
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 2373–2383
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

2373

Building Language Models for Text with Named Entities

Md Rizwan Parvez
University of California Los Angeles

rizwan@cs.ucla.edu

Baishakhi Ray
Columbia University

rayb@cs.columbia.edu

Saikat Chakraborty
University of Virginia

saikatc@virginia.edu

Kai-Wei Chang
University of California Los Angeles

kwchang@cs.ucla.edu

Abstract

Text in many domains involves a signif-
icant amount of named entities. Predict-
ing the entity names is often challenging
for a language model as they appear less
frequent on the training corpus. In this
paper, we propose a novel and effective
approach to building a discriminative lan-
guage model which can learn the entity
names by leveraging their entity type in-
formation. We also introduce two bench-
mark datasets based on recipes and Java
programming codes, on which we evalu-
ate the proposed model. Experimental re-
sults show that our model achieves 52.2%
better perplexity in recipe generation and
22.06% on code generation than the state-
of-the-art language models.

1 Introduction

Language model is a fundamental component in
Natural Language Processing (NLP) and it sup-
ports various applications, including document
generation (Wiseman et al., 2017), text auto-
completion (Arnold et al., 2017), spelling correc-
tion (Brill and Moore, 2000), and many others.
Recently, language models are also successfully
used to generate software source code written in
programming languages like Java, C, etc. (Hin-
dle et al., 2016; Yin and Neubig, 2017; Hel-
lendoorn and Devanbu, 2017; Rabinovich et al.,
2017). These models have improved the language
generation tasks to a great extent, e.g., (Mikolov
et al., 2010; Galley et al., 2015). However, while
generating text or code with a large number of
named entities (e.g., different variable names in
source code), these models often fail to predict the
entity names properly due to their wide variations.
For instance, consider building a language model

for generating recipes. There are numerous simi-
lar, yet slightly different cooking ingredients (e.g.,
olive oil, canola oil, grape oil, etc.—all are dif-
ferent varieties of oil). Such diverse vocabularies
of the ingredient names hinder the language model
from predicting them properly.

To address this problem, we propose a novel
language model for texts with many entity names.
Our model learns the probability distribution over
all the candidate words by leveraging the en-
tity type information. For example, oil is the
type for named entities like olive oil, canola oil,
grape oil, etc.1 Such type information is even
more prevalent for source code corpus written in
statically typed programming languages (Bruce,
1993), since all the variables are by construct as-
sociated with types like integer, float, string, etc.

Our model exploits such deterministic type in-
formation of the named entities and learns the
probability distribution over the candidate words
by decomposing it into two sub-components: (i)
Type Model. Instead of distinguishing the individ-
ual names of the same type of entities, we first con-
sider all of them equal and represent them by their
type information. This reduces the vocab size to
a great extent and enables to predict the type of
each entity more accurately. (ii) Entity Composite
Model. Using the entity type as a prior, we learn
the conditional probability distribution of the ac-
tual entity names at inference time. We depict our
model in Fig. 1.

To evaluate our model, we create two bench-
mark datasets that involve many named entities.
One is a cooking recipe corpus2 where each recipe
contains a number of ingredients which are cate-

1Entity type information is often referred as category in-
formation or group information. In many applications, such
information can be easily obtained by an ontology or by a
pre-constructed entity table.

2 Data is crawled from http://www.ffts.com/
recipes.htm.

http://www.ffts.com/recipes.htm
http://www.ffts.com/recipes.htm

2374

place					proteins in							center				of									a									dish			with		vegetables on					each						side										.		

place				chicken in						center					of												a									dish					with				broccoli on						each						side								.		

entity name	w P(w|proteins) P(w)

q chicken 0.43 0.35	x	0.43

q beef 0.19 0.35	x	0.19

q

Language	Model	(type	model)

Language	Model	(entity	composite	type	model)

type P(type)

q proteins 0.35

q vegetables 0.11

q

type P(type)

q vegetables 0.52

q fruits 0.22

q

entity name	w P(w|vegetables) P(w)

q broccoli 0.26 0.52	x	0.26

q potatoes 0.21 0.52	x	0.21

q

Figure 1: An example illustrates the proposed model.
For a given context (i.e., types of context words as input),
the type model (in bottom red block) generates the type
of the next word (i.e., the probability of the type of the
next word as output). Further, for a given context and
type of each candidate (i.e., context words, correspond-
ing types of the context words, and type of the next word
generated by the type model as input), the entity compos-
ite model (in upper green block) predicts the next word
(actual entity name) by estimating the conditional proba-
bility of the next word as output. The proposed approach
conducts joint inference over both models to leverage type
information for generating text.

gorized into 8 super-ingredients (i.e., type); e.g.,
“proteins”, “vegetables”, “fruits”, “seasonings”,
“grains”, etc. Our second dataset comprises a
source code corpus of 500 open-source Android
projects collected from GitHub. We use an Ab-
stract Syntax Tree (AST) (Parsons, 1992) based
approach to collect the type information of the
code identifiers.

Our experiments show that although state-of-
the-art language models are, in general, good to
learn the frequent words with enough training in-
stances, they perform poorly on the entity names.
A simple addition of type information as an ex-
tra feature to a neural network does not guarantee
to improve the performance because more features
may overfit or need more model parameters on the
same data. In contrast, our proposed method sig-
nificantly outperforms state-of-the-art neural net-
work based language models and also the models
with type information added as an extra feature.

