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Abstract

Inquiry is fundamental to communication,
and machines cannot effectively collabo-
rate with humans unless they can ask ques-
tions. In this work, we build a neural net-
work model for the task of ranking clarifi-
cation questions. Our model is inspired by
the idea of expected value of perfect infor-
mation: a good question is one whose ex-
pected answer will be useful. We study this
problem using data from StackExchange,
a plentiful online resource in which people
routinely ask clarifying questions to posts
so that they can better offer assistance to
the original poster. We create a dataset of
clarification questions consisting of ∼77K
posts paired with a clarification ques-
tion (and answer) from three domains
of StackExchange: askubuntu, unix and
superuser. We evaluate our model on 500
samples of this dataset against expert hu-
man judgments and demonstrate signifi-
cant improvements over controlled base-
lines.

1 Introduction

A principle goal of asking questions is to fill infor-
mation gaps, typically through clarification ques-
tions.1 We take the perspective that a good ques-
tion is the one whose likely answer will be use-
ful. Consider the exchange in Figure 1, in which
an initial poster (who we call “Terry”) asks for
help configuring environment variables. This post
is underspecified and a responder (“Parker”) asks
a clarifying question (a) below, but could alterna-
tively have asked (b) or (c):

(a) What version of Ubuntu do you have?

1We define ‘clarification question’ as a question that asks
for some information that is currently missing from the given
context.

Figure 1: A post on an online Q & A forum
“askubuntu.com” is updated to fill the missing in-
formation pointed out by the question comment.

(b) What is the make of your wifi card?
(c) Are you running Ubuntu 14.10 kernel 4.4.0-59-

generic on an x86 64 architecture?
Parker should not ask (b) because an answer is un-
likely to be useful; they should not ask (c) because
it is too specific and an answer like “No” or “I do
not know” gives little help. Parker’s question (a) is
much better: it is both likely to be useful, and is
plausibly answerable by Terry.

In this work, we design a model to rank a can-
didate set of clarification questions by their use-
fulness to the given post. We imagine a use case
(more discussion in §7) in which, while Terry is
writing their post, a system suggests a shortlist of
questions asking for information that it thinks peo-
ple like Parker might need to provide a solution,
thus enabling Terry to immediately clarify their
post, potentially leading to a much quicker reso-
lution. Our model is based on the decision theo-
retic framework of the Expected Value of Perfect
Information (EVPI) (Avriel and Williams, 1970),
a measure of the value of gathering additional in-
formation. In our setting, we use EVPI to calculate
which questions are most likely to elicit an answer
that would make the post more informative.
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Figure 2: The behavior of our model during test time: Given a post p, we retrieve 10 posts similar to
post p using Lucene. The questions asked to those 10 posts are our question candidates Q and the edits
made to the posts in response to the questions are our answer candidates A. For each question candidate
qi, we generate an answer representation F (p, qi) and calculate how close is the answer candidate aj to
our answer representation F (p, qi). We then calculate the utility of the post p if it were updated with the
answer aj . Finally, we rank the candidate questions Q by their expected utility given the post p (Eq 1).

Our work has two main contributions:
1. A novel neural-network model for address-

ing the task of ranking clarification question
built on the framework of expected value of
perfect information (§2).

2. A novel dataset, derived from StackEx-
change2, that enables us to learn a model
to ask clarifying questions by looking at the
types of questions people ask (§3).

We formulate this task as a ranking problem
on a set of potential clarification questions. We
evaluate models both on the task of returning the
original clarification question and also on the task
of picking any of the candidate clarification ques-
tions marked as good by experts (§4). We find that
our EVPI model outperforms the baseline mod-
els when evaluated against expert human annota-
tions. We include a few examples of human anno-
tations along with our model performance on them
in the supplementary material. We have released
our dataset of∼77K (p, q, a) triples and the expert
annotations on 500 triples to help facilitate further
research in this task.3

2 Model description

We build a neural network model inspired by the
theory of expected value of perfect information
(EVPI). EVPI is a measurement of: if I were to ac-
quire information X, how useful would that be to

2We use data from StackExchange; per license cc-by-sa
3.0, the data is “intended to be shared and remixed” (with
attribution).

