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Abstract

We present a new architecture for named
entity recognition. Our model employs
multiple independent bidirectional LSTM
units across the same input and pro-
motes diversity among them by employ-
ing an inter-model regularization term. By
distributing computation across multiple
smaller LSTMs we find a reduction in
the total number of parameters. We find
our architecture achieves state-of-the-art
performance on the CoNLL 2003 NER
dataset.

1 Introduction

The ability to reason about entities in text is an
important element of natural language understand-
ing. Named entity recognition (NER) concerns it-
self with the identification of such entities. Given
a sequence of words, the task of NER is to label
each word with its appropriate corresponding en-
tity type. Examples of entity types include Person,
Organization, and Location. A special Other en-
tity type is often added to the set of all types and
is used to label words which do not belong to any
of the other entity types.

Recently, neural network based approaches
which use no language-specific resources, apart
from unlabeled corpora for training word embed-
dings, have emerged. There has been a shift of fo-
cus from handcrafting better features to designing
better neural architectures for solving NER.

In this paper, we propose a new parallel re-
current neural network model for entity recogni-
tion. We show that rather than using a single
LSTM component, as many other recent archi-
tecture have, we instead resort to using multiple
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smaller LSTM units. This has the benefit of reduc-
ing the total number of parameters in our model.
We present results on the CoNNL 2003 English
dataset and achieve the new state of the art results
for models without help from an outside lexicons.

1.1 Related Work

Various approaches have been proposed to
NER. Many of these approaches rely on hand-
crafted feature engineering or language-specific
or domain-specific resources (Zhou and Su, 2002;
Chieu and Ng, 2002; Florian et al., 2003; Settles,
2004; Nadeau and Sekine, 2007). While such ap-
proaches can achieve high accuracy, they may fail
to generalize to new languages, new corpora or
new types of entities to be identified. Thus, ap-
plying such techniques in new domains requires
making a heavy engineering investment.

Over time neural methods such as (Chiu and
Nichols, 2015; Ma and Hovy, 2016; Luo et al.,
2015; Lample et al., 2016) emerged. More re-
cently (Peters et al., 2017; Reimers and Gurevych,
2017; Sato et al., 2017) have set the top bench-
marks in the field.

Architecturally, our model is similar to those of
(Zhu et al., 2017; Hidasi et al., 2016) with the most
pronounced difference being that we (1) apply our
parallel RNN units across the same input (2) ex-
plore a new regularization term for promoting di-
versity across what features our parallel RNNs ex-
tract and (3) explicitly motivate the architecture
with a discussion about parameter complexity.

The need for a wider discussion on parameter
complexity in the deep learning community is be-
ing pushed by the need to make complex neural
models runnable in constrained environment such
as field-programmable gate arrays (FPGAs) - for
a great discussion relating to running LSTMs on
FPGAs see (Guan et al., 2017). Additionally, com-
plex models have proven difficult to use in certain
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domains such as embedded systems or finance due
to their slowness. Our architecture lends itself to
parallelization and attempts to tackle this problem.

2 Named Entity Recognition

Named Entity Recognition can be posited as a
standard sequence classification problem where
the dataset D = {(Xi,yi)}ki=1 consists of exam-
ple label pairs where both the examples and the
labels are themselves sequences of word vectors
and entity types, respectively.

Specifically, an input example Xi =
(xi,1, . . . ,xi,|Xi|) is a variable-length sequence
of word vectors xi,j ∈ Rd; the example’s
corresponding label yi = (yi,1, ..., yi,|Xi|) is
a equal-length sequence of entity-type labels
yi,j ∈ Y where Y is the set of all entity type
labels and includes a special other ‘O’-label with
which all words that are not entities are labeled.

The goal is then to learn a parametrized map-
ping fθ : X → y from input words to output en-
tity labels. One of the most commonly used class
of models that handle this mapping are recurrent
neural networks.

2.1 LSTM complexity

Long short term memory (LSTM) models belong
to the family of recurrent neural network (RNN)
models. They are often used as a component of
much larger models, particularly in many NLP
tasks including NER.

Classically, an LSTM cell is defined as follows
(biases excluded for brevity):

it = σ(W iht−1 + U ixt)
ft = σ(Wfht−1 + U fxt)
ot = σ(W oht−1 + U oxt)
c̃t = tanh(W cht−1 + U cxt)
ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

One way of measuring the complexity of a
model is through its total number of parameters.
Looking at the above, we note there are two pa-
rameter matrices, W and U, for each of the three
input gates and during cell update. If we let W ∈
Rn×n and U ∈ Rn×m then the total number of pa-
rameters in the model (excluding the bias terms) is
4(nm+n2) which grows quadratically as n grows.
Thus, increases in LSTM size can substantially in-
crease the number of parameters.