Overall, followings are our contributions:
• We analyze two benchmark language corpora

where each consists of a reasonable number
of entity names. While we leverage an ex-
isting corpus for recipe, we curated the code

corpus. For both datasets, we created auxil-
iary corpora with entity type information. All
the code and datasets are released.3

• We design a language model for text consist-
ing of many entity names. The model learns
to mention entities names by leveraging the
entity type information.
• We evaluate our model on our benchmark

datasets and establish a new baseline perfor-
mance which significantly outperforms state-
of-the-art language models.

2 Related Work and Background

Class Based Language Models. Building lan-
guage models by leveraging the deterministic
or probabilistic class properties of the words
(a.k.a, class-based language models) is an old
idea (Brown et al., 1992; Goodman, 2001). How-
ever, the objective of our model is different from
the existing class-based language models. The
key differences are two-folds: 1) Most existing
class-based language models (Brown et al., 1992;
Pereira et al., 1993; Niesler et al., 1998; Baker and
McCallum, 1998; Goodman, 2001; Maltese et al.,
2001) are generative n-gram models whereas ours
is a discriminative language model based on neu-
ral networks. The modeling principle and assump-
tions are very different. For example, we can-
not calculate the conditional probability by statis-
tical occurrence counting as these papers did. 2)
Our approaches consider building two models and
perform joint inference which makes our frame-
work general and easy to extend. In Section 4,
we demonstrate that our model can be easily in-
corporated with the state-of-art language model.
The closest work in this line is hierarchical neu-
ral language models (Morin and Bengio, 2005),
which model language with word clusters. How-
ever, their approaches do not focus on dealing
with named entities as our model does. A recent
work (Ji et al., 2017) studied the problem of build-
ing up a dynamic representation of named entity
by updating the representation for every contextu-
alized mention of that entity. Nonetheless, their
approach does not deal with the sparsity issue and
their goal is different from ours.

Language Models for Named Entities. In
some generation tasks, recently developed lan-
guage models address the problem of predict-

3https://github.com/uclanlp/NamedEntityLanguageModel

2375

ing entity names by copying/matching the entity
names from the reference corpus. For example,
Vinyals et al. (2015) calculates the conditional
probability of discrete output token sequence cor-
responding to positions in an input sequence. Gu
et al. (2016) develops a seq2seq alignment mech-
anism which directly copies entity names or long
phrases from the input sequence. Wiseman et al.
(2017) generates document from structured table
like basketball statistics using copy and recon-
struction method as well. Another related code
generation model (Yin and Neubig, 2017) parses
natural language descriptions into source code
considering the grammar and syntax in the tar-
get programming language (e.g., Python). Kid-
don et al. (2016) generates recipe for a given goal,
and agenda by making use of items on the agenda.
While generating the recipe it continuously moni-
tors the agenda coverage and focus on increasing
it. All of them are sequence-to-sequence learning
or end-to-end systems which differ from our gen-
eral purpose (free form) language generation task
(e.g., text auto-completion, spelling correction).

Code Generation. The way developers write
codes is not only just writing a bunch of instruc-
tions to run a machine, but also a form of com-
munication to convey their thought. As observed
by Donald E. Knuth (Knuth, 1992), “The prac-
titioner of literate programming can be regarded
as an essayist, whose main concern is exposition
and excellence of style. Such an author, with the-
saurus in hand, chooses the names of variables
carefully and explains what such variable means.”
Such comprehensible software corpora show sur-
prising regularity (Ray et al., 2015; Gabel and
Su, 2010) that is quite similar to the statistical
properties of natural language corpora and thus,
amenable to large-scale statistical analysis (Hindle
et al., 2012). (Allamanis et al., 2017) presented a
detailed survey.

Although similar, source code has some unique
properties that differentiate it from natural lan-
guage. For example, source code often shows
more regularities in local context due to common
development practices like copy-pasting (Ghare-
hyazie et al., 2017; Kim et al., 2005). This prop-
erty is successfully captured by cache based lan-
guage models (Hellendoorn and Devanbu, 2017;
Tu et al., 2014). Code is also less ambiguous than
natural language so that it can be interpreted by
a compiler. The constraints for generating cor-

rect code is implemented by combining language
model and program analysis technique (Raychev
et al., 2014). Moreover, code contains open vocab-
ulary—developers can coin new variable names
without changing the semantics of the programs.
Our model aims to addresses this property by
leveraging variable types and scope.

LSTM Language Model. In this paper, we use
LSTM language model as a running example to
describe our approach. Our language model uses
the LSTM cells to generate latent states for a
given context which captures the necessary fea-
tures from the text. At the output layer of our
model, we use Softmax probability distribution to
predict the next word based on the latent state.
Merity et al. (2017) is a LSTM-based language
model which achieves the state-of-the-art perfor-
mance on Penn Treebank (PTB) and WikiText-
2 (WT2) datasets. To build our recipe language
model we use this as a blackbox and for our code
generation task we use the simple LSTM model
both in forward and backward direction. A for-
ward directional LSTM starts from the beginning
of a sentence and goes from left to right sequen-
tially until the sentence ends, and vice versa. How-
ever, our approach is general and can be applied
with other types of language models.