3https://github.com/raosudha89/
ranking_clarification_questions

me? However, because we haven’t acquired X yet,
we have to take this quantity in expectation over
all possible X, weighted by each X’s likelihood.
In our setting, for any given question qi that we
can ask, there is a set A of possible answers that
could be given. For each possible answer aj ∈ A,
there is some probability of getting that answer,
and some utility if that were the answer we got.
The value of this question qi is the expected util-
ity, over all possible answers:

EVPI(qi|p) =
∑
aj∈A

P[aj |p, qi]U(p+ aj) (1)

In Eq 1, p is the post, qi is a potential question
from a set of candidate questionsQ and aj is a po-
tential answer from a set of candidate answers A.
Here, P[aj |p, qi] measures the probability of get-
ting an answer aj given an initial post p and a
clarifying question qi, and U(p + aj) is a utility
function that measures how much more complete
p would be if it were augmented with answer aj .
The modeling question then is how to model:

1. The probability distribution P[aj |p, qi] and
2. The utility function U(p+ aj).

In our work, we represent both using neural net-
works over the appropriate inputs. We train the pa-
rameters of the two models jointly to minimize a
joint loss defined such that an answer that has a
higher potential of increasing the utility of a post
gets a higher probability.

Figure 2 describes the behavior of our model
during test time. Given a post p, we generate a
set of candidate questions and a set of candidate

https://github.com/raosudha89/ranking_clarification_questions
https://github.com/raosudha89/ranking_clarification_questions
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Figure 3: Training of our answer generator. Given a post pi and its question qi, we generate an answer
representation that is not only close to its original answer ai, but also close to one of its candidate answers
aj if the candidate question qj is close to the original question qi.

answers (§2.1). Given a post p and a question can-
didate qi, we calculate how likely is this question
to be answered using one of our answer candidates
aj (§2.2). Given a post p and an answer candidate
aj , we calculate the utility of the updated post i.e.
U(p+ aj) (§2.3). We compose these modules into
a joint neural network that we optimize end-to-end
over our data (§2.4).

2.1 Question & answer candidate generator

Given a post p, our first step is to generate a set
of question and answer candidates. One way that
humans learn to ask questions is by looking at
how others ask questions in a similar situation.
Using this intuition we generate question candi-
dates for a given post by identifying posts simi-
lar to the given post and then looking at the ques-
tions asked to those posts. For identifying simi-
lar posts, we use Lucene4, a software extensively
used in information retrieval for extracting docu-
ments relevant to a given query from a pool of doc-
uments. Lucene implements a variant of the term
frequency-inverse document frequency (TF-IDF)
model to score the extracted documents according
to their relevance to the query. We use Lucene to
find the top 10 posts most similar to a given post
from our dataset (§3). We consider the questions
asked to these 10 posts as our set of question can-
didates Q and the edits made to the posts in re-
sponse to the questions as our set of answer candi-
dates A. Since the top-most similar candidate ex-
tracted by Lucene is always the original post itself,
the original question and answer paired with the
post is always one of the candidates in Q and A.
§3 describes in detail the process of extracting the

4https://lucene.apache.org/

(post, question, answer) triples from the StackEx-
change datadump.

2.2 Answer modeling

Given a post p and a question candidate qi, our sec-
ond step is to calculate how likely is this question
to be answered using one of our answer candidates
aj . We first generate an answer representation by
combining the neural representations of the post
and the question using a function Fans(p̄, q̄i) (de-
tails in §2.4). Given such a representation, we mea-
sure the distance between this answer representa-
tion and one of the answer candidates aj using the
function below:

dist(Fans(p̄, q̄i), âj) = 1− cos sim(Fans(p̄, q̄i), âj)

The likelihood of an answer candidate aj being
the answer to a question qi on post p is finally cal-
culated by combining this distance with the cosine
similarity between the question qi and the question
qj paired with the answer candidate aj :

P[aj |p, qi] = exp−dist(Fans(p̄, q̄i), âj) ∗cos sim(q̂i, q̂j)
(2)

where âj , q̂i and q̂j are the average word vector
of aj , qi and qj respectively (details in §2.4) and
cos sim is the cosine similarity between the two
input vectors.

