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Abstract

The use of user/product information in
sentiment analysis is important, especially
for cold-start users/products, whose num-
ber of reviews are very limited. How-
ever, current models do not deal with the
cold-start problem which is typical in re-
view websites. In this paper, we present
Hybrid Contextualized Sentiment Classi-
fier (HCSC), which contains two mod-
ules: (1) a fast word encoder that returns
word vectors embedded with short and
long range dependency features; and (2)
Cold-Start Aware Attention (CSAA), an
attention mechanism that considers the ex-
istence of cold-start problem when atten-
tively pooling the encoded word vectors.
HCSC introduces shared vectors that are
constructed from similar users/products,
and are used when the original distinct
vectors do not have sufficient informa-
tion (i.e. cold-start). This is decided
by a frequency-guided selective gate vec-
tor. Our experiments show that in terms
of RMSE, HCSC performs significantly
better when compared with on famous
datasets, despite having less complexity,
and thus can be trained much faster. More
importantly, our model performs signifi-
cantly better than previous models when
the training data is sparse and has cold-
start problems.

1 Introduction

Sentiment classification is the fundamental task of
sentiment analysis (Pang et al., 2002), where we
are to classify the sentiment of a given text. It is
widely used on online review websites as they con-
tain huge amounts of review data that can be clas-
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Figure 1: Conceptual schema of HCSC applied to
users. The same idea can be applied to products.

sified a sentiment. In these websites, a sentiment is
usually represented as an intensity (e.g. 4 out of 5).
The reviews are written by users who have bought
a product. Recently, sentiment analysis research
has focused on personalization (Zhang, 2015) to
recommend product to users, and vise versa.

To this end, many have used user and prod-
uct information not only to develop personaliza-
tion but also to improve the performance of the
classification model (Tang et al., 2015). Indeed,
these information are important in two ways. First,
some expressions are user-specific for a certain
sentiment intensity. For example, the phrase “very
salty” may have different sentiments for a person
who likes salty food and a person who likes oth-
erwise. This is also apparent in terms of prod-
ucts. Second, these additional contexts help mit-
igate data sparsity and cold-start problems. Cold-
start is a problem when the model cannot draw
useful information from users/products where data
is insufficient. User and product information can
help by introducing a frequent user/product with
similar attributes to the cold-start user/product.

Thanks to the promising results of deep neu-
ral networks to the sentiment classification task
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(Glorot et al., 2011; Tang et al., 2014), more re-
cent models incorporate user and product informa-
tion to convolutional neural networks (Tang et al.,
2015) and deep memory networks (Dou, 2017),
and have shown significant improvements. The
current state-of-the-art model, NSC (Chen et al.,
2016a), introduced an attention mechanism called
UPA which is based on user and product infor-
mation and applied this to a hierarchical LSTM.
The main problem with current models is that they
use user and product information naively as an
ordinary additional context, not considering the
possible existence of cold-start problems. This
makes NSC more problematic than helpful in re-
ality since majority of the users in review websites
have very few number of reviews.

To this end, we propose the idea shown in Fig-
ure 1. It can be described as follows: If the
model does not have enough information to cre-
ate a user/product vector, then we use a vector
computed from other user/product vectors that are
similar. We introduce a new model called Hy-
brid Contextualized Sentiment Classifier (HCSC),
which consists of two modules. First, we build a
fast yet effective word encoder that accepts word
vectors and outputs new encoded vectors that are
contextualized with short- and long-range con-
texts. Second, we combine these vectors into one
pooled vector through a novel attention mecha-
nism called Cold-Start Aware Attention (CSAA).
The CSAA mechanism has three components:
(a) a user/product-specific distinct vector derived
from the original user/product information of the
review, (b) a user/product-specific shared vec-
tor derived from other users/products, and (c)
a frequency-guided selective gate which decides
which vector to use. Multiple experiments are
conducted with the following results: In the orig-
inal non-sparse datasets, our model performs sig-
nificantly better than the previous state-of-the-art,
NSC, in terms of RMSE, despite being less com-
plex. In the sparse datasets, HCSC performs sig-
nificantly better than previous competing models.

2 Related work

Previous studies have shown that using additional
contexts for sentiment classification helps improve
the performance of the classifier. We survey sev-
eral competing baseline models that use user and
product information and other models using other
kinds of additional context.