3 A Probabilistic Model for Text with
Named Entities

In this section, we present our approach to build a
language model for text with name entities. Given
previous context w̄ = {w1, w2, .., wt−1}, the goal
of a language model is to predict the probabil-
ity of next word P (wt|w̄) at time step t, where
wt ∈ V text and V text is a fixed vocabulary set.
Because the size of vocabulary for named entities
is large and named entities often occur less fre-
quently in the training corpus, the language model
cannot generate these named entities accurately.
For example, in our recipe test corpus the word
“apple” occurs only 720 times whereas any kind of
“fruits” occur 27,726 times. Existing approaches
often either only generate common named entities
or omit entities when generating text (Jozefowicz
et al., 2016).

To overcome this challenge, we propose to
leverage the entity type information when model-
ing text with many entities. We assume each en-
tity is associated with an entity type in a finite set
of categories S = {s1, s2, .., si, .., sk}. Given a

2376

word w, s(w) reflects its entity type. If the word
is a named entity, then we denote s(w) ∈ S; oth-
erwise the type function returns the words itself
(i.e, s(w) = w). To simplify the notations, we use
s(w) 6∈ S to represent the case where the word is
not an entity. The entity type information given
by s(w) is an auxiliary information that we can
use to improve the language model. We use s(w̄)
to represent the entity type information of all the
words in context w̄ and use w to represent the cur-
rent word wt. Below, we show that a language
model for text with typed information can be de-
composed into the following two models: 1) a type
model θt that predicts the entity type of the next
word and 2) an entity composite model θv that pre-
dicts the next word based on a given entity type.

Our goal is to model the probability of next
word w given previous context w̄:

P (w|w̄; θt, θv) , (1)

where θt and θv are the parameters of the two
aforementioned models. As we assume the typed
information is given on the data, Eq. (1) is equiv-
alent to

P (w, s(w)|w̄, s(w̄); θt, θv) . (2)

A word can be either a named entity or not;
therefore, we consider the following two cases.

Case 1: next word is a named entity. In this
case, Eq. (2) can be rewritten as

P (s(w) = s|w̄, s(w̄); θt, θv)×
P (w|w̄, s(w̄), s(w) = s; θv, θt)

(3)

based on the rules of conditional probability.
We assume the type of the next token s(w) can

be predicted by a model θt using information of
s(w̄), and we can approximate the first term in Eq.
(3)

P (s(w)|w̄, s(w̄); θt, θv) ≈ P (s(w)|s(w̄), θt)
(4)

Similarly, we can make a modeling assumption to
simplify the second term as

P (w|w̄, s(w̄), s(w), θv, θt)

≈ P (w|w̄, s(w̄), s(w), θv).
(5)

Case 2: next word is not a named entity. In
this case, we can rewrite Eq. (2) to be

P (s(w) 6∈ S|w̄, s(w̄), θt)×
P (w|w̄, s(w̄), s(w) 6∈ S, θv) .

(6)

The first term in Eq. (6) can be modeled by

1−
∑
s∈S

P (s(w) = s|s(w̄), θt),

which can be computed by the type model4. The
second term can be again approximated by (5) and
further estimated by an entity composition model.

Typed Language Model. Combine the afore-
mentioned equations, the proposed language
model estimates P (w|w̄; θt, θv) by

P (w|w̄, s(w̄), s(w), θv)×{
P (s(w)|s(w̄), θt) if s(w) ∈ S
(1−

∑
s∈S P (s(w)=s|s(w̄), θt)) if s(w) 6∈ S

(7)

The first term can be estimated by an entity com-
posite model and the second term can be estimated
by a type model as discussed below.

3.1 Type model
The type model θt estimates the probability of
P (s(w)|s(w̄), θt). It can be viewed as a lan-
guage model builds on a corpus with all entities
replaced by their type. That is, assume the train-
ing corpus consists of x = {w1, w2, .., wn}. Us-
ing the type information provided in the auxiliary
source, we can replace each word w with their
corresponding type s(w) and generate a corpus of
T = {s(wi), s(w2), .., s(wn)}. Note that if wi is
not an named entity (i.e., s(w) 6∈ S), s(w) = w
and the vocabulary on T is V text ∪ S.5 Any lan-
guage modeling technique can be used in model-
ing the type model on the modified corpus T . In
this paper, we use the state-of-the-art model for
each individual task. The details will be discussed
in the experiment section.

3.2 Entity Composite Model
The entity composite model predicts the next word
based on modeling the conditional probability
P (w|w̄, s(w̄), s(w), θv), which can be derived by

P (w|w̄, s(w̄); θv)∑
ws∈Ω(s(w)) P (ws|w̄, s(w̄); θv)

, (8)

4Empirically for the non-entity words,
∑

s∈S P (s(w) =
s|s(w̄) ≈ 0

5In a preliminary experiment, we consider putting all
words with s(w) 6∈ S in a category “N/A”. However, because
most words on the training corpus are not named entities, the
type “N/A” dominates others and hinder the type model to
make accurate predictions.

2377

where Ω(s(w)) is the set of words of the same type
with w.