3 Parallel RNNs

To reduce the total number of parameters we split
a single LSTM into multiple equally-sized smaller
ones:

hk,t = LSTMk(hk,t−1,x)

where k ∈ {1, ...,K}. This has the effect of
dividing the total number of parameters by a con-
stant factor. The final hidden state ht is then a
concatenation of the hidden states of the smaller
LSTMS:

ht = [h1,t;h2,t; ...;hK,t]

3.1 Promoting Diversity

To promote diversity amongst the constituent
smaller LSTMs we add a orthogonality penalty
across the smaller LSTMs. Recent research has
used similar methods but applied to single LSTMs
(Vorontsov et al., 2017).

We take the cell update recurrence parameters
Wi across LSTMs (we omit the c in the subscript
for brevity; the index i runs across the smaller
LSTMs) and for any pair we wish the following
to be true:

〈vec(W (i)
c ), vec(W (j)

c )〉 ≈ 0

.
To achieve this we pack the vectorized parame-

ters into a matrix:

Φ =


vec(W

(1)
c )

vec(W
(2)
c )

...
vec(W

(N)
c )


and apply the following regularization term to

our final loss:

λ
∑
i

‖ΦΦ> − I‖2F (1)

3.2 Output and Loss

The concatenated output ht is passed through
a fully connected layer with bias before being
passed through a final softmax layer:

ot = softmax(Woutĥt + bout)



71

To extract a predicted entity type ŷt at time t,
we select the entity type corresponding to the most
probable output:

ŷt = argmax(ot)

The loss is defined as the sum of the softmax
cross-entropy losses along the words in the input
sequence. More precisely, we denote by yjt ∈
0, 1 a binary indicator variable indicating whether
word xt truly is an entity of type j. The loss at
time t is then defined to be Lt = −

∑
j y

j
t log(ojt ).

Thus the overall loss is:

L = −
∑
t

∑
j

yjt log(ojt )

3.3 Implementation Details
We use bidirectional LSTMs as our base recur-
rent unit and use pretrained word embeddings of
size 100. These are the same embeddings used in
(Lample et al., 2016). We concatenate to our word
embeddings character-level embeddings similar to
(Lample et al., 2016) but with a max pooling layer
instead. Unlike with the parallel LSTMs, we only
use a single character embedding LSTM.

Parameters are initialized using the method de-
scribed by Glorot and Bengio (Glorot and Ben-
gio, 2010). This approach scales the variance of
a uniform distribution with regard to the root of
the number of parameters in a layer. This approach
has been found to speed up convergence compared
to using a unit normal distribution for initializa-
tion.

Our model uses variational dropout (Gal and
Ghahramani, 2016) between the hidden states of
the parallel LSTMs. Recent work has shown this
to be very effective at training LSTMs for lan-
guage models (Merity et al., 2017). In our experi-
ments, we use p = 0.1 as our dropping probability.

We experiment with different values of the regu-
larization term parameter but settled on λ = 0.01.

Although vanilla stochastic gradient descent has
been effective at training RNNs on language prob-
lems (Merity et al., 2017), we found that using the
ADAM optimizer (Kingma and Ba, 2014) to be
more effective at training our model. We experi-
mented with different values for the learning rate
α, increasing α from 10−3 to as high as 5× 10−3

and still obtained good results.
Similarly, we kept a constant size for the

character-level embeddings, using a unit bidirec-
tional LSTM output size of dim(echar) = 50.

As previously discussed, we trained the net-
work parameters using stochastic gradient de-
scent (Werbos, 1990), augmented with the Adam
optimizer (Kingma and Ba, 2014).

3.4 Relation to Ensemble Methods

Our model bears some resemblance to ensemble
methods (Freund et al., 1996; Dietterich et al.,
2000), which combine multiple “weak learners”
into a single “strong learner”; One may view each
of the parallel recurrent units of our model as a
single “weak” neural network, and may consider
our architecture as a way of combining these into
a single “strong” network.

