
for evaluation, i,e., binary-class n-ary relation ex-
traction and multi-class n-ary relation extraction.
For binary-class n-ary relation extraction, we fol-
low (Peng et al., 2017) to binarize multi-class la-
bels by grouping the four relation classes as “yes”
and treating “none” as “no”.

For the sentence-level relation extraction task,
we follow the experimental settings in (Zhang
et al., 2018) to evaluate our model on the TACRED
dataset (Zhang et al., 2017) and Semeval-10 Task
8 (Hendrickx et al., 2010). With over 106K in-
stances, the TACRED dataset introduces 41 rela-
tion types and a special “no relation” type to de-
scribe the relations between the mention pairs in
instances. Subject mentions are categorized into
“person” and “organization”, while object men-
tions are categorized into 16 fine-grained types, in-
cluding “date”, “location”, etc. Semeval-10 Task
8 is a public dataset, which contains 10,717 in-
stances with 9 relations and a special “other” class.

3The number of entities is fixed in n-ary relation extrac-
tion task. It is 3 for the first dataset and 2 for the second.

4The dataset is available at https://github.com/
freesunshine0316/nary-grn

3.2 Setup

We tune the hyper-parameters according to results
on the development sets. For the cross-sentence n-
ary relation extraction task, we use the same data
split used in (Song et al., 2018b)4, while for the
sentence-level relation extraction task, we use the
same development set from (Zhang et al., 2018)5.

We choose the number of heads N for at-
tention guided layer from {1, 2, 3, 4}, the block
number M from {1, 2, 3}, the number of sub-
layers L in each densely connected layer from
{2, 3, 4, 5, 6}. Through preliminary experiments
on the development sets, we find that the com-
binations (N=2, M=2, L=5, dhidden=340) and
(N=3, M=2, L=5, dhidden=300) give the best
results on cross-sentence n-ary relation extrac-
tion and sentence-level relation extraction, respec-
tively. GloVe (Pennington et al., 2014)6 vectors
are used as the initialization for word embeddings.

Models are evaluated using the same metrics as
previous work (Song et al., 2018b; Zhang et al.,
2018). We report the test accuracy averaged over
five cross validation folds (Song et al., 2018b) for
the cross-sentence n-ary relation extraction task.
For the sentence-level relation extraction task, we
report the micro-averaged F1 scores for the TA-
CRED dataset and the macro-averaged F1 scores
for the SemEval dataset (Zhang et al., 2018).

3.3 Results on Cross-Sentence n-ary Relation
Extraction

For cross-sentence n-ary relation extraction task,
we consider three kinds of models as baselines: 1)
a feature-based classifier (Quirk and Poon, 2017)
based on shortest dependency paths between all
entity pairs, 2) Graph-structured LSTM meth-
ods, including Graph LSTM (Peng et al., 2017),
bidirectional DAG LSTM (Bidir DAG LSTM)
(Song et al., 2018b) and Graph State LSTM (GS
GLSTM) (Song et al., 2018b). These meth-
ods extend LSTM to encode graphs constructed
from input sentences with dependency edges, 3)
Graph convolutional networks (GCN) with pruned
trees, which have shown efficacy on the relation
extraction task (Zhang et al., 2018)7. Addition-

5https://nlp.stanford.edu/projects/
tacred/

6We use the 300-dimensional Glove word vectors
trained on the Common Crawl corpus https://nlp.
stanford.edu/projects/glove/

7The results are produced by the open implementation
of Zhang et al. (2018).

https://github.com/freesunshine0316/nary-grn
https://github.com/freesunshine0316/nary-grn
https://nlp.stanford.edu/projects/tacred/
https://nlp.stanford.edu/projects/tacred/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Model
Binary-class Multi-class

T B T B
Single Cross Single Cross Cross Cross

Feature-Based (Quirk and Poon, 2017) 74.7 77.7 73.9 75.2 - -
SPTree (Miwa and Bansal, 2016) - - 75.9 75.9 - -
Graph LSTM-EMBED (Peng et al., 2017) 76.5 80.6 74.3 76.5 - -
Graph LSTM-FULL (Peng et al., 2017) 77.9 80.7 75.6 76.7 - -
00000000000000000 + multi-task - 82.0 - 78.5 - -
Bidir DAG LSTM (Song et al., 2018b) 75.6 77.3 76.9 76.4 51.7 50.7
GS GLSTM (Song et al., 2018b) 80.3 83.2 83.5 83.6 71.7 71.7

GCN (Full Tree) (Zhang et al., 2018) 84.3 84.8 84.2 83.6 77.5 74.3
GCN (K=0) (Zhang et al., 2018) 85.8 85.8 82.8 82.7 75.6 72.3
GCN (K=1) (Zhang et al., 2018) 85.4 85.7 83.5 83.4 78.1 73.6
GCN (K=2) (Zhang et al., 2018) 84.7 85.0 83.8 83.7 77.9 73.1

AGGCN (ours) 87.1 87.0 85.2 85.6 79.7 77.4

Table 1: Average test accuracies in five-fold validation for binary-class n-ary relation extraction and multi-class
n-ary relation extraction. “T” and “B” denote ternary drug-gene-mutation interactions and binary drug-mutation
interactions, respectively. Single means that we report the accuracy on instances within single sentences, while
Cross means the accuracy on all instances. K in the GCN models means that the preprocessed pruned trees
include tokens up to distance K away from the dependency path in the LCA subtree.

ally, we follow (Song et al., 2018b) to consider
the tree-structured LSTM method (SPTree) (Miwa
and Bansal, 2016) on drug-mutation binary rela-
tion extraction. Main results are shown in Table 1.

We first focus on the binary-class n-ary rela-
tion extraction task. For ternary relation extrac-
tion (first two columns in Table 1 ), our AGGCN
model achieves accuracies of 87.1 and 87.0 on in-
stances within single sentence (Single) and on
all instances (Cross), respectively, which outper-
form all the baselines. More specifically, our AG-
GCN model surpasses the state-of-the-art Graph-
structured LSTM model (GS GLSTM) by 6.8 and
3.8 points for the Single and Cross settings,
respectively. Compared to GCN models , our
model obtains 1.3 and 1.2 points higher than the
best performing model with pruned tree (K=1).
For binary relation extraction (third and fourth
columns in Table 1), AGGCN consistently outper-
forms GS GLSTM and GCN as well.

These results suggest that, compared to previ-
ous full tree based methods, e.g., GS GLSTM,
AGGCN is able to extract more information
from the underlying graph structure to learn a
more expressive representation through graph con-
volutions. AGGCN also performs better than
GCNs, although its performance can be boosted
via pruned trees. We believe this is because of
the combination of densely connected layer and

attention guided layer. The dense connections
could facilitate information propagation in large
graphs, enabling AGGCN to efficiently learn from
long-distance dependencies without pruning tech-
niques. Meanwhile, the attention guided layer
can further distill relevant information and filter
out noises from the representation learned by the
densely connected layer.

We next show the results on the multi-class clas-
sification task (last two columns in Table 1). We
follow (Song et al., 2018b) to evaluate our model
on all instances for both ternary and binary rela-
tions. This fine-grained classification task is much
harder than coarse-grained classification task. As
a result, the performance of all models degrades
a lot. However, our AGGCN model still obtains
8.0 and 5.7 points higher than the GS GLSTM
model for ternary and binary relations, respec-
tively. We also notice that our AGGCN achieves
a better test accuracy than all GCN models, which
further demonstrates its ability to learn better rep-
resentations from full trees.

3.4 Results on Sentence-level Relation
Extraction

We now report the results on the TACRED dataset
for the sentence-level relation extraction task in
Table 2. We compare our model against two
kinds of models: 1) dependency-based models, 2)
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Model P R F1

LR (Zhang et al., 2017) 73.5 49.9 59.4
SDP-LSTM (Xu et al., 2015c)* 66.3 52.7 58.7
Tree-LSTM (Tai et al., 2015)** 66.0 59.2 62.4
PA-LSTM (Zhang et al., 2017) 65.7 64.5 65.1

GCN (Zhang et al., 2018) 69.8 59.0 64.0
C-GCN (Zhang et al., 2018) 69.9 63.3 66.4

AGGCN (ours) 69.9 60.9 65.1
C-AGGCN (ours) 71.8 66.4 69.0

Table 2: Results on the TACRED dataset. Model with
* indicates that the results are reported in Zhang et al.
(2017), while model with ** indicates the results are
reported in Zhang et al. (2018).

Model F1

SVM (Rink and Harabagiu, 2010) 82.2
SDP-LSTM (Xu et al., 2015c) 83.7
SPTree (Miwa and Bansal, 2016) 84.4
PA-LSTM (Zhang et al., 2017) 82.7
C-GCN (Zhang et al., 2018) 84.8

C-AGGCN (ours) 85.7

Table 3: Results on the SemEval dataset.

sequence-based models. Dependency-based mod-
els include the logistic regression classifier (LR)
(Zhang et al., 2017), Shortest Path LSTM (SDP-
LSTM) (Xu et al., 2015c), Tree-structured neu-
ral model (Tree-LSTM) (Tai et al., 2015), GCN
and Contextualized GCN (C-GCN) (Zhang et al.,
2018). Both GCN and C-GCN models use the
pruned trees. For sequence-based model, we con-
sider the state-of-the-art Position Aware LSTM
(PA-LSTM) (Zhang et al., 2017).

As shown in Table 2, the logistic regression
classifier (LR) obtains the highest precision score.
We hypothesize that the reason behind this is due
to the data imbalance issue. This feature-based
method tends to predict a highly frequent label as
the relation (e.g., “per:title”). Therefore, it has a
high precision while having a relatively low recall.
On the other hand, the neural models are able to
better balance the precision and recall scores.

Since GCN and C-GCN already show their
superiority over other dependency-based models
and PA-LSTM, we mainly compare our AGGCN
model with them. We can observe that AGGCN
outperforms GCN by 1.1 F1 points. We speculate

Model F1

C-AGGCN 69.0
0 – Attention-guided layer (AG) 67.1
0 – Dense connected layer (DC) 67.3
0 – AG, DC 66.7
0 – Feed-Forward layer (FF) 67.8

Table 4: An ablation study for C-AGGCN model.

Model F1

C-AGGCN (Full tree) 69.0
C-AGGCN (K=2) 67.5
C-AGGCN (K=1) 67.9
C-AGGCN (K=0) 67.0

Table 5: Results of C-AGGCN with pruned trees.

that the limited improvement is due to the lack of
contextual information about word order or dis-
ambiguation. Similar to C-GCN (Zhang et al.,
2018), we extend our AGGCN model with a bi-
directional LSTM network to capture the contex-
tual representations which are subsequently fed
into AGGCN layers. We term the modified model
as C-AGGCN. Our C-AGGCN model achieves an
F1 score of 69.0, which outperforms the state-of-
art C-GCN model by 2.6 points. We also notice
that AGGCN and C-AGGCN achieve better preci-
sion and recall scores than GCN and C-GCN, re-
spectively. The performance gap between GCNs
with pruned trees and AGGCNs with full trees em-
pirically show that the AGGCN model is better
at distinguishing relevant from irrelevant informa-
tion for learning a better graph representation.

We also evaluate our model on the SemEval
dataset under the same settings as (Zhang et al.,
2018). Results are shown in Table 3. This dataset
is much smaller than TACRED (only 1/10 of TA-
CRED in terms of the number of instances). Our
C-AGGCN model (85.7) consistently outperforms
the C-GCN model (84.8), showing the good gen-
eralizability.

3.5 Analysis and Discussion

Ablation Study. We examine the contributions
of two main components, namely, densely con-
nected layers and attention guided layers, using
the best-performing C-AGGCN model on the TA-
CRED dataset. Table 4 shows the results. We can
observe that adding either attention guided layers
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Figure 3: Comparison of C-AGGCN and C-GCN against different training data sizes. The results of C-GCN are
reproduced from (Zhang et al., 2018).
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Figure 4: Comparison of C-AGGCN and C-GCN
against different sentence lengths. The results of C-
GCN are reproduced from (Zhang et al., 2018).

or densely connected layers improves the perfor-
mance of the model. This suggests that both lay-
ers can assist GCNs to learn better information
aggregations, producing better representations for
graphs, where the attention-guided layer seems to
be playing a more significant role. We also no-
tice that the feed-forward layer is effective in our
model. Without the feed-forward layer, the result
drops to an F1 score of 67.8.

Performance with Pruned Trees. Table 5
shows the performance of the C-AGGCN model
with pruned trees, where K means that the pruned
trees include tokens that are up to distanceK away
from the dependency path in the LCA subtree.
We can observe that all the C-AGGCN models
with varied values of K are able to outperform the
state-of-the-art C-GCN model (Zhang et al., 2018)
(reported in Table 2). Specifically, with the same
setting as K=1, C-AGGCN surpasses C-GCN by

1.5 points of F1 score. This demonstrates that,
with the combination of densely connected layer
and attention guided layer, C-AGGCN can learn
better representations of graphs than C-GCN for
downstream tasks. In addition, we notice that the
performance of C-AGGCN with full trees outper-
forms all C-AGGCNs with pruned trees. These re-
sults further show the superiority of “soft pruning”
strategy over hard pruning strategy in utilizing full
tree information.

Performance against Sentence Length. Fig-
ure 4 shows the F1 scores of three models under
different sentence lengths. We partition the sen-
tence length into five classes (< 20, [20, 30), [30,
40), [40, 50), ≥50). In general, C-AGGCN with
full trees outperforms C-AGGCN with pruned
trees and C-GCN against various sentence lengths.
We also notice that C-AGGCN with pruned trees
performs better than C-GCN in most cases. More-
over, the improvement achieved by C-AGGCN
with pruned trees decays when the sentence length
increases. Such a performance degradation can be
avoided by using full trees, which provide more in-
formation of the underlying graph structures. Intu-
itively, with the increase of the sentence length, the
dependency graph becomes larger as more nodes
are included. This suggests that C-AGGCN can
benefit more from larger graphs (full tree).

Performance against Training Data Size. Fig-
ure 3 shows the performance of C-AGGCN and
C-GCN against different settings for training with
different amount of training data. We consider five
training settings (20%, 40%, 60%, 80%, 100% of
the training data). C-AGGCN consistently outper-
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forms C-GCN under the same amount of training
data. When the size of training data increases,
we can observe that the performance gap becomes
more obvious. Specifically, using 80% of the
training data, the C-AGGCN model is able to
achieve a F1 score of 66.5, higher than C-GCN
trained on the complete training set. These results
demonstrate that our model is more effective in
terms of using training resources.

4 Related Work

Our work builds on a rich line of recent efforts
on relation extraction models and graph convolu-
tional networks.

Relation Extraction. Early research efforts are
based on statistical methods. Tree-based kernels
(Zelenko et al., 2002) and dependency path-based
kernels (Bunescu and Mooney, 2005) are explored
to extract the relation. McDonald et al. (2005)
construct maximal cliques of entities to predict re-
lations. Mintz et al. (2009) include syntactic fea-
tures to a statistical classifier. Recently, sequence-
based models leverages different neural networks
to extract relations, including convolutional neural
networks (Zeng et al., 2014; Nguyen and Grish-
man, 2015; Wang et al., 2016), recurrent neural
networks (Zhou et al., 2016; Zhang et al., 2017)
the combination of both (Vu et al., 2016) and
transformer (Verga et al., 2018).

Dependency-based approaches also try to incor-
porate structural information into the neural mod-
els. Peng et al. (2017) first split the dependency
graph into two DAGs, then extend the tree LSTM
model (Tai et al., 2015) over these two graphs for
n-ary relation extraction. Closest to our work,
Song et al. (2018b) use graph recurrent networks
(Song et al., 2018a) to directly encode the whole
dependency graph without breaking it. The con-
trast between our model and theirs is reminiscent
of the contrast between CNN and RNN. Various
pruning strategies have also been proposed to dis-
till the dependency information in order to fur-
ther improve the performance. Xu et al. (2015b,c)
adapt neural models to encode the shortest depen-
dency path. Miwa and Bansal (2016) apply LSTM
model over the LCA subtree of two entities. Liu
et al. (2015) combine the shortest dependency path
and the dependency subtree. Zhang et al. (2018)
adopt a path-centric pruning strategy. Unlike these
strategies that remove edges in preprocessing, our
model learns to assign each edge a different weight

in an end-to-end fashion.

Graph Convolutional Networks. Early efforts
that attempt to extend neural networks to deal
with arbitrary structured graphs are introduced by
Gori et al. (2005); Bruna (2014). Subsequent ef-
forts improve its computational efficiency with lo-
cal spectral convolution techniques (Henaff et al.,
2015; Defferrard et al., 2016). Our approach is
closely related to the GCNs (Kipf and Welling,
2017), which restrict the filters to operate on a
first-order neighborhood around each node.

More recently, Velickovic et al. (2018) pro-
posed graph attention networks (GATs) to sum-
marize neighborhood states by using masked self-
attentional layers (Vaswani et al., 2017). Com-
pared to our work, their motivations and network
structures are different. In particular, each node
only attends to its neighbors in GATs whereas AG-
GCNs measure the relatedness among all nodes.
The network topology in GATs remains the same,
while fully connected graphs will be built in AG-
GCNs to capture long-range semantic interactions.

5 Conclusion

We introduce the novel Attention Guided Graph
Convolutional Networks (AGGCNs). Experimen-
tal results show that AGGCNs achieve state-of-
the-art results on various relation extraction tasks.
Unlike previous approaches, AGGCNs operate di-
rectly on the full tree and learn to distill the use-
ful information from it in an end-to-end fashion.
There are multiple venues for future work. One
natural question we would like to ask is how to
make use of the proposed framework to perform
improved graph representation learning for graph
related tasks (Bastings et al., 2017).
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