To model the types of context word s(w̄) in
P (w|w̄, s(w̄); θv), we consider learning a type
embedding along with the word embedding by
augmenting each word vector with a type vec-
tor when learning the underlying word representa-
tion. Specifically, we represent each word w as a
vector of [vw(w)T ; vt(s(w))T]T , where vw(·) and
vt(·) are the word vectors and type vectors learned
by the model from the training corpus, respec-
tively. Finally, to estimate Eq. (8) using θv, when
computing the Softmax layer, we normalize over
only words in Ω(s(w)). In this way, the condi-
tional probability P (w|w̄, s(w̄), s(w), θv) can be
derived.

3.3 Training and Inference Strategies

We learn model parameters θt and θv indepen-
dently by training two language models type
model and entity composite model respectively.
Given the context of type, type model predicts the
type of the next word. Given the context and the
type information of the all candidate words, en-
tity composite model predicts the conditional ac-
tual word (e.g., entity name) as depicted in Fig
1. At inference time the generated probabilities
from these two models are combined according to
conditional probability (i.e., Eq. (7)) which gives
the final probability distribution over all candidate
words6.

Our proposed model is flexible to any language
model, training strategy, and optimization. As per
our experiments, we use ADAM stochastic mini-
batch optimization (Kingma and Ba, 2014). In Al-
gorithm 1, we summarize the language generation
procedure.

4 Experiments

We evaluate our proposed model on two different
language generation tasks where there exist a lot of
entity names in the text. In this paper, we release
all the codes and datasets. The first task is recipe
generation. For this task, we analyze a cooking
recipe corpus. Each instance in this corpus is an
individual recipe and consists of many ingredi-

6While calculating the final probability distribution over
all candidate words, with our joint inference schema, a strong
state-of-art language model, without the type information, it-
self can work sufficiently well and replace the entity com-
posite model. Our experiments using (Merity et al., 2017) in
Section 4.1 validate this claim.

Algorithm 1: Language Generation
Input: Language corpus

X = {w1, w2, .., wn}, type s(w) of
the words, integer number m.

Output: θt, θv, {W1,W2, ..,Wm}
1 Training Phase:
2 Generate T = { s(w1), s(w2), .., s(wn)}
3 Train type model θt on T
4 Train entity composite model θv on X using

[wi; s(wi)] as input

5 Test Phase (Generation Phase):
6 for i = 1 to m do
7 for w ∈Vtext do
8 Compute P (s(w)|s(w̄), θt)
9 Compute P (w|w̄, s(w̄), s(w), θv)

10 Compute P (w|w̄; θt, θv) using Eq.(7)
11 end
12 Wi←argmaxwP (w|w̄; θt, θv)

13 end

ents’. Our second task is code generation. We
construct a Java code corpus where each instance
is a Java method (i.e., function). These tasks are
challenging because they have the abundance of
entity names and state-of-the-art language models
fail to predict them properly as a result of insuffi-
cient training observations. Although in this paper,
we manually annotate the types of the recipe in-
gredients, in other applications it can be acquired
automatically. For example: in our second task of
code generation, the types are found using Eclipse
JDT framework. In general, using DBpedia ontol-
ogy (e.g., “Berlin” has an ontology “Location”),
Wordnet hierarchy (e.g., “Dog” is an “Animal”),
role in sports (e.g., “Messi” plays in “Forward”;
also available in DBpedia7), Thesaurus (e.g., “re-
nal cortex”, “renal pelvis”, “renal vein”, all are
related to “kidney”), Medscape (e.g., “Advil” and
“Motrin” are actually “Ibuprofen”), we can get the
necessary type information. As for the applica-
tions where the entity types cannot be extracted
automatically by these frameworks (e.g., recipe in-
gredients), although there is no exact strategy, any
reasonable design can work. Heuristically, while
annotating manually in our first task, we choose
the total number of types in such a way that each
type has somewhat balanced (similar) size.

We use the same dimensional word embedding

7 http://dbpedia.org/page/Lionel Messi

2378

(400 for recipe corpus, 300 for code corpus) to
represent both of the entity name (e.g., “apple”)
and their entity type (e.g., “fruits”) in all the mod-
els. Note that in our approach, the type model
only replaces named entities with entity type when
it generates next word. If next word is not a
named entity, it will behave like a regular language
model. Therefore, we set both models with the
same dimensionality. Accordingly, for the entity
composite model which takes the concatenation of
the entity name and the entity type, the concate-
nated input dimension is 800 and 600 respectively
for recipe and code corpora.

4.1 Recipe Generation

Recipe Corpus Pre-processing: Our recipe cor-
pus collection is inspired by (Kiddon et al., 2016).
We crawl the recipes from “Now Youre Cooking!
Recipe Software” 8. Among more than 150,000
recipes in this dataset, we select similarly struc-
tured/formatted (e.g, title, blank line then ingre-
dient lists followed by a recipe) 95,786 recipes.
We remove all the irrelevant information (e.g., au-
thor’s name, data source) and keep only two in-
formation: ingredients and recipes. We set aside
the randomly selected 20% of the recipes for test-
ing and from the rest, we keep randomly selected
80% for the training and 20% for the develop-
ment. Similar to (Kiddon et al., 2016), we pre-
process the dataset and filter out the numerical
values, special tokens, punctuation, and symbols.9

Quantitatively, the data we filter out is negligible;
in terms of words, we keep 9,994,365 words out
of 10,231,106 and the number of filter out words
is around ∼2%. We release both of the raw and
cleaned data for future challenges. As the ingredi-
ents are the entity names in our dataset, we process
it separately to get the type information.