We model our answer generator using the fol-
lowing intuition: a question can be asked in several
different ways. For e.g. in Figure 1, the question
“What version of Ubuntu do you have?” can be asked
in other ways like “What version of operating sys-
tem are you using?”, “Version of OS?”, etc. Addition-
ally, for a given post and a question, there can be

https://lucene.apache.org/
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several different answers to that question. For in-
stance, “Ubuntu 14.04 LTS”, “Ubuntu 12.0”, “Ubuntu
9.0”, are all valid answers. To generate an answer
representation capturing these generalizations, we
train our answer generator on our triples dataset
(§3) using the loss function below:

lossans(pi, qi, ai, Qi) = dist(Fans(p̄i, q̄i), âi) (3)

+
∑
j∈Q

(
dist(Fans(p̄i, q̄i), âj) ∗ cos sim(q̂i, q̂j)

)

where, â and q̂ is the average word vectors of a
and q respectively (details in §2.4), cos sim is the
cosine similarity between the two input vectors.

This loss function can be explained using the
example in Figure 3. Question qi is the question
paired with the given post pi. In Eq 3, the first term
forces the function Fans(p̄i, q̄i) to generate an an-
swer representation as close as possible to the cor-
rect answer ai. Now, a question can be asked in
several different ways. Let Qi be the set of can-
didate questions for post pi, retrieved from the
dataset using Lucene (§ 2.1). Suppose a question
candidate qj is very similar to the correct ques-
tion qi ( i.e. cos sim(q̂i, q̂j) is near zero). Then
the second term forces the answer representation
Fans(p̄i, q̄i) to be close to the answer aj corre-
sponding to the question qj as well. Thus in Fig-
ure 3, the answer representation will be close to aj
(since qj is similar to qi), but may not be necessar-
ily close to ak (since qk is dissimilar to qi).

2.3 Utility calculator
Given a post p and an answer candidate aj , the
third step is to calculate the utility of the updated
post i.e. U(p+aj). As expressed in Eq 1, this util-
ity function measures how useful it would be if a
given post p were augmented with an answer aj
paired with a different question qj in the candidate
set. Although theoretically, the utility of the up-
dated post can be calculated only using the given
post (p) and the candidate answer (aj), empirically
we find that our neural EVPI model performs bet-
ter when the candidate question (qj) paired with
the candidate answer is a part of the utility func-
tion. We attribute this to the fact that much infor-
mation about whether an answer increases the util-
ity of a post is also contained in the question asked
to the post. We train our utility calculator using
our dataset of (p, q, a) triples (§3). We label all the
(pi, qi, ai) pairs from our triples dataset with label
y = 1. To get negative samples, we make use of

the answer candidates generated using Lucene as
described in §2.1. For each aj ∈ Ai, where Ai is
the set of answer candidates for post pi, we label
the pair (pi, qj , aj) with label y = 0, except for
when aj = ai. Thus, for each post pi in our triples
dataset, we have one positive sample and nine neg-
ative samples. It should be noted that this is a noisy
labelling scheme since a question not paired with
the original question in our dataset can often times
be a good question to ask to the post (§4). How-
ever, since we do not have annotations for such
other good questions at train time, we assume such
a labelling.

Given a post pi and an answer aj paired with
the question qj , we combine their neural represen-
tations using a function Futil(p̄i, q̄j , āj) (details in
§2.4). The utility of the updated post is then de-
fined as U(pi + aj) = σ(Futil(p̄i, q̄j , āj))

5. We
want this utility to be close to 1 for all the posi-
tively labelled (p, q, a) triples and close to 0 for all
the negatively labelled (p, q, a) triples. We there-
fore define our loss using the binary cross-entropy
formulation below:

lossutil(yi, p̄i, q̄j , āj) = yi log(σ(Futil(p̄i, q̄j , āj)))
(4)

2.4 Our joint neural network model
Our fundamental representation is based on re-
current neural networks over word embeddings.
We obtain the word embeddings using the GloVe
(Pennington et al., 2014) model trained on the en-
tire datadump of StackExchange.6. In Eq 2 and
Eq 3, the average word vector representations q̂
and â are obtained by averaging the GloVe word
embeddings for all words in the question and the
answer respectively. Given an initial post p, we
generate a post neural representation p̄ using a
post LSTM (long short-term memory architecture)
(Hochreiter and Schmidhuber, 1997). The input
layer consists of word embeddings of the words
in the post which is fed into a single hidden layer.
The output of each of the hidden states is aver-
aged together to get our neural representation p̄.
Similarly, given a question q and an answer a, we
generate the neural representations q̄ and ā using
a question LSTM and an answer LSTM respec-
tively. We define the function Fans in our answer
model as a feedforward neural network with five
hidden layers on the inputs p̄ and q̄. Likewise, we