Baselines: Models with user and product infor-
mation User and product information are help-
ful to improve the performance of a sentiment
classifier. This argument was verified by Tang
et al. (2015) through the observation at the con-
sistency between user/product information and
the sentiments and expressions found in the text.
Listed below are the following models that employ
user and product information:

• JMARS (Diao et al., 2014) jointly models
the aspects, ratings, and sentiments of a re-
view while considering the user and product
information using collaborative filtering and
topic modeling techniques.
• UPNN (Tang et al., 2015) uses a CNN-based

classifier and extends it to incorporate user-
and product-specific text preference matrix
in the word level which modifies the word
meaning.
• TLFM+PRC (Song et al., 2017) is a text-

driven latent factor model that unifies user-
and product-specific latent factor models rep-
resented using the consistency assumption by
Tang et al. (2015).
• UPDMN (Dou, 2017) uses an LSTM clas-

sifier as the document encoder and modi-
fies the encoded vector using a deep mem-
ory network with other documents of the
user/product as the memory.
• TUPCNN (Chen et al., 2016b) extends the

CNN-based classifier by adding temporal
user and product embeddings, which are ob-
tained from a sequential model and learned
through the temporal order of reviews.
• NSC (Chen et al., 2016a) is the current state-

of-the-art model that utilizes a hierarchical
LSTM model (Yang et al., 2016) and incor-
porates user and product information in the
attention mechanism.

Models with other additional contexts Other
additional contexts used previously are spatial
(Yang et al., 2017) and temporal (Fukuhara et al.,
2007) features which help contextualize the sen-
timent based on the location where and the time
when the text is written. Inferred contexts were
also used as additional contexts for sentiment clas-
sifiers, such as latent topics (Lin and He, 2009)
and aspects (Jo and Oh, 2011) from a topic model,
argumentation features (Wachsmuth et al., 2015),
and more recently, latent review clusters (Am-
playo and Hwang, 2017). These additional con-
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Figure 2: Full architecture of HCSC, which consists of the Hybrid Contextualized Word Encoder (middle), and
user-specific (left) and product-specific (right) Cold-Start Aware Attention (CSAA).

texts were especially useful when data is sparse,
i.e. number of instances is small or there exists
cold-start entities.

Our model differs from the baseline models
mainly because we consider the possible exis-
tence of the data sparsity problem. Through this,
we are able to construct more effective models
that are comparably powerful yet more efficient
complexity-wise than the state-of-the-art, and are
better when the training data is sparse. Ultimately,
our goal is to demonstrate that, similar to other
additional contexts, user and product information
can be used to effectively mitigate the problem
caused by cold-start users and products.

3 Our model

In this section, we present our model, Hybrid
Contextualized Sentiment Classifier (HCSC)1

which consists of a fast hybrid contextualized
word encoder and an attention mechanism called
Cold-Start Aware Attention (CSAA). The word
encoder returns word vectors with both local and
global contexts to cover both short and long range
dependency relationship between words. The
CSAA then incorporates user and product infor-
mation to the contextualized words through an at-
tention mechanism that considers the possible ex-
istence of cold-start problems. The full architec-
ture of the model is presented in Figure 2. We

1The data and code used in this paper are available here:
https://github.com/rktamplayo/HCSC.

describe the subparts of the model below.

3.1 Hybrid contextualized word encoder

The base model is a word encoder that transforms
vectors of words {wi} in the text to new word vec-
tors. In this paper, we present a fast yet very effec-
tive word encoder based on two different off-the-
shelf classifiers.

The first part of HCWE is based on a CNN
model which is widely used in text classification
(Kim, 2014). This encoder contextualizes words
based on local context words to capture short
range relationships between words. Specifically,
we do the convolution operation using filter matri-
ces Wf ∈ Rh×d with filter size h to a window of
h words. We do this for different sizes of h. This
produces new feature vectors ci,h as shown below,
where f(.) is a non-linear function:

ci,h = f([wi−(h−1)/2; ...;wi+(h−1)/2]
>Wf + bf )