Retrieving Ingredient Type: As per our type
model, for each word w, we require its type s(w).
We only consider ingredient type for our experi-
ment. First, we tokenize the ingredients and con-
sider each word as an ingredient. We manually
classify the ingredients into 8 super-ingredients:
“fruits”, “proteins”, “sides”, “seasonings”, “veg-
etables”, “dairy”, “drinks”, and “grains”. Some-

8http://www.ffts.com/recipes.htm
9For example, in our crawled raw dataset, we find that

some recipes have lines like “===MMMMM===” which are
totally irrelevant to our task. For the words with numerical
values like “100 ml”, we only remove the “100” and keep the
“ml” since our focus is not to predict the exact number.

times, ingredients are expressed using multiple
words; for such ingredient phrase, we classify
each word in the same group (e.g., for “boneless
beef” both “boneless” and “beef” are classified as
“proteins”). We classify the most frequent 1,224
unique ingredients, 10 which cover 944,753 out
of 1,241,195 mentions (top 76%) in terms of fre-
quency of the ingredients. In our experiments,
we omit the remainder 14,881 unique ingredients
which are less frequent and include some mis-
spelled words. The number of unique ingredients
in the 8 super ingredients is 110, 316, 140, 180,
156, 80, 84, and 158 respectively. We prepare the
modified type corpus by replacing each actual in-
gredient’s name w in the original recipe corpus by
the type (i.e., super ingredients s(w)) to train the
type model.

Recipe Statistics: In our corpus, the total num-
ber of distinct words in vocabulary is 52,468;
number of unique ingredients (considering split-
ting phrasal ingredients also) is 16,105; number
of tokens is 8,716,664. In number of instances
train/dev/test splits are 61,302/15,326/19,158. The
average instance size of a meaningful recipe is 91
on the corpus.

Configuration: We consider the state-of-the art
LSTM-based language model proposed in (Mer-
ity et al., 2017) as the basic component for build-
ing the type model, and entity composite model.
We use 400 dimensional word embedding as de-
scribed in Section 4. We train the embedding for
our dataset. We use a minibatch of 20 instances
while training and back-propagation through time
value is set to 70. Inside of this (Merity et al.,
2017) language model, it uses 3 layered LSTM
architecture where the hidden layers are 1150 di-
mensional and has its own optimization and reg-
ularization mechanism. All the experiments are
done using PyTorch and Python 3.5.

Baselines: Our first baseline is ASGD Weight-
Dropped LSTM (AWD LSTM) (Merity et al.,
2017), which we also use to train our models (see
’Configuration’ in 4.1). This model achieves the
state-of-the-art performance on benchmark Penn
Treebank (PTB), and WikiText-2 (WT2) language
corpus. Our second baseline is the same language
model (AWD LSTM) with the type information
added as an additional feature (i.e., same as entity
composite model).

10We consider both singular and plural forms. The number
of singular formed annotated ingredients are 797.

2379

Model Dataset Vocabulary Perplexity
(Recipe Corpus) Size

AWD LSTM original 52,472 20.23

AWD LSTM modified type 51,675 17.62
type model

AWD LSTM original 52,472 18.23
with type feature

our model original 52,472 9.67

Table 1: Comparing the performance of recipe gen-
eration task. All the results are on the test set of the
corresponding corpus. AWD LSTM (type model) is our
type model implemented with the baseline language model
AWD LSTM (Merity et al., 2017). Our second baseline is
the same language model (AWD LSTM) with the type in-
formation added as an additional feature for each word.

Results of Recipe Generation. We compare
our model with the baselines using perplexity met-
ric—lower perplexity means the better prediction.
Table 1 summarizes the result. The 3rd row shows
that adding type as a simple feature does not
guarantee a significant performance improvement
while our proposed method significantly outper-
forms both baselines and achieves 52.2% improve-
ment with respect to baseline in terms of perplex-
ity. To illustrate more, we provide an example
snippet of our test corpus: “place onion and gin-
ger inside chicken . allow chicken to marinate for
hour .”. Here, for the last mention of the word
“chicken”, the standard language model assigns
probability 0.23 to this word, while ours assigns
probability 0.81.

4.2 Code Generation
Code Corpus Pre-processing. We crawl 500
Android open source projects from GitHub11.
GitHub is the largest open source software forge
where anyone can contribute (Ray et al., 2014).
Thus, GitHub also contains trivial projects like
student projects, etc. In our case, we want to study
the coding practices of practitioners so that our
model can learn to generate quality code. To en-
sure this, we choose only those Android projects
from GitHub that are also present in Google Play
Store12. We download the source code of these
projects from GitHub using an off the shelf tool
GitcProc (Casalnuovo et al., 2017).

Since real software continuously evolves to
cater new requirements or bug fixes, to make our
modeling task more realistic, we further study dif-

11https://github.com
12https://play.google.com/store?hl=en

ferent project versions. We partition the codebase
of a project into multiple versions based on the
code commit history retrieved from GitHub; each
version is taken at an interval of 6 months. For
example, anything committed within the first six
months of a project will be in the first version,
and so on. We then build our code suggestion
task mimicking how a developer develops code in
an evolving software—based on the past project
history, developers add new code. To implement
that we train our language model on past project
versions and test it on the most recent version, at
method granularity. However, it is quite difficult
for any language model to generate a method from
the scratch if the method is so new that even the
method signature (i.e., method declaration state-
ment consisting of method name and parameters)
is not known. Thus, during testing, we only fo-
cus on the methods that the model has seen before
but some new tokens are added to it. This is simi-
lar to the task when a developer edits a method to
implement a new feature or bug-fix.