5σ is the sigmoid function.
6Details in the supplementary material.
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define the function Futil in our utility calculator
as a feedforward neural network with five hidden
layers on the inputs p̄, q̄ and ā. We train the pa-
rameters of the three LSTMs corresponding to p,
q and a, and the parameters of the two feedforward
neural networks jointly to minimize the sum of the
loss of our answer model (Eq 3) and our utility cal-
culator (Eq 4) over our entire dataset:∑
i

∑
j

lossans(p̄i, q̄i, āi, Qi) + lossutil(yi, p̄i, q̄j , āj)

(5)

Given such an estimate P[aj |p, qi] of an answer
and a utility U(p + aj) of the updated post, we
rank the candidate questions by their value as cal-
culated using Eq 1. The remaining question, then,
is how to get data that enables us to train our an-
swer model and our utility calculator. Given data,
the training becomes a multitask learning problem,
where we learn simultaneously to predict utility
and to estimate the probability of answers.

3 Dataset creation

StackExchange is a network of online ques-
tion answering websites about varied topics like
academia, ubuntu operating system, latex, etc.
The data dump of StackExchange contains times-
tamped information about the posts, comments on
the post and the history of the revisions made to
the post. We use this data dump to create our
dataset of (post, question, answer) triples: where
the post is the initial unedited post, the question
is the comment containing a question and the an-
swer is either the edit made to the post after the
question or the author’s response to the question
in the comments section.

Extract posts: We use the post histories to iden-
tify posts that have been updated by its author. We
use the timestamp information to retrieve the ini-
tial unedited version of the post.

Extract questions: For each such initial version
of the post, we use the timestamp information of
its comments to identify the first question com-
ment made to the post. We truncate the comment
till its question mark ’?’ to retrieve the question
part of the comment. We find that about 7% of
these are rhetoric questions that indirectly suggest
a solution to the post. For e.g. “have you consid-
ered installing X?”. We do a manual analysis of

Train Tune Test

askubuntu 19,944 2493 2493
unix 10,882 1360 1360
superuser 30,852 3857 3856

Table 1: Table above shows the sizes of the train,
tune and test split of our dataset for three domains.

these non-clarification questions and hand-crafted
a few rules to remove them. 7

Extract answers: We extract the answer to a
clarification question in the following two ways:
(a) Edited post: Authors tend to respond to a clari-
fication question by editing their original post and
adding the missing information. In order to ac-
count for edits made for other reasons like stylis-
tic updates and grammatical corrections, we con-
sider only those edits that are longer than four
words. Authors can make multiple edits to a post
in response to multiple clarification questions.8 To
identify the edit made corresponding to the given
question comment, we choose the edit closest in
time following the question.
(b) Response to the question: Authors also respond
to clarification questions as subsequent comments
in the comment section. We extract the first com-
ment by the author following the clarification
question as the answer to the question.

In cases where both the methods above yield an
answer, we pick the one that is the most semanti-
cally similar to the question, where the measure of
similarity is the cosine distance between the aver-
age word embeddings of the question and the an-
swer.

We extract a total of 77,097 (post, question,
answer) triples across three domains in Stack-
Exchange (Table 1). We will release this dataset
along with the the nine question and answer can-
didates per triple that we generate using lucene
(§ 2.1). We include an analysis of our dataset in
the supplementary material.

4 Evaluation design

We define our task as given a post p, and a set
of candidate clarification questions Q, rank the
questions according to their usefulness to the post.

7Details in the supplementary material.
8On analysis, we find that 35%-40% of the posts get asked

multiple clarification questions. We include only the first clar-
ification question to a post in our dataset since identifying if
the following questions are clarifications or a part of a dia-
logue is non-trivial.
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Since the candidate set includes the original ques-
tion q that was asked to the post p, one possible
approach to evaluation would be to look at how of-
ten the original question is ranked higher up in the
ranking predicted by a model. However, there are
two problems to this approach: 1) Our dataset cre-
ation process is noisy. The original question paired
with the post may not be a useful question. For
e.g. “are you seriously asking this question?”, “do
you mind making that an answer?”9. 2) The nine
other questions in the candidate set are obtained by
looking at questions asked to posts that are simi-
lar to the given post.10 This greatly increases the
possibility of some other question(s) being more
useful than the original question paired with the
post. This motivates an evaluation design that does
not rely solely on the original question but also
uses human judgments. We randomly choose a
total of 500 examples from the test sets of the
three domains proportional to their train set sizes
(askubuntu:160, unix:90 and superuser:250)
to construct our evaluation set.

4.1 Annotation scheme

Due to the technical nature of the posts in our
dataset, identifying useful questions requires tech-
nical experts. We recruit 10 such experts on Up-
work11 who have prior experience in unix based
operating system administration.12 We provide the
annotators with a post and a randomized list of
the ten question candidates obtained using Lucene
(§2.1) and ask them to select a single “best” (B)
question to ask, and additionally mark as “valid”
(V ) other questions that they thought would be
okay to ask in the context of the original post. We
enforce that the “best” question be always marked
as a “valid” question. We group the 10 annotators
into 5 pairs and assign the same 100 examples to
the two annotators in a pair.

4.2 Annotation analysis

We calculate the inter-annotator agreement on the
“best” and the “valid” annotations using Cohen’s
Kappa measurement. When calculating the agree-
ment on the “best” in the strict sense, we get a low

9Data analysis included in the supplementary material
suggests 9% of the questions are not useful.

10Note that this setting is different from the distractor-
based setting popularly used in dialogue (Lowe et al., 2015)
where the distractor candidates are chosen randomly from the
corpus.

11https://upwork.com
12Details in the supplementary material.

Figure 4: Distribution of the count of questions in the inter-
section of the “valid” annotations.

agreement of 0.15. However, when we relax this
to a case where the question marked as“best” by
one annotator is marked as “valid” by another, we
get an agreement of 0.87. The agreement on the
“valid” annotations, on the other hand, was higher:
0.58. We calculate this agreement on the binary
judgment of whether a question was marked as
valid by the annotator.

Given these annotations, we calculate how of-
ten is the original question marked as “best” or
“valid” by the two annotators. We find that 72%
of the time one of the annotators mark the origi-
nal as the “best”, whereas only 20% of the time
both annotators mark it as the “best” suggesting
against an evaluation solely based on the original
question. On the other hand, 88% of the time one
of the two annotators mark it as a “valid” question
confirming the noise in our training data.13

Figure 4 shows the distribution of the counts
of questions in the intersection of “valid” annota-
tions (blue legend). We see that about 85% of the
posts have more than 2 valid questions and 50%
have more than 3 valid questions. The figure also
shows the distribution of the counts when the orig-
inal question is removed from the intersection (red
legend). Even in this set, we find that about 60%
of the posts have more than two valid questions.
These numbers suggests that the candidate set of
questions retrieved using Lucene (§2.1) very often
contains useful clarification questions.

5 Experimental results

Our primary research questions that we evaluate
experimentally are:

1. Does a neural network architecture improve
upon non-neural baselines?

1376% of the time both the annotators mark it as a “valid”.
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B1 ∪B2 V 1 ∩ V 2 Original
Model p@1 p@3 p@5 MAP p@1 p@3 p@5 MAP p@1

Random 17.5 17.5 17.5 35.2 26.4 26.4 26.4 42.1 10.0
Bag-of-ngrams 19.4 19.4 18.7 34.4 25.6 27.6 27.5 42.7 10.7
Community QA 23.1 21.2 20.0 40.2 33.6 30.8 29.1 47.0 18.5

Neural (p, q) 21.9 20.9 19.5 39.2 31.6 30.0 28.9 45.5 15.4
Neural (p, a) 24.1 23.5 20.6 41.4 32.3 31.5 29.0 46.5 18.8
Neural (p, q, a) 25.2 22.7 21.3 42.5 34.4 31.8 30.1 47.7 20.5

EVPI 27.7 23.4 21.5 43.6 36.1 32.2 30.5 49.2 21.4

Table 2: Model performances on 500 samples when evaluated against the union of the “best” annotations
(B1 ∪ B2), intersection of the “valid” annotations (V 1 ∩ V 2) and the original question paired with the
post in the dataset. The difference between the bold and the non-bold numbers is statistically significant
with p < 0.05 as calculated using bootstrap test. p@k is the precision of the k questions ranked highest
by the model and MAP is the mean average precision of the ranking predicted by the model.

2. Does the EVPI formalism provide leverage
over a similarly expressive feedforward net-
work?

3. Are answers useful in identifying the right
question?

4. How do the models perform when evalu-
ated on the candidate questions excluding the
original?

5.1 Baseline methods

We compare our model with following baselines:

Random: Given a post, we randomly permute
its set of 10 candidate questions uniformly.14

Bag-of-ngrams: Given a post and a set of 10
question and answer candidates, we construct a
bag-of-ngrams representation for the post, ques-
tion and answer. We train the baseline on all the
positive and negative candidate triples (same as
in our utility calculator (§2.3)) to minimize hinge
loss on misclassification error using cross-product
features between each of (p, q), (q, a) and (p, a).
We tune the ngram length and choose n=3 which
performs best on the tune set. The question candi-
dates are finally ranked according to their predic-
tions for the positive label.

Community QA: The recent SemEval2017
Community Question-Answering (CQA) (Nakov
et al., 2017) included a subtask for ranking a set of
comments according to their relevance to a given
post in the Qatar Living15 forum. Nandi et al.
(2017), winners of this subtask, developed a lo-
gistic regression model using features based on

14We take the average over 1000 random permutations.
15http://www.qatarliving.com/forum

string similarity, word embeddings, etc. We train
this model on all the positively and negatively la-
belled (p, q) pairs in our dataset (same as in our
utility calculator (§2.3), but without a). We use a
subset of their features relevant to our task.16

Neural baselines: We construct the following
neural baselines based on the LSTM representa-
tion of their inputs (as described in §2.4):
1. Neural(p, q): Input is concatenation of p̄ and q̄.
2. Neural(p, a): Input is concatenation of p̄ and ā.
3. Neural(p, q, a): Input is concatenation of p̄, q̄
and ā.

Given these inputs, we construct a fully con-
nected feedforward neural network with 10 hid-
den layers and train it to minimize the binary cross
entropy across all positive and negative candidate
triples (same as in our utility calculator (§ 2.3)).
The major difference between the neural baselines
and our EVPI model is in the loss function: the
EVPI model is trained to minimize the joint loss
between the answer model (defined on Fans(p, q)
in Eq 3) and the utility calculator (defined on
Futil(p, q, a) in Eq 4) whereas the neural base-
lines are trained to minimize the loss directly on
F (p, q), F (p, a) or F (p, q, a). We include the im-
plementation details of all our neural models in the
supplementary material.

5.2 Results

5.2.1 Evaluating against expert annotations
We first describe the results of the different models
when evaluated against the expert annotations we
collect on 500 samples (§4). Since the annotators

16Details in the supplementary material.



2744

had a low agreement on a single best, we evaluate
against the union of the “best” annotations (B1 ∪
B2 in Table 2) and against the intersection of the
“valid” annotations (V 1 ∩ V 2 in Table 2).

Among non-neural baselines, we find that the
bag-of-ngrams baseline performs slightly better
than random but worse than all the other models.
The Community QA baseline, on the other hand,
performs better than the neural baseline (Neural
(p, q)), both of which are trained without using
the answers. The neural baselines with answers
(Neural(p, q, a) and Neural(p, a)) outperform the
neural baseline without answers (Neural(p, q)),
showing that answer helps in selecting the right
question.

More importantly, EVPI outperforms the Neu-
ral (p, q, a) baseline across most metrics. Both
models use the same information regarding the
true question and answer and are trained using
the same number of model parameters.17 How-
ever, the EVPI model, unlike the neural baseline,
additionally makes use of alternate question and
answer candidates to compute its loss function.
This shows that when the candidate set consists
of questions similar to the original question, sum-
ming over their utilities gives us a boost.

5.2.2 Evaluating against the original question
The last column in Table 2 shows the results when
evaluated against the original question paired with
the post. The bag-of-ngrams baseline performs
similar to random, unlike when evaluated against
human judgments. The Community QA baseline
again outperforms Neural(p, q) model and comes
very close to the Neural (p, a) model.

As before, the neural baselines that make use of
the answer outperform the one that does not use
the answer and the EVPI model performs signifi-
cantly better than Neural(p, q, a).

5.2.3 Excluding the original question
In the preceding analysis, we considered a set-
ting in which the “ground truth” original question
was in the candidate set Q. While this is a com-
mon evaluation framework in dialog response se-
lection (Lowe et al., 2015), it is overly optimistic.
We, therefore, evaluate against the “best” and the
“valid” annotations on the nine other question can-
didates. We find that the neural models beat the

17We use 10 hidden layers in the feedforward network of
the neural baseline and five hidden layers each in the two
feedforward networks Fans and Futil of the EVPI model.

non-neural baselines. However, the differences be-
tween all the neural models are statistically in-
significant.18

6 Related work

Most prior work on question generation has fo-
cused on generating reading comprehension ques-
tions: given text, write questions that one might
find on a standardized test (Vanderwende, 2008;
Heilman, 2011; Rus et al., 2011; Olney et al.,
2012). Comprehension questions, by definition,
are answerable from the provided text. Clarifica-
tion questions–our interest–are not.

Outside reading comprehension questions, Lab-
utov et al. (2015) generate high-level question
templates by crowdsourcing which leads to signif-
icantly less data than we collect using our method.
Liu et al. (2010) use template question genera-
tion to help authors write better related work sec-
tions. Mostafazadeh et al. (2016) introduce a Vi-
sual Question Generation task where the goal is
to generate natural questions that are not about
what is present in the image rather about what can
be inferred given the image, somewhat analogous
to clarification questions. Penas and Hovy (2010)
identify the notion of missing information similar
to us, but they fill the knowledge gaps in a text with
the help of external knowledge bases, whereas
we instead ask clarification questions. Artzi and
Zettlemoyer (2011) use human-generated clarifi-
cation questions to drive a semantic parser where
the clarification questions are aimed towards sim-
plifying a user query; whereas we generate clari-
fication questions aimed at identifying missing in-
formation in a text.

Among works that use community question an-
swer forums, the keywords to questions (K2Q)
system (Zheng et al., 2011) generates a list of can-
didate questions and refinement words, given a set
of input keywords, to help a user ask a better ques-
tion. Figueroa and Neumann (2013) rank different
paraphrases of query for effective search on fo-
rums. (Romeo et al., 2016) develop a neural net-
work based model for ranking questions on forums
with the intent of retrieving similar other question.
The recent SemEval-2017 Community Question-
Answering (CQA) (Nakov et al., 2017) task in-
cluded a subtask to rank the comments according
to their relevance to the post. Our task primarily
differs from this task in that we want to identify a

18Results included in the supplementary material.
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question comment which is not only relevant to the
post but will also elicit useful information missing
from the post. Hoogeveen et al. (2015) created the
CQADupStack dataset using StackExchange fo-
rums for the task of duplicate question retrieval.
Our dataset, on the other hand, is designed for
the task of ranking clarification questions asked as
comments to a post.

7 Conclusion

We have constructed a new dataset for learning to
rank clarification questions, and proposed a novel
model for solving this task. Our model integrates
well-known deep network architectures with the
classic notion of expected value of perfect in-
formation, which effectively models a pragmatic
choice on the part of the questioner: how do I
imagine the other party would answer if I were to
ask this question. Such pragmatic principles have
recently been shown to be useful in other tasks as
well (Golland et al., 2010; Smith et al., 2013; Orita
et al., 2015; Andreas and Klein, 2016). One can
naturally extend our EVPI approach to a full rein-
forcement learning approach to handle multi-turn
conversations.

Our results shows that the EVPI model is a
promising formalism for the question generation
task. In order to move to a full system that can help
users like Terry write better posts, there are three
interesting lines of future work. First, we need it to
be able to generalize: for instance by constructing
templates of the form “What version of are you
running?” into which the system would need to fill
a variable. Second, in order to move from question
ranking to question generation, one could consider
sequence-to-sequence based neural network mod-
els that have recently proven to be effective for
several language generation tasks (Sutskever et al.,
2014; Serban et al., 2016; Yin et al., 2016). Third
is in evaluation: given that this task requires ex-
pert human annotations and also given that there
are multiple possible good questions to ask, how
can we automatically measure performance at this
task?, a question faced in dialog and generation
more broadly (Paek, 2001; Lowe et al., 2015; Liu
et al., 2016).
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