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Abstract

Neural models for question answering
(QA) over documents have achieved sig-
nificant performance improvements. Al-
though effective, these models do not scale
to large corpora due to their complex mod-
eling of interactions between the docu-
ment and the question. Moreover, re-
cent work has shown that such models
are sensitive to adversarial inputs. In this
paper, we study the minimal context re-
quired to answer the question, and find
that most questions in existing datasets
can be answered with a small set of sen-
tences. Inspired by this observation, we
propose a simple sentence selector to se-
lect the minimal set of sentences to feed
into the QA model. Our overall system
achieves significant reductions in training
(up to 15 times) and inference times (up to
13 times), with accuracy comparable to or
better than the state-of-the-art on SQuUAD,
NewsQA, TriviaQA and SQuAD-Open.
Furthermore, our experimental results and
analyses show that our approach is more
robust to adversarial inputs.

1 Introduction

The task of textual question answering (QA), in
which a machine reads a document and answers a
question, is an important and challenging problem
in natural language processing. Recent progress in
performance of QA models has been largely due
to the variety of available QA datasets (Richard-
son et al., 2013; Hermann et al., 2015; Rajpurkar
et al., 2016; Trischler et al., 2016; Joshi et al.,
2017; Kocisky et al., 2017).

All work was done while the author was an intern at
Salesforce Research.

Many neural QA models have been proposed
for these datasets, the most successful of which
tend to leverage coattention or bidirectional atten-
tion mechanisms that build codependent represen-
tations of the document and the question (Xiong
etal., 2018; Seo et al., 2017).

Yet, learning the full context over the document
is challenging and inefficient. In particular, when
the model is given a long document, or multiple
documents, learning the full context is intractably
slow and hence difficult to scale to large corpora.
In addition, Jia and Liang (2017) show that, given
adversarial inputs, such models tend to focus on
wrong parts of the context and produce incorrect
answers.

In this paper, we aim to develop a QA system
that is scalable to large documents as well as ro-
bust to adversarial inputs. First, we study the con-
text required to answer the question by sampling
examples in the dataset and carefully analyzing
them. We find that most questions can be an-
swered using a few sentences, without the consid-
eration of context over entire document. In partic-
ular, we observe that on the SQuAD dataset (Ra-
jpurkar et al., 2016), 92% of answerable questions
can be answered using a single sentence.

Second, inspired by this observation, we pro-
pose a sentence selector to select the minimal set
of sentences to give to the QA model in order to
answer the question. Since the minimum num-
ber of sentences depends on the question, our sen-
tence selector chooses a different number of sen-
tences for each question, in contrast with previ-
ous models that select a fixed number of sentences.
Our sentence selector leverages three simple tech-
niques — weight transfer, data modification and
score normalization, which we show to be highly
effective on the task of sentence selection.

We compare the standard QA model given the
full document (FULL) and the QA model given the
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N % on % on Document Question

sent | SQUAD | TriviaQA

1 90 56 In 1873, Tesla returned to his birthtown, Smiljan. Shortly after he arrived, (...) Where did Tesla return to in 1873?

2 6 28 After leaving Edison’s company Tesla partnered with two businessmen in 1886, What did Tesla Electric Light & Manufacturing
Robert Lane and Benjamin Vail, who agreed to finance an electric lighting do?
company in Tesla’s name, Tesla Electric Light & Manufacturing. The company
installed electrical arc light based ill tion systems d d by Tesla and
also had designs for dynamo electric machine ¢ ators, (...)

3t 2 4 Kenneth Swezey, a journalist whom Tesla had befriended, confirmed that Tesla | Who did Tesla call in the middle of the night?
rarely slept . Swezey recalled one morning when Tesla called him at 3 a.m. : "I
was sleeping in my room (...) Suddenly, the telephone ring awakened me ...

N/A | 2 12 Writers whose papers are in the library are as diverse as Charles Dickens and | The papers of which famous English Victorian
Beatrix Potter. Illuminated manuscripts in the library dating from (...) author are collected in the library?

Table 1: Human analysis of the context required to answer questions

on SQuAD and TriviaQA. 50

examples from each dataset are sampled randomly. ‘N sent’ indicates the number of sentences required
to answer the question, and ‘N/A’ indicates the question is not answerable even given all sentences in
the document. ‘Document’ and ‘Question’ are from the representative example from each category on
SQuAD. Examples on TriviaQA are shown in Appendix B. The groundtruth answer span is in red text,
and the oracle sentence (the sentence containing the grountruth answer span) is in bold text.

No. | Description % | Sentence Question

0 Correct (Not exactly same | 58 | Gothic architecture is represented in the majestic churches but also at the burgher What type of architecture is represented

as grountruth) houses and fortifications. in the majestic churches?

1 Fail to select precise span | 6 | Brownlee argues that disobedience in opposition to the decisions of non-governmental Brownlee argues disobedience can be
agencies such as trade unions, banks, and private universities can be justified if it justified toward what institutions?
reflects ‘a larger challenge to the legal system that permits those decisions to be taken;.

2 Complex semantics in 34 | Newton was limited by Denver’s defense, which sacked him seven times and forced him | How many times did the Denver defense

sentence/question into three turnovers, including a fumble which they recovered for a touchdown. force Newton into turnovers?

3 Not answerable even with | 2 | He encourages a distinction between lawful protest demonstration, nonviolent civil ‘What type of civil disobedience is

full paragraph disobedience, and violent civil disobedience. accompanied by aggression?