The convolution operation reduces the number
of words differently depending on the filter size
h. To prevent loss of information and to pro-
duce the same amount of feature vectors ci,h, we
pad the texts dynamically such that when the fil-
ter size is h, the number of paddings on each side
is (h − 1)/2. This requires the filter sizes to be
odd numbers. Finally, we concatenate all feature
vectors of different h’s for each i as the new word
vector:

wcnni = [ci,h1 ; ci,h2 ; ...]

https://github.com/rktamplayo/HCSC
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The second part of HCWE is based on an RNN
model which is used when texts are longer and in-
clude word dependencies that may not be captured
by the CNN model. Specifically, we use a bidi-
rectional LSTM and concatenate the forward and
backward hidden state vectors as the new word
vector, as shown below:

−→
h i = LSTM(wi,

−→
h i−1)

←−
h i = LSTM(wi,

←−
h i+1)

wrnni = [
−→
h i;
←−
h i]

The answer to the question whether to use lo-
cal or global context to encode words for senti-
ment classification is still unclear, and both CNN
and RNN models have previous empirical evi-
dence that they perform better than the other (Kim,
2014; McCann et al., 2017). We believe that both
short and long range relationships, captured by
CNN and RNN respectively, are useful for senti-
ment classification. There are already previous at-
tempts to intricately combine both CNN and RNN
(Zhou et al., 2016), resulting to a slower model.
On the other hand, HCWE resorts to combine
them by simply concatenating the word vectors
encoded from both CNN and RNN encoders, i.e.
wi = [wcnni ;wrnni ]. This straightforward yet
fast alternative outputs a word vector with seman-
tics contextualized from both local and global con-
texts. Moreover, they perform as well as complex
hierarchical structured models (Yang et al., 2016;
Chen et al., 2016a) which train very slow.

3.2 Cold-start aware attention

Incorporating the user and product information
of the text as context vectors u and p to atten-
tively pool the word vectors, i.e. e(wi, u, p) =
v>tanh(Wwwi + Wuu + Wpp + b), has been
proven to improve the performance of sentiment
classifiers (Chen et al., 2016a). However, this
method assumes that the user and product vectors
are always present. This is not the case in real
world settings where a user/product may be new
and has just got its first review. In this case, the
vectors u and p are rendered useless and may also
contain noisy signals that decrease the overall per-
formance of the models.

To this end, we present an attention mecha-
nism called Cold-Start Aware Attention (CSAA).
CSAA operates on the idea that a cold-start
user/product can use the information of other sim-

ilar users/products with sufficient number of re-
views. CSAA separates the construction of pooled
vectors for user and for product, unlike previ-
ous methods that use both user/product informa-
tion to create a single pooled vector. Construct-
ing a user/product-specific pooled vector consists
of three parts: the distinct pooled vector created
using the original user/product, the shared pooled
vector created using similar users/products, and
the selective gate to select between the distinct
and shared vectors. Finally, the user- and product-
specific pooled vectors are combined into one final
pooled vector.

In the following paragraphs, we discuss the
step-by-step process on how the user-specific
pooled vector is constructed. A similar process is
done to construct the product-specific pooled vec-
tor, but is not presented here for conciseness.

The user-specific distinct pooled vector vdu is
created using a method similar to the additive at-
tention mechanism (Bahdanau et al., 2014), i.e.
vdu = att({wi}, u), where the context vector is the
distinct vector of user u, as shown in the equation
below. An equivalent method is used to create the
distinct product-specific pooled vector vdp .

edu(wi, u) = vd>tanh(W d
wwi +W d

uu+ bd)

adui
=

exp(edu(wi, u))∑
j exp(e

d
u(wj , u))

vdu =
∑
i

adui
× wi

The user-specific shared pooled vector vsu is cre-
ated using the same method above, but using a
shared context vector u′. The shared context vec-
tor u′ is constructed using the vectors of other
users and weighted based on a similarity weight.
Similarity is defined as how similar the word us-
ages of two users are. This means that if a user
uk uses words similarly to the word usage of the
original user u, then uk receives a high similarity
weight. The similarity weight asuk

is calculated as
the softmax of the product of µ({wi}) and uk with
a project matrix in the middle, where µ({wi}) is
the average of the word vectors. The similarity
weights are used to create u′, as shown below.
Similar method is used for the shared product-
specific pooled vector vsp.
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esu(µ({wi}), uk) = µ({wi})W s
uuk

asuk
=

exp(esu(wi, uk))∑
j exp(e

s
u(wi, uj))

u′ =
∑
k

asuk
× uk

vsu = att({wi}, u′)