Since we focus on generating the code for ev-
ery method, we train/test the code prediction task
at method level—each method is similar to a sen-
tence and each token in the method is equivalent
to a word. Thus, we ignore the code outside the
method scope like global variables, class decla-
rations, etc. We further clean our dataset by re-
moving user-defined “String” tokens as they in-
crease the diversity of the vocabularies signifi-
cantly, although having the same type. For ex-
ample, the word sequences “Hello World!” and
“Good wishes for ACL2018!!” have the same type
java.lang.String.VAR.

Retrieving Token Type: For every token w in
a method, we extract its type information s(w).
A token type can be Java built-in data types
(e.g., int, double, float, boolean etc.,) or user or
framework defined classes (e.g., java.lang.String,
io.segment.android.flush.FlushThread etc.). We
extract such type information for each token by
parsing the Abstract Syntax Tree (AST) of the
source code13. We extract the AST type infor-
mation of each token using Eclipse JDT frame-
work14. Note that, language keywords like for,
if, etc. are not associated with any type. Next,
we prepare the type corpus by replacing the

13AST represents source code as a tree by capturing its ab-
stract syntactic structure, where each node represents a con-
struct in the source code.

14https://www.eclipse.org/jdt/

2380

variable names with corresponding type informa-
tion. For instance, if variable var is of type
java.lang.Integer, in the type corpus we replace
var by java.lang.Integer. Since multiple packages
might contain classes of the same name, we retain
the fully qualified name for each type15.

Code Corpus Statistics: In our corpus, the
total number of distinct words in vocabulary is
38,297; the number of unique AST type (including
all user-defined classes) is 14,177; the number of
tokens is 1,440,993. The number of instances used
for train and testing is 26,600 and 3,546. Among
these 38,297 vocabulary words, 37,411 are seen at
training time while the rests are new.

Configuration: To train both type model and
entity composite model, we use forward and back-
ward LSTM (See Section 2) and combine them
at the inference/generation time. We train 300-
dimensional word embedding for each token as
described in Section 4 initialized by GLOVE (Pen-
nington et al., 2014). Our LSTM is single lay-
ered and the hidden size is 300. We implement
our model on using PyTorch and Python 3.5. Our
training corpus size 26,600 and we do not split
it further into smaller train and development set;
rather we use them all to train for one single epoch
and record the result on the test set.

Baselines: Our first baseline is standard LSTM
language model which we also use to train our
modules (see ‘Configuration’ in 4.2). Similar to
our second baseline for recipe generation we also
consider LSTM with the type information added
as more features16 as our another baseline. We
further compare our model with state-of-the-art
token-based language model for source code SLP-
Core (Hellendoorn and Devanbu, 2017).

Results of Code Generation: Table 2 shows
that adding type as simple features does not
guarantee a significant performance improvement
while our proposed method significantly outper-
forms both forward and backward LSTM base-
lines. Our approach with backward LSTM has
40.3% better perplexity than original backward
LSTM and forward has 63.14% lower (i.e., bet-
ter) perplexity than original forward LSTM. With
respect to SLP-Core performance, our model is
22.06% better in perplexity. We compare our
model with SLP-Core details in case study-2.

15Also the AST type of a very same variable may differ in
two different methods. Hence, the context is limited to each
method.

16LSTM with type is same as entity composite model.

Model Dataset Vocabulary Perplexity
(Code Corpus) Size

SLP-Core original 38,297 3.40

fLSTM original 38,297 21.97
fLSTM [type model] modified type 14,177 7.94
fLSTM with type feature original 38,297 20.05
our model (fLSTM) original 38,297 12.52

bLSTM original 38,297 7.19
bLSTM [type model] modified type 14,177 2.58
bLSTM with type feature original 38,297 6.11
our model (bLSTM) original 38,297 2.65

Table 2: Comparing the performance of code genera-
tion task. All the results are on the test set of the corre-
sponding corpus. fLSTM, bLSTM denotes forward and
backward LSTM respectively. SLP-Core refers to (Hel-
lendoorn and Devanbu, 2017).

5 Quantitative Error Analysis

To understand the generation performance of our
model and interpret the meaning of the numbers
in Table 1 and 2, we further perform the following
case studies.

5.1 Case Study-1: Recipe Generation
As the reduction of the perplexity does not neces-
sarily mean the improvement of the accuracy, we
design a “fill in the blank task” task to evaluate our
model. A blank place in this task will contain an
ingredient and we check whether our model can
predict it correctly. In particular, we choose six
ingredients from different frequency range (low,
mid, high) based on how many times they have
appeared in the training corpus. Following Table
shows two examples with four blanks (underlined
with the true answer).

Example fill in the blank task

1. Sprinkle chicken pieces lightly with salt.
2. Mix egg and milk and pour over bread.

We further evaluate our model on a multiple
choice questioning (MCQ) strategy where the fill
in the blank problem remains same but the options
for the correct answers are restricted to the six in-
gredients. Our intuition behind this case-study is
to check when there is an ingredient whether our
model can learn it. If yes, we then quantify the
learning using standard accuracy metric and com-
pare with the state-of-the-art model to evaluate
how much it improves the performance. We also
measure how much the accuracy improvement de-
pends on the training frequency.

Table 3 shows the result. Our model outper-
forms the fill in the blank task for both cases,

2381

Accuracy
Ingredient Train Freq. #Blanks Free-Form MCQ

AWD LSTM Our AWD LSTM Our

Milk 14, 136 4,001 26.94 59.34 80.83 94.90
Salt 33,906 9,888 37.12 62.47 89.29 95.75
Apple 7,205 720 1.94 30.28 37.65 89.86
Bread 11,673 3,074 32.43 52.64 78.85 94.53
Tomato 12,866 1,815 2.20 35.76 43.53 88.76
Chicken 19,875 6,072 22.50 45.24 77.70 94.63

Table 3: Performance of fill in the blank task.

i.e., without any options (free-form) and MCQ.
Note that, the percentage of improvement is in-
versely proportional to the training frequencies of
the ingredients—less-frequent ingredients achieve
a higher accuracy improvement (e.g., “Apple” and
“Tomato”). This validates our intuition of learning
to predict the type first more accurately with lower
vocabulary set and then use conditional probabil-
ity to predict the actual entity considering the type
as a prior.

5.2 Case Study-2: Code Generation

Programming language source code shows regu-
larities both in local and global context (e.g., vari-
ables or methods used in one source file can also
be created or referenced from another library file).
SLP-Core (Hellendoorn and Devanbu, 2017) is a
state-of-the-art code generation model that cap-
tures this global and local information using a
nested cache based n-gram language model. They
further show that considering such code structure
into account, a simple n-gram based SLP-Core
outperforms vanilla deep learning based models
like RNN, LSTM, etc.

In our case, as our example instance is a Java
method, we only have the local context. There-
fore, to evaluate the efficiency of our proposed
model, we further analyze that exploiting only the
type information are we even learning any global
code pattern? If yes, then how much in compar-
ison to the baseline (SLP-Core)? To investigate
these questions, we provide all the full project
information to SLP-Core (Hellendoorn and De-
vanbu, 2017) corresponding to our train set. How-
ever, at test-time, to establish a fair comparison,
we consider the perplexity metric for the same
methods. SLP-Core achieves a perplexity 3.40
where our backward LSTM achieves 2.65. This
result shows that appropriate type information can
actually capture many inherent attributes which
can be exploited to build a good language model
for programming language.

6 Conclusion

Language model often lacks in performance to
predict entity names correctly. Applications with
lots of named entities, thus, obviously suffer. In
this work, we propose to leverage the type infor-
mation of such named entities to build an effective
language model. Since similar entities have the
same type, the vocabulary size of a type based lan-
guage model reduces significantly. The prediction
accuracy of the type model increases significantly
with such reduced vocabulary size. Then, using
the entity type information as prior we build an-
other language model which predicts the true en-
tity name according to the conditional probability
distribution. Our evaluation and case studies con-
firm that the type information of the named entities
captures inherent text features too which leads to
learn intrinsic text pattern and improve the perfor-
mance of overall language model.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments. We also thank Wasi Ud-
din Ahmad, Peter Kim, Shou-De Lin, and Paul
Mineiro for helping us implement, annotate, and
design the experiments. This work was supported
in part by National Science Foundation Grants IIS-
1760523, CCF-16-19123, CNS-16-18771 and an
NVIDIA hardware grant.

References
Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu,

and Charles Sutton. 2017. A survey of machine
learning for big code and naturalness. arXiv preprint
arXiv:1709.06182 .

Kenneth C. Arnold, Kai-Wei Chang, and Adam Kalai.
2017. Counterfactual language model adaptation for
suggesting phrases. In Proceedings of the Eighth In-
ternational Joint Conference on Natural Language
Processing, IJCNLP 2017. pages 49–54.

L Douglas Baker and Andrew Kachites McCallum.
1998. Distributional clustering of words for text
classification. In Proceedings of the 21st annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval. ACM, pages
96–103.

Eric Brill and Robert C Moore. 2000. An improved er-
ror model for noisy channel spelling correction. In
Proceedings of the 38th Annual Meeting on Associ-
ation for Computational Linguistics. Association for
Computational Linguistics, pages 286–293.

2382

Peter F Brown, Peter V Desouza, Robert L Mercer,
Vincent J Della Pietra, and Jenifer C Lai. 1992.
Class-based n-gram models of natural language.
Computational linguistics 18(4):467–479.

Kim B Bruce. 1993. Safe type checking in a
statically-typed object-oriented programming lan-
guage. In Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages. ACM, pages 285–298.

Casey Casalnuovo, Yagnik Suchak, Baishakhi Ray, and
Cindy Rubio-González. 2017. Gitcproc: a tool for
processing and classifying github commits. ACM,
pages 396–399.

Mark Gabel and Zhendong Su. 2010. A study of
the uniqueness of source code. In Proceedings of
the eighteenth ACM SIGSOFT international sympo-
sium on Foundations of software engineering. ACM,
pages 147–156.

Michel Galley, Chris Brockett, Alessandro Sordoni,
Yangfeng Ji, Michael Auli, Chris Quirk, Mar-
garet Mitchell, Jianfeng Gao, and Bill Dolan. 2015.
deltableu: A discriminative metric for genera-
tion tasks with intrinsically diverse targets. arXiv
preprint arXiv:1506.06863 .

Mohammad Gharehyazie, Baishakhi Ray, and
Vladimir Filkov. 2017. Some from here, some
from there: cross-project code reuse in github. In
Proceedings of the 14th International Conference
on Mining Software Repositories. IEEE Press, pages
291–301.

Joshua Goodman. 2001. Classes for fast maxi-
mum entropy training. CoRR cs.CL/0108006.
http://arxiv.org/abs/cs.CL/0108006.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor
O. K. Li. 2016. Incorporating copying mech-
anism in sequence-to-sequence learning. CoRR
abs/1603.06393. http://arxiv.org/abs/1603.06393.

Vincent J. Hellendoorn and Premkumar Devanbu.
2017. Are deep neural networks the best
choice for modeling source code? In Pro-
ceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ACM, New
York, NY, USA, ESEC/FSE 2017, pages 763–773.
https://doi.org/10.1145/3106237.3106290.

Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong
Su, and Premkumar Devanbu. 2016. On the natu-
ralness of software. Commun. ACM 59(5):122–131.
https://doi.org/10.1145/2902362.

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel,
and Premkumar Devanbu. 2012. On the naturalness
of software. In Software Engineering (ICSE), 2012
34th International Conference on. IEEE, pages 837–
847.

Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin
Choi, and Noah A Smith. 2017. Dynamic entity
representations in neural language models. arXiv
preprint arXiv:1708.00781 .

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410 .

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with neural
checklist models. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing. pages 329–339.

Miryung Kim, Vibha Sazawal, David Notkin, and Gail
Murphy. 2005. An empirical study of code clone ge-
nealogies. In ACM SIGSOFT Software Engineering
Notes. ACM, volume 30, pages 187–196.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Donald E Knuth. 1992. Literate programming. CSLI
Lecture Notes, Stanford, CA: Center for the Study of
Language and Information (CSLI), 1992 .

Giulio Maltese, P Bravetti, Hubert Crépy, BJ Grainger,
M Herzog, and Francisco Palou. 2001. Combining
word-and class-based language models: A compar-
ative study in several languages using automatic and
manual word-clustering techniques. In Seventh Eu-
ropean Conference on Speech Communication and
Technology.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and Optimiz-
ing LSTM Language Models. arXiv preprint
arXiv:1708.02182 .

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In
Eleventh Annual Conference of the International
Speech Communication Association.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Aistats. Citeseer, volume 5, pages 246–252.

Thomas R Niesler, Edward WD Whittaker, and
Philip C Woodland. 1998. Comparison of part-
of-speech and automatically derived category-based
language models for speech recognition. In Acous-
tics, Speech and Signal Processing, 1998. Proceed-
ings of the 1998 IEEE International Conference on.
IEEE, volume 1, pages 177–180.

Thomas W Parsons. 1992. Introduction to compiler
construction. Computer Science Press New York.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014

http://arxiv.org/abs/cs.CL/0108006
http://arxiv.org/abs/cs.CL/0108006
http://arxiv.org/abs/cs.CL/0108006
http://arxiv.org/abs/1603.06393
http://arxiv.org/abs/1603.06393
http://arxiv.org/abs/1603.06393
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/2902362
https://doi.org/10.1145/2902362
https://doi.org/10.1145/2902362
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

2383

Conference on Empirical Methods in Natural Lan-
guage Processing. pages 1532–1543.

Fernando Pereira, Naftali Tishby, and Lillian Lee.
1993. Distributional clustering of english words. In
Proceedings of the 31st annual meeting on Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, pages 183–190.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code genera-
tion and semantic parsing. CoRR abs/1704.07535.
http://arxiv.org/abs/1704.07535.

Baishakhi Ray, Meiyappan Nagappan, Christian Bird,
Nachiappan Nagappan, and Thomas Zimmermann.
2015. The uniqueness of changes: Characteristics
and applications. ACM, MSR ’15.

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and
Premkumar Devanbu. 2014. A large scale study of
programming languages and code quality in github.
In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engi-
neering. ACM, pages 155–165.

Veselin Raychev, Martin Vechev, and Eran Yahav.
2014. Code completion with statistical language
models. In Acm Sigplan Notices. ACM, volume 49,
pages 419–428.

Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu.
2014. On the localness of software. In Proceed-
ings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering.
ACM, pages 269–280.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information
Processing Systems 28, Curran Associates, Inc.,
pages 2692–2700. http://papers.nips.cc/paper/5866-
pointer-networks.pdf.

Sam Wiseman, Stuart M. Shieber, and Alexan-
der M. Rush. 2017. Challenges in data-to-
document generation. CoRR abs/1707.08052.
http://arxiv.org/abs/1707.08052.

Pengcheng Yin and Graham Neubig. 2017. A
syntactic neural model for general-purpose
code generation. CoRR abs/1704.01696.
http://arxiv.org/abs/1704.01696.

http://arxiv.org/abs/1704.07535
http://arxiv.org/abs/1704.07535
http://arxiv.org/abs/1704.07535
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://arxiv.org/abs/1707.08052
http://arxiv.org/abs/1707.08052
http://arxiv.org/abs/1707.08052
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1704.01696