Despite the similarities, our model is very dif-
ferent from ensemble methods. First, as opposed
to many boosting algorithms (Freund et al., 1996;
Schapire and Singer, 1999; Dietterich et al., 2000)
we do not “reweigh” training instances based on
the loss incurred on them by a previous iteration.
Second, unlike ensemble methods, our model is
trained end-to-end, as a single large neural net-
work. All the subcomponents are co-trained, so
different subparts of the network may focus on
different aspects of the input. This avoids re-
dundant repeated computations across the units
(and indeed, we encourage diversity between the
units using our inter-module regularization). Fi-
nally, we note that our architecture does not sim-
ply combine the prediction of multiple classifiers;
rather, we take the final hidden layer of each of
the LSTM units (which contains more informa-
tion than merely the entity class prediction), and
combine this information using a feedforward net-
work. This allows our architecture to examine
inter-dependencies between pieces of information
computed by the various components.

4 Experiments

We achieve state-of-the-art results on the CoNNL
2003 English NER dataset (see Table 1). Although
we do not employ additional external resources
(language specific dictionaries or gazetteers), our
model is competitive even with some of the mod-
els that do.

To gain a better understanding of the perfor-
mance of our model including how its various
components affect performance we prepared four
additional tables of runs.

Table 2 shows performance as a function of the
number of RNN units with a fixed unit size. The
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Model F1
(Chieu and Ng, 2002) 88.31
(Florian et al., 2003) 88.76
(Ando and Zhang, 2005) 89.31
(Collobert et al., 2011)‡ 89.59
(Huang et al., 2015)‡ 90.10
(Chiu and Nichols, 2015)‡ 90.77
(Ratinov and Roth, 2009) 90.80
(Lin and Wu, 2009) 90.90
(Passos et al., 2014)‡∗ 90.90
(Lample et al., 2016)‡ 90.94
(Luo et al., 2015)‡ 91.20
(Ma and Hovy, 2016)‡ 91.21
(Sato et al., 2017) 91.28
(Chiu and Nichols, 2015)‡∗ 91.62
(Peters et al., 2017)‡∗ 91.93
This paper‡ 91.48 ±0.22

Table 1: English NER F1 score of our model on
the test set of CoNLL-2003 (English). During
training we optimize for the development set and
report test set results for our best performing de-
velopment set model. The bounded F1 results we
report (±0.22) are taken after 10 runs. For the pur-
pose of comparison, we also list F1 scores of pre-
vious top-performance systems. ‡ marks the neu-
ral models. ∗ marks model which use external re-
sources.

number of units is clearly a hyperparameter which
must be optimized for. We find good performance
across the board (there is no catastrophic collapse
in results) however when using 16 units we do
outperform other models substantially. Even with
very small unit sizes of 8 (Table 3) our models per-
forms relatively well without a significant degra-
dation in results. Table 4 shows and 5 show addi-
tional results for unit size and component impact
on our best performing model.

5 Conclusion

We achieve state-of-the-art results on the CoNLL
2003 English dataset and introduce a new model
motivated primarily by its ability to be easily dis-
tributable and reduce the total number of param-
eters. Further work should be done on evaluat-
ing it across different classification and sequence
classification tasks to study its performance. Ad-
ditionally, a run-time analysis show be conducted
to compare speedups if the model is parallelized
across CPU cores.

# RNN units F1

1 90.53 ±0.31

2 90.79 ±0.18

4 90.64 ±0.24

8 91.09 ±0.28

16 91.48 ±0.22

32 90.68 ±0.18

Table 2: Performance as a function of the number
of RNN units with a fixed unit size of 64; aver-
aged across 5 runs apart from the 16 unit (average
across 10 runs).

# RNN units Unit size F1

1 1024 87.54
2 512 91.25
4 256 91.29
8 128 91.31
16 64 91.48 ±0.22

32 32 90.60
64 16 90.79
128 8 90.41

Table 3: Performance of our model with various
unit sizes resulting in a fixed final output size ht.
Single runs apart from 16 unit.

Unit size F1

8 89.78
16 89.77
32 90.26
64 91.48 ±0.22

128 89.28

Table 4: Performance as a function of the unit size
for our best performing model (16 biLSTM units).
Single runs apart from with size 64.

Component F1

No character embeddings 90.39
No orthogonal regularization 90.79

No Xavier initialization 91.09
No variational dropout 91.03

Mean pool instead of concat 90.49

Table 5: Impact of various architectural decisions
on our best performing model (16 biLSTM units,
64 unit size). Single runs.
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