We select between the user-specific distinct and
shared pooled vector, vdu and vsu, into one user-
specific pooled vector vu through a gate vector gu.
The vector gu should put more weight to the dis-
tinct vector when user u is not cold-start and to
the shared vector when u is otherwise. We use a
frequency-guided selective gate that utilizes the
frequency, i.e. the number of reviews user u has
written. The challenge is that we do not know how
many reviews should be considered cold-start or
not. This is automatically learned through a two-
parameter Weibull cumulative distribution where
given the review frequency of the user f(u), a
learned shape vector ku and a learned scale vector
λu, a probability vector is sampled and is used as
the gate vector gu to create vu, according to the
equation below. We normalized f(u) by divid-
ing it to the average user review frequency. The
relu function ensures that both ku and λu are non-
negative vectors. The final product-specific pooled
vector vp is created in a similar manner.

gu = 1− exp
(
−
( f(u)

relu(λu)

)relu(ku))
vu = gu × vdu + (1− gu)× vsu

Finally, we combine both the user- and product-
specific pooled vector, vu and vp, into one pooled
vector vup. This is done by using a gate vector
gup created using a sigmoidal transformation of
the concatenation of vu and vp, as illustrated in
the equation below.

gup = σ(Wg[vu; vp] + bg)

vup = gup × vu + (1− gup)× vp

We note that our attention mechanism can be
applied to any word encoders, including the basic
bag of words (BoW) to more recent models such
as CNN and RNN. Later (in Section 4.2), we show
that CSAA improves the performance of simpler
models greatly.

3.3 Training objective
Normally, a sentiment classifier transforms the fi-
nal vector vup, usually in a linear fashion, into a
vector with a dimension equivalent to the num-
ber of classes C. A softmax layer is then used to
obtain a probability distribution y′ over the senti-
ment classes. Finally, the full model uses a cross-
entropy over all training documents D as objec-
tive function L during training, where y is the gold
probability distribution:

y′ = softmax(Wvup + b)

L = −
∑
d∈D

∑
c∈C

y(d)c · log(y′(d)c )

However, HCSC has a nice architecture
which can be used to improve the train-
ing. It contains seven pooled vectors V =
{vdu, vdp , vsu, vsp, vu, vp, vup} that are essentially in
the same vector space. This is because these
vectors are created using weighted sums of ei-
ther the encoded word vectors through attention
or the parent pooled vectors through the selective
gates. Therefore, we can train separate classifiers
for each pooled vectors using the same parame-
ters W and b. Specifically, for each v ∈ V, we
calculate the loss Lv using the above formulas.
The final loss is then the sum of all the losses, i.e.
L =

∑
v∈V Lv.

4 Experiments

In this section, we present our experiments and
the corresponding results. We use the models de-
scribed in Section 2 as baseline models: JMARS
(Diao et al., 2014), UPNN (Tang et al., 2015),
TLFM+PRC (Song et al., 2017), UPDMN (Dou,
2017), TUPCNN (Chen et al., 2016b), and NSC
(Chen et al., 2016a), where NSC is the model with
state-of-the-art results.

4.1 Experimental settings
Implementation We set the size of the word,
user, and product vectors to 300 dimensions. We
use pre-trained GloVe embeddings2 (Pennington
et al., 2014) to initialize our word vectors. We
simply set the parameters for both BiLSTMs and
CNN to produce an output with 300 dimensions:
For the BiLSTMs, we set the state sizes of the
LSTMs to 75 dimensions, for a total of 150 dimen-
sions. For CNN, we set h = 3, 5, 7, each with 50

2https://nlp.stanford.edu/projects/
glove/

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Datasets Classes
Train Dev Test

#docs #users #prods #docs #users #prods #docs #users #prods
IMDB 10 67426 1310 1635 8381 1310 1574 9112 1310 1578

Yelp 2013 5 62522 1631 1633 7773 1631 1559 8671 1631 1577

Datasets Classes
Sparse20 Sparse50 Sparse80

#docs #users #prods #docs #users #prods #docs #users #prods
IMDB 10 44261 1042 1323 17963 659 840 2450 250 312

Yelp 2013 5 38687 1301 1288 16058 818 823 2406 352 304

Table 1: Dataset statistics

feature maps, for a total of 150 dimensions. These
two are concatenated to create a 300-dimension
encoded word vectors. We use dropout (Srivastava
et al., 2014) on all non-linear connections with a
dropout rate of 0.5. We set the batch size to 32.
Training is done via stochastic gradient descent
over shuffled mini-batches with the Adadelta up-
date rule (Zeiler, 2012), with l2 constraint (Hinton
et al., 2012) of 3. We perform early stopping using
a subset of the given development dataset. Train-
ing and experiments are all done using a NVIDIA
GeForce GTX 1080 Ti graphics card.

Additionally, we also implement two versions
of our model where the word encoder is a sub-
part of HCSC, i.e. (a) the CNN-based model
(CNN+CSAA) and (b) the RNN-based model
(RNN+CSAA). For the CNN-based model, we
use 100 feature maps for each of the filter sizes
h = 3, 5, 7, for a total of 300 dimensions. For the
RNN-based model, we set the state sizes of the
LSTMs to 150, for a total of 300 dimensions.

Datasets and evaluation We evaluate and com-
pare our models with other competing models
using two widely used sentiment classification
datasets with available user and product informa-
tion: IMDB and Yelp 2013. Both datasets are
curated by Tang et al. (2015), where they are di-
vided into train, dev, and test sets using a 8:1:1 ra-
tio, and are tokenized and sentence-splitted using
Stanford CoreNLP (Manning et al., 2014). In ad-
dition, we create three subsets of the train dataset
to test the robustness of the models on sparse
datasets. To create these datasets, we randomly re-
move all the reviews of x% of all users and prod-
ucts, where x = 20, 50, 80. These datasets are
not only more sparse than the original datasets,
but also have smaller number of users and prod-
ucts, introducing cold-start users and products. All
datasets are summarized in Table 1. Evaluation is
done using two metrics: the Accuracy which mea-
sures the overall sentiment classification perfor-
mance and the RMSE which measures the diver-

Models
IMDB Yelp 2013

Acc. RMSE Acc. RMSE
JMARS - 1.773∗ - 0.985∗

UPNN 0.435∗ 1.602∗ 0.596∗ 0.784∗

TLFM+PRC - 1.352∗ - 0.716∗

UPDMN 0.465∗ 1.351∗ 0.639∗ 0.662
TUPCNN 0.488∗ 1.451∗ 0.639∗ 0.694∗

NSC 0.533 1.281∗ 0.650 0.692∗

CNN+CSAA 0.522∗ 1.256∗ 0.654 0.665
RNN+CSAA 0.527∗ 1.237∗ 0.654 0.667

HCSC 0.542 1.213 0.657 0.660

Table 2: Accuracy and RMSE values of competing
models on the original non-sparse datasets. An aster-
isk indicates that HCSC is significantly better than the
model (p < 0.01).

gence between predicted and ground truth classes.
We notice very minimal differences among perfor-
mances of different runs.

4.2 Comparisons on original datasets

We report the results on the original datasets
in Table 2. On both datasets, HCSC outper-
forms all previous models based on both accuracy
and RMSE. Based on accuracy, HCSC performs
significantly better than all previous models ex-
cept NSC, where it performs slightly better with
0.9% and 0.7% increase on IMDB and Yelp 2013
datasets. Based on RMSE, HCSC performs sig-
nificantly better than all previous models, except
when compared with UPDMN on the Yelp 2013
datasets, where it performs slightly better. We note
that RMSE is a better metric because it measures
how close the wrongly predicted sentiment and the
ground truth sentiment are. Although NSC per-
forms as well as HCSC based on accuracy, it per-
forms worse based on RMSE, which means that its
predictions deviate far from the original sentiment.

It is also interesting to note that when CSAA
is used as attentive pooling, both simple CNN
and RNN models perform just as well as NSC,
despite NSC being very complex and model-
ing the documents with compositionality (Chen
et al., 2016a). This is especially true when com-
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Models Sparse20 Sparse50 Sparse80
NSC(LA) 0.469 0.428 0.309

NSC 0.497 0.408 0.292
CNN+CSAA 0.497 0.444 0.343
RNN+CSAA 0.505 0.455 0.364

HCSC 0.505 0.456 0.368

(a) IMDB Datasets
Models Sparse20 Sparse50 Sparse80

NSC(LA) 0.624 0.590 0.523
NSC 0.626 0.592 0.511

CNN+CSAA 0.626 0.605 0.522
RNN+CSAA 0.633 0.603 0.527

HCSC 0.636 0.608 0.538

(b) Yelp 2013 Datasets

Table 3: Accuracy values of competing models when
the training data used is sparse. Bold-faced values are
the best accuracies in the column, while red values are
accuracies worse than NSC(LA).

pared using RMSE, where both CNN+CSAA and
RNN+CSAA perform significantly better (p <
0.01) than NSC. This proves that CSAA is an ef-
fective use of the user and product information for
sentiment classification.

4.3 Comparisons on sparse datasets

Table 3 shows the accuracy of NSC (Chen
et al., 2016a) and our models CNN+CSAA,
RNN+CSAA, and HCSC on the sparse datasets.
As shown in the table, on all datasets with dif-
ferent levels of sparsity, HCSC performs the best
among the competing models. The difference be-
tween the accuracy of HCSC and NSC increases as
the level of sparsity intensifies: While the HCSC
only gains 0.8% and 1.0% over NSC on the less
sparse Sparse20 IMDB and Yelp 2013 datasets, it
improves over NSC significantly with 7.6% and
2.7% increase on the more sparse Sparse80 IMDB
and Yelp 2013 datasets, respectively.

We also run our experiments using NSC with-
out user and product information, i.e. NSC(LA)
which reduces the model into a hierarchical LSTM
model (Yang et al., 2016). Results show that
although the use of user and product informa-
tion in NSC improves the model on less sparse
datasets (as also shown in the original paper (Chen
et al., 2016a)), it decreases the performance of the
model on more sparse datasets: It performs 2.0%,
1.7%, and 1.2% worse than NSC(LA) on Sparse50
IMDB, Sparse80 IMDB, and Sparse80 Yelp 2013
datasets. We argue that this is because NSC does
not consider the existence of cold-start problems,
which makes the additional user and product in-
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Figure 3: Accuracy per user/product review frequency
on both datasets. The review frequency value f repre-
sents the frequencies in the range [f, f + 10), except
when f = 100, which represents the frequencies in the
range [f,∞).

formation more noisy than helpful.

5 Analysis

In this section, we show further interesting anal-
yses of the properties of HCSC. We use the
Sparse50 datasets and the corresponding results of
several models as the experimental data.

Performance per review frequency We in-
vestigate the performance of the model over
users/products with different number of reviews.
Figure 3 shows plots of accuracy of both NSC and
HCSC over (a) different user review frequency on
IMDB dataset and (b) different product review fre-
quency on Yelp 2013 dataset. On both plots, we
observe that when the review frequency is small,
the performance gain of HCSC over NSC is very
large. However, as the review frequency becomes
larger, the performance gain of HCSC over NSC
decreases to a very marginal increase. This means
that HCSC finds its improvements over NSC from
cold-start users and products, in which NSC does
not consider explicitly.

How few is cold-start? One intriguing question
is when do we say that a user/product is cold-
start or not. Obviously, users/products with no
previous reviews at all should be considered cold-
start, however the cut-off point between cold-start
and non-cold-start entities is vague. Although we
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Example 1
Text: four words, my friends… fresh. baked. soft. pretzels. freq(user): 0 (cold start) freq(product): 13 (cold start)

four words , my friends ... fresh . baked . soft . pretzels .

user distinct

user shared

product distinct

product shared

𝒈𝒖 = 𝟎.𝟎𝟎
𝟏 − 𝒈𝒖 = 𝟏. 𝟎𝟎

𝒈𝒑 = 𝟎.𝟒𝟗

𝟏 − 𝒈𝒑 = 𝟎.𝟓𝟏

Example 2
Text: delicios new york style thin crust pizza with simple topping combinations as it should. ... 

we enjoyed the dining atmosphere but the waitress we had rushed us to leave .
freq(user): 65 freq(product): 117

delicios new york style thin crust pizza with simple topping combinations as it should

𝒈𝒖 = 𝟎.𝟗𝟔
𝟏 − 𝒈𝒖 = 𝟎. 𝟎𝟒

𝒈𝒑 = 𝟏.𝟎𝟎

𝟏 − 𝒈𝒑 = 𝟎.𝟎𝟎

user distinct

user shared

product distinct

product shared

we enjoyed the dining atmosphere but the waitress we had rushed us to leave

user distinct

user shared

product distinct

product shared

Figure 4: Visualization of attention and gate values of two examples from the Yelp 2013 dataset. Example 2 is
truncated, leaving only the important parts. Gate values g’s are the average of the values in the original gate vector.
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Figure 5: Graph of the user/product-specific Weibull
cumulative distribution on both datasets.

cannot provide an exact answer to this question,
HCSC is able to provide a nice visualization by re-
ducing the shape and scale vectors, k and λ, of the
frequency-guided selective gate into their averages
and draw a Weibull cumulative distribution graph,
as shown in Figure 5. The figure provides us these
observations: First, users have a more lenient cold-
start cut-off point compared to products; in the
IMDB dataset, a user only needs approximately at
least five reviews to use at least 80% of its own in-
formation (i.e. distinct vector). On the other hand,
products tend to need more reviews to be consid-
ered sufficient and not cold start; in the IMDB
dataset, a product needs approximately 40 reviews
to use at least 80% of its own information. This
explains the marginal increase in performance of
previous models when only product information is
used as additional context, as reported by previous
papers (Tang et al., 2015; Chen et al., 2016a).

On the different pooled vectors We visualize
the attention and gate values of two example re-
sults from HCSC in Figure 4 to investigate on how

Models IMDB Yelp 2013
NSC 7331 6569

CNN+CSAA 256 (28.6x) 146 (45.0x)
RNN+CSAA 968 (7.6x) 561 (11.7x)

HCSC 1110 (6.6x) 615 (10.7x)

Table 4: Time (in seconds) to process the first 100
batches of competing models for each dataset. The
numbers in the parenthesis are the speedup of time
when compared to NSC.

user/product vectors, and distinct/shared vectors
work. In the first example, both user and prod-
uct are cold-start. The user distinct vector focuses
its attention to wrong words, since it is not able
to use any useful information from the user at all.
In this case, HCSC uses the user shared vector by
using a gate vector gu = 0. The user shared vec-
tor correctly attends to important words such as
fresh, baked, soft, and pretzels. In the second ex-
ample, both user and product are not cold-start. In
this case, the distinct vectors are used almost en-
tirely by setting the gates close to 1. Still, the cor-
responding shared vectors are similar to the dis-
tinct vectors, proving that HCSC is able to create
useful user/product-specific context from similar
users/products. Finally, we look at the differing at-
tention values of users and products. We observe
that user vectors focus on words that describe the
product or express their emotions (e.g. fresh and
enjoyed). On the other hand, product vectors focus
more on words pertaining to the products/services
(e.g. pretzels and waitress).

On the time complexity of models Finally,
we report the time in seconds to run 100
batches of data of the models NSC, CNN+CSAA,
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RNN+CSAA, and HCSC in Figure 4. NSC takes
too long to train, needing at least 6500 seconds
to process 100 batches of data. This is because it
uses two non-parallelizable LSTMs on top of each
other. Our models, on the other hand, only use
one (or none in the case of CNN+CSAA) level of
BiLSTM. This results to at least 6.6x speedup on
the IMDB datasets, and at least 10.7x speedup on
the Yelp 2013 datasets. This means that HCSC
does not sacrifice a lot of time complexity to ob-
tain better results.

6 Conclusion

We propose Hybrid Contextualized Sentiment
Classifier (HCSC) with a fast word encoder which
contextualizes words to contain both short and
long range word dependency features, and an at-
tention mechanism called Cold-start Aware Atten-
tion (CSAA) which considers the existence of the
cold-start problem among users and products by
using a shared vector and a frequency-guided se-
lective gate, in addition to the original distinct vec-
tor. Our experimental results show that our model
performs significantly better than previous mod-
els. These improvements increase when the level
of sparsity in data increases, which confirm that
HCSC is able to deal with the cold-start problem.
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