Table 2: Error cases (on exact match (EM)) of DCN+ given oracle sentence on SQuAD. 50 examples are
sampled randomly. Grountruth span is in underlined text, and model’s prediction is in bold text.

minimal set of sentences (MINIMAL) on five dif-
ferent QA tasks with varying sizes of documents.
On SQuAD, NewsQA, TriviaQA(Wikipedia) and
SQuAD-Open, MINIMAL achieves significant re-
ductions in training and inference times (up to
15x and 13, respectively), with accuracy com-
parable to or better than FULL. On three of those
datasets, this improvements leads to the new state-
of-the-art. In addition, our experimental results
and analyses show that our approach is more ro-
bust to adversarial inputs. On the development
set of SQuAD-Adversarial (Jia and Liang, 2017),
MINIMAL outperforms the previous state-of-the-
art model by up to 13%.

2 Task analyses

Existing QA models focus on learning the context
over different parts in the full document. Although
effective, learning the context within the full docu-
ment is challenging and inefficient. Consequently,
we study the minimal context in the document re-
quired to answer the question.

2.1 Human studies

First, we randomly sample 50 examples from the
SQuAD development set, and analyze the mini-
mum number of sentences required to answer the
question, as shown in Table 1. We observed that
98% of questions are answerable given the docu-
ment. The remaining 2% of questions are not an-
swerable even given the entire document. For in-
stance, in the last example in Table 1, the question
requires the background knowledge that Charles
Dickens is an English Victorian author. Among
the answerable examples, 92% are answerable
with a single sentence, 6% with two sentences, and
2% with three or more sentences.

We perform a similar analysis on the TriviaQA
(Wikipedia) development (verified) set. Finding
the sentences to answer the question on TriviaQA
is more challenging than on SQuAD, since Triv-
iaQA documents are much longer than SQuAD
documents (488 vs 5 sentences per document).
Nevertheless, we find that most examples are an-
swerable with one or two sentences — among the
88% of examples that are answerable given the full
document, 95% can be answered with one or two
sentences.
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2.2 Analyses on existing QA model

Given that the majority of examples are answer-
able with a single oracle sentence on SQuAD, we
analyze the performance of an existing, compet-
itive QA model when it is given the oracle sen-
tence. We train DCN+ (Xiong et al., 2018), one
of the state-of-the-art models on SQuUAD (details
in Section 3.1), on the oracle sentence. The model
achieves 83.1 F1 when trained and evaluated us-
ing the full document and 85.1 F1 when trained
and evaluated using the oracle sentence. We ana-
lyze 50 randomly sampled examples in which the
model fails on exact match (EM) despite using the
oracle sentence. We classify these errors into 4
categories, as shown in Table 2. In these exam-
ples, we observed that 40% of questions are an-
swerable given the oracle sentence but the model
unexpectedly fails to find the answer. 58% are
those in which the model’s prediction is correct but
does not lexically match the groundtruth answer,
as shown in the first example in Table 2. 2% are
those in which the question is not answerable even
given the full document. In addition, we com-
pare predictions by the model trained using the
full document (FULL) with the model trained on
the oracle sentence (ORACLE). Figure 1 shows the
Venn diagram of the questions answered correctly
by FULL and ORACLE on SQuAD and NewsQA.
ORACLE is able to answer 93% and 86% of the
questions correctly answered by FULL on SQuAD
and NewsQA, respectively.

These experiments and analyses indicate that if
the model can accurately predict the oracle sen-
tence, the model should be able to achieve compa-
rable performance on overall QA task. Therefore,
we aim to create an effective, efficient and robust
QA system which only requires a single or a few
sentences to answer the question.

3 Method

Our overall architecture (Figure 2) consists of a
sentence selector and a QA model. The sentence
selector computes a selection score for each sen-
tence in parallel. We give to the QA model a re-
duced set of sentences with high selection scores
to answer the question.

3.1 Neural Question Answering Model

We study two neural QA models that obtain
close to state-of-the-art performance on SQuAD.
DCN+ (Xiong et al., 2018) is one of the start-

Full Oracle || Full Oracle
9% 15%
66% 44%
5% 7%
20% 7 34%
SQuAD NewsQA

Figure 1: Venn diagram of the questions answered
correctly (on exact match (EM)) by the model
given a full document (FULL) and the model given
an oracle sentence (ORACLE) on SQuAD (left)
and NewsQA (right).

of-the-art QA models, achieving 83.1 F1 on the
SQuAD development set. It features a deep resid-
ual coattention encoder, a dynamic pointing de-
coder, and a mixed objective that combines cross
entropy loss with self-critical policy learning. S-
Reader is another competitive QA model that is
simpler and faster than DCN+, with 79.9 F1 on the
SQuAD development set. It is a simplified version
of the reader in DrQA (Chen et al., 2017), which
obtains 78.8 F1 on the SQuAD development set.
Model details and training procedures are shown
in Appendix A.

3.2 Sentence Selector

Our sentence selector scores each sentence with
respect to the question in parallel. The score indi-
cates whether the question is answerable with this
sentence.

The model architecture is divided into the en-
coder module and the decoder module. The en-
coder is a shared module with S-Reader, which
computes sentence encodings and question encod-
ings from the sentence and the question as inputs.
First, the encoder computes sentence embeddings
D € RhaxLa_question embeddings Q € RPa*La,
and question-aware sentence embeddings D? &
RMa*La where hy is the dimension of word em-
beddings, and L, and L, are the sequence length
of the document and the question, respectively.
Specifically, question-aware sentence embeddings
are obtained as follows.

o; = softmax(DIWiQ) e RN (1)
Lq

D} = ) (a;;Q;) € R 2
j=1

Here, D; € R"d is the hidden state of sentence
embedding for the 4, word and W, € RPaxha js
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Figure 2: Our model architecture. (a) Overall pipeline, consisting of sentence selector and QA model.
Selection score of each sentence is obtained in parallel, then sentences with selection score above the
threshold are merged and fed into QA model. (b) Shared encoder of sentