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Abstract

Natural Language Generation (NLG) is a
research task which addresses the auto-
matic generation of natural language text
representative of an input non-linguistic
collection of knowledge. In this paper,
we address the task of the generation of
grammatical sentences in an isolated con-
text given a partial bag-of-words which the
generated sentence must contain. We view
the task as a search problem (a problem of
choice) involving combinations of smaller
chunk based templates extracted from a
training corpus to construct a complete
sentence. To achieve that, we propose a
fitness function which we use in conjunc-
tion with an evolutionary algorithm as the
search procedure to arrive at a potentially
grammatical sentence (modeled by the fit-
ness score) which satisfies the input con-
straints.

1 Introduction

One of the reasons why NLG is a challenging
problem is because there are many ways in which
a given content can be represented. These are rep-
resented by the stylistic constraints which address
syntactic and pragmatic choices (largely) indepen-
dent of the information conveyed.

Classically, there are two major subtasks recog-
nized in NLG: Strategic Generation and Tactical
Generation (Sentence Planning and Surface Real-
ization)! (Reiter and Dale, 2000). Strategic Gen-
eration - “what to say” deals with identifying the
relevant information to present to the audience and
Tactical Generation - “how to say” addresses the

"Because we follow a template based approach, there is
some overlap between the Content Determination and Ag-
gregation steps.
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problems of linguistic representation of the input
concepts. In this work, we address the problem of
tactical generation, with a focus on the grammat-
icality of the generated sentences. We formulate
our task as follows: to generate syntactically cor-
rect sentences given a set of constraints such as a
bag-of-words, partial ordering, etc.

So, for example, given a bag of words such as
“man”, “plays”, “football” and length constraints,
a sentence like “The man plays football in Octo-
ber.” would be acceptable.

Our approach involves a corpus derived formu-
lation of template based generation. Templates are
instances of canned text with a slot-filler structure
(“‘gaps”) which can be filled with the appropriate
information thus realizing the sentence. Since they
are a manual resource, it is rather expensive and
hard to generalize over different types or domains
of text.

Thus, it is desirable to be able to automatically
extract templates from a corpus. Also, to increase
the syntactic coverage, we use sub-sentence level
(smaller) templates to generate a sentence.

2 Background and Related Work

Traditionally, template based systems are used in
scenarios where the output text is structurally very
well defined and/or requires very high quality text
as output with little variance. This work is in-
spired from (Van Deemter et al., 2005) who point
out that template based systems and “real” NLG
systems are “Turing equivalent” meaning that at
least in terms of expressiveness, there is no theo-
retical disparity between the two. (Rudnicky and
Oh, 2002) use language models to generate text. In
recent years, (Kondadadi et al., 2013) present a hy-
brid NLG system which generates text by ranking
tagged clusters of templates. NaturalOWL (Gala-
nis and Androutsopoulos, 2007) use templates for
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Figure 1: System architecture

their sentence plans and rules to manipulate them.

3 Core Assumptions and Motivation

As an extension of our previous work (Bhatnagar
and Mamidi, 2016), in this work, we adopt a sim-
plistic model of language - a sequence of linguistic
units. Given a set of such units, each possible sen-
tence is contained in the search space of all pos-
sible permutations. Thus, given a grammaticality
fitness function, pruning and vocabulary reduction
is essential to be able to tractably search this space.

Since templates are based on canned text, tem-
plates are locally grammatical. The core idea is
to effectively use the local grammaticality guar-
antee of a corpus extracted template to combine,
rather than construct the component templates to
generate a sentence. These templates themselves
contain individual tokens, effectively considering
templates as a unit of sentence construction in-
stead of tokens. The obvious trade-off is that since
there are a lot more templates than tokens, which
results in a much larger search space. However, if
appropriate abstractions are used, perhaps the vo-
cabulary problem can be mitigated somewhat.

The task is then twofold: how to determine
which templates to combine (pruning) and con-
straining that with a measure of grammaticality of
the generated sentence (fitness).
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4 Templates and Sentence
Representation

We use chunks as a basis for the linear templates
because chunks are linguistically sound and hence
the vocabulary increase is lesser compared to un-
constrained spans of text. In general, an extended
feature has syntactic identifiers added to the fea-
ture space. This is to better inform syntactic be-
havior of the template even though it increases
the feature space a little. Abstracted features have
multiple features clustered together which reduces
the feature space. We describe the extension pro-
cess below.

4.1 Abstraction

The chunks should be abstracted in such a way
so as to have a minimal impact on their syntactic
combination behavior.

All punctuation and stopwords are not ab-
stracted because they are highly relevant, syntac-
tically. Following are the mappings applied to the
chunks:

1. Named Entity Abstraction (NE): Each NE is
mapped to a unique symbol corresponding to
its category.

POS Abstraction (POS): POS categories such

as “CD”, “FW” and “SYM” and continuous

“NNP” and “NNPS” sequences are mapped

to their corresponding POS tags.

. Cluster Abstraction (WC): Each token (ex-
cept punctuation and stopwords), is mapped
to the cluster ID of its syntatico-semantic
cluster. Since a token can have multiple POS
categories which in turn effect its syntactic
behavior, we consider a token with different
POS categories as distinct while clustering.
The clusters are obtained by computing the
KMeans cluster for token-POS pairs with eu-
clidean distance of L2-normed vector embed-
dings.

4.2 Extended Categories

We extend the POS and chunk tag categories to
better inform template combinations:

1. Extended POS (EPOS): Each punctuation,
stopword and NE is assigned its own unique
POS category.

Extended Chunk Tags (ECTag): Since the
“0O” (outside) chunk tag is a “default” cate-
gory, it contributes a lot of syntactic confu-
sion, we assign a separate chunk tag for all



Table 1: Template Example

Chunk Feature =~ Chunk Template Template Feature

Chunk Tag “NP” “NP” Extended Chunk Tag (ECTag)
Tokens “a”, “popular”, “wrestler”  “a”, “JJ213”, “NN5266”  Tok-POS cluster (WC)

POS “DT”, “JJ”, “NN” “DT”, “JJ” ,“NN” Extended POS (EPOS)

Head token “wrestler” “NN5266” Head Tok-POS cluster (HWC)
Head POS “NN” “NN” Head Extended POS (HEPOS)

“a” and “NN5266”

Junction Tok-POS clusters (WCJ)

“DT”, “NN” Junction Extended POS (EPOSJ)
“a_ BLANK_BLANK” “Blank” Construction Feature (BlankCo)
“a_JJ_NN” Extended POS Construction Feature (EPOSCo)

chunks tagged “O” which contain sentence
endings (“.”, “’, or “!”) or brackets (“(” or
“)”). In addition, chunk tags for chunks con-
taining wh-words (POS tags “WDT”, “WP”,
“WP$” or “WRB”) are marked (eg. “NP” be-
comes “WNP”).

4.3 Template features

A template is created after applying abstractions
to a chunk and extending its syntactic categories.
The template, however has two more feature

types:

1. Junction Features (WCJ, EPOSJ): Junction

features are comprised of the leftmost and

rightmost features of the template. These
features are used to predict if two templates

“glue” together well at the point of contact

(the junction). Both factors (tok-pos clusters

and extended POS category) are applicable.

Head Features (HWC, HEPOS): Head fea-

tures represent the “external” features for a

chunk used to compute a global grammatical-

ity component. Both factors - extended POS
and tok-pos clusters are applicable.

. Construction features (BlankCo, EPOSCo):
Construction features represent the chunk as
a syntactic construction or a layout, encod-
ing the positional combination of the com-
ponents comprising it. It is constructed by
creating a feature for the ordered tuple of to-
kens comprising the chunk where all tokens
are mapped to a single “blank” symbol or its
extended POS except punctuations and stop-
words. Two factors (single “blank™ and ex-
tended POS) are applicable.

Table 1 shows an example chunk and its corre-
sponding derived template. A sentence is repre-
sented as a sequence of templates described above.

122

5 Scoring the template combinations

It should be noted that this score is not equivalent
to a syntactic correctness score, but rather a sub-
set of it. This is because here we are dealing with
configurations of untampered templates whose lo-
cal syntactic correctness still holds and the syntac-
tic incorrectness is a matter of their combinatorial
configuration while a grammaticality score needs
to deal with “broken” chunks as well.

The fitness score F' is a linear combination
of length-normalized total log-probabilities 7'P
of different sequences derived from the sentence
computed using an NGram language model. The
total probability of an NGram model is defined as:

TP(s) = P(w1|bos)P(wa|wibos)...

.P(eos|wgwg—1...05—n+t1)

(1

where n is the order of the language model, s is
a sequence and w; is the i element in 5. F is
a weighted sum of length-normalized total log-
probabilities of five different sequences:

nTP(s) =logio(TP(s))/(ls+1) (2
F(s) = a.nTP(ec) + aeonT P(co)/2
+a;nTP(j)/2+ apnTP(h)/2  (3)

+anTP(l)/2

where nT'P(s) is the length normalized total log-
probability for the sequence s where [ is the num-
ber of elements in that sequence. ec, co, j, h and [
represent the sequences in chunk score, construc-
tion score, junction score, head score and lexical
score. ay; are the weight for each component score
which are discussed:

1. Extended Chunk Score nT'P(ec) - This score
is calculated using the extended chunk tags
(ECTags) for the sentence. It is useful in de-
termining the global syntactic structure.



Table 2: A sentence and sequences used to compute the fitness

Template Feature Sequence Sentence

NP[Sand] VP[blows] PP[in] NP[the strong wind] .[.]

NP[NN969/NN] VP[VBZ29/VBZ] PP[in/in] NP[the/the JJ347/J1] NN628/NN] .[./.]

Extended Chunk Tags (ECTags) NP VP PP NP.

Blank Construction (BlankCo)

BLANK BLANK in the. BLANK_BLANK .

Extended POS Construction (EPOSCo)

NN VBZ in the_JJ_NN .

Tok-POS Junction (WCJ)

(bos, NNU69), (NNO69, VBZ29), (VBZ29, in), (in, the), (NN628, ), (., €05)

Extended POS Junction (EPJ)

(bos, NN), (NN, VBZ), (VBZ, in), (in, the), (NN, .), (., eos)

Head Tok-POS (HWC)

NN969 VBZ29 in NN628 .

Head Extended POS (HEPOS) NN VBZ in NN

Tok-POS Sequence (WCs)

NN969 VBZ29 in the JJ347 NN628 .

Extended POS Sequence (EPOSs)

2. Construction Score n1TP(co) - This score
is calculated using blank construction layout
(BlackCo) and extended POS construction
layout (EPOSCo). It is useful in augmenting
the overall grammaticality of the sentence as
it encodes the syntactic layout of the chunk
as a whole.

. Junction Score JP(j) - This score is calcu-
lated as the sum of the bigram probability of
the left junction of the right template condi-
tioned on the right junction of the left tem-
plate for both tok-pos clusters (WC) and ex-
tended POS (EPOS) for all junctions in the
sentence. This score represents a local view
of inter-template cohesiveness. It represents
how a sentence “glues” together.

. Head Score nTP(h) - This score is calcu-
lated using head tok-pos clusters (HWC) and
head extended POS (HEPOS). Counter to the
junction score, it represents a more semantic
view of the chunk interactions. This is be-
cause generally a chunk head is often the pri-
mary content word in that chunk.

. Lexical Score nT'P(l) - This score is com-
puted using the tok-pos clusters (WC) and
extended POS (EPOS). This score represents
a baseline grammaticality score on a lexical
level.

A sentence with all the sequences are fed to the

fitness function are shown in table 2.

6 Parameters for pruning the search
space

The search space is the space of all permutations
of the templates to form the sentence. Such a
search space is huge. We observe that depend-
ing on the particular constraints described in sec-
tion 7, we can prune the permutation search space.
This is done by finding a subset of the template
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NN VBZ in the JINN .

bank that can occur at each position in the tem-
plate sequence. The subsets are represented by a
set of constraints which we call a search config-
uration. Thus, say, if a sentence is determined to
have 5 templates, there will be a search configu-
ration computed for each template slot, in accor-
dance with the global constraints for the sentence.
Described below is the specification of a search
configuration:

1. Length The templates must contain exactly
the specified number of tokens (tok-pos clus-
ters) in it.

. Extended chunk tag (ECtag) The templates
must have the specified extended chunk tag.

. Tok-POS clusters and extended POS tags
(WC-EPOS) All the specified tok-pos clus-
ters and their corresponding extended POS
tags must be present in the templates.

Note that neither of the above constraints needs
to be specified for a search configuration, in which
case all templates can be considered to fill that po-
sition. We use memoization to make the pruning
computationally feasible.

Eg. if a search configuration has a length of
5, no preference specified for the extended search
tag and (cluster(“run”/NN), “NN”) in the tok-pos
(WC-EPOS) list, all templates containing 5 tokens
which also contain the cluster for run used as an
“NN” are valid for that configuration.

7 Search

To search the very large permutation space, we use
a population based searching method which uses
only mutation as the genetic operator for generat-
ing new solutions. Following are the components
of the evolutionary search:



7.1 Population Selection

The search can be parametrized by specifying a
collection of sentence level constraints which have
their own individual sub-constraints. These con-
straints are different from search configurations as
defined in section 6 as these constraints operate
on a sentence level, while search configurations,
which are derived from these constraints operate
on a template level. The sentence level constraints
are listed below:

1. Number of tokens: The number of tokens in
the generated sentence must be in a specified
range. A maximum value is required.

. Number of templates: The number of tem-
plates in the generated sentence must be in
the specified range.

. Chunk specifications (inclusion): For each
chunk specification, at least one template
must be present in the sentence which follows
it and it must satisfy all the sub-constraints
such as extended chunk tag and constituent
tok-pos clusters.

Position Chunk specifications: This is a

chunk constraint like the one described

above, with the additional constraint of a

fixed position.

. Ordered Chunk specifications: These are list
of chunk constraints with the additional con-
straint that they be in order in the generated
sentence.

. Tok-pos specifications (inclusion): The sen-
tence must contain the specified tok-pos clus-
ters.

. Ordered Tok-pos specifications: The speci-
fied tok-pos clusters must occur in the same
order in the sentence.

Note that every constraint and sub-constraint can

be left empty which means that there could be

no specification for the extended chunk tag for a

chunk constraint. Based on these sentence level

constraints, search configurations for each tem-
plate position are derived.

7.1.1 Sentence level constraints to template
level SearchConfigs

Based on the number of templates selected be-
tween the range given, it distributes the total
length specified between all the templates ran-
domly. Then, it arranges the Chunks, Ordered-
Chunks and PositionFixedChunks and distributes
the token level constraints (OrderedTokPOSs and
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TokPOSConstraints) to the templates. Now, all
three parameters of the SearchConfigs have been
minimally inferred and the search space can now
be pruned.

7.1.2 Sampling from the pruned space

Since we are dealing with naturally occurring text,
the distribution of the templates grouped by ex-
tended chunk tags follows a Zipf curve meaning
that almost 40% of the time, an ”"NP” is selected
and a “.” almost never gets a chance even though
both templates are prominent in the set of tem-
plates having the same chunk tag as them. This
drastically hampers the chances of getting struc-
tural variance in the templates constructed. To
remedy this, we assign weights to the set of tem-
plates with a dampening exponent of 0.4 which
makes the distribution more uniform, yet pre-
serves the selectional biases.
1. Dampen the Zipf for selection of extended
chunk tag
2. Dampen the Zipf for selection of templates
given an extended chunk tag
3. Obtain the distribution for selection of tem-
plates by multiplying probabilities taken
from the above two distribution.
This results in a damped Zipf curve for the se-
lection of templates which allows for much more
variance in the extended chunk tags of the gener-
ated sentences.

7.2 Mutation

To perform mutation, we randomly select a tem-
plate to mutate and using the dampened distribu-
tion obtained, we sample a template from the sub-
space corresponding to the search configuration of
that template position.

7.3 Selection and Evolution Strategy

We use elitist selection (pick the top k organisms)
with enforced variability. We enforce that at least
8% and 15% of the population have unique blank
construction layout and extended POS construc-
tion layout respectively. Following are the steps
for evolving the population.

1. Initialize population given a set of Con-
straints and sample a population of size 1000
Mutate the first half of the population and as-
sign it to the second half.

. compute fitnesses for all organisms and sort
population based on fitness score



. Retain organisms such that the variability
constraints are met.

. Re-initialize 25% of the population so that
different search configurations are searched.
6. Repeat 1 to 5 until 100 generations.

This evolution run gives a population consisting
of grammatical configurations which adhere to the
constraints given as input. There are still possibly
word clusters remaining which need to be filled
since sentences which are generated are comprised
of templates which contain clusters, not word
forms. We fill these cluster slots with the tokens
we gave in the initial bag-of-words constraints. To
do that, we run a random search on the best gener-
ated sentence and fill the cluster slots which max-
imizes the token and head token perplexity.

8 Experiment Setup

Following are the steps we took to conduct our ex-
periments:

1. We tokenized, POS tagged, NER tagged,
and chunked and abstracted the English
Wikipedia corpus using Stanford CoreNLP
(Manning et al., 2014), spaCy (Honnibal and
Montani, 2017) and LM-LSTM-CRF (Liu
et al., 2018) to extract the templates.

2. The number of clusters, & was chosen to be
7500.
3. We used lexvec(Salle et al., 2016) pretrained
vectors for clustering.
4. The weights for the fitness function were em-
pirically chosen to be 75, 10, 10, 5 and 2.
9 Results

Following are the top sentences generated with the
following constraints:
1. “cat” should be present:
the heated water plant is likewise formed en-
tirely of cat .
“what” as the first token and sentence con-
tains a “?”:
what does the right thing do ?
. “the” in position=0 and “.” in sentence:
the mid product can readily be used in poly-
nomial practices .
. “and”, “ate” and “ran” in sentence:
the division ate a plant of cape , ran a princi-
pal prying need and stockpiled superconduc-
tivity .
“on” and “in” in sentence:
PERSON bumped ORG in DATE on spirits
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of error .
6. “influential”, “large” and “red” in sentence:
large influential player vocals defined red to
the convenience of the detector .
We show the generation improvements for the first
sentence. As we can see, the algorithm is able
to generate a question with minimal supervision.
Also, in sentence 5, multiple PPs can be seen.

Some level of supervision is necessary to drive
the required syntax and content words to gener-
ate predictable outputs. We observe that there is
a bias in the model e.g. usage of “the” in the
starting noun phrase, and chaining verb phrases
and prepositional phrases. Hence, to generate a
question, one has to specify the position of the wh
word, otherwise the sentences often start with a
noun phrase.

Computationally, the search time increases with
increasing sentence lengths. On a reasonably
modern machine, our implementation generated
the above sentences in about 150 seconds while
using 2.2 GB of memory.”

10 Future Work

As a future work, detailed qualitative analysis and
minimum constraints needed to generate specific
linguistic structures can be done. Also, automatic
extraction of content words and other relevant con-
straints can be explored for generation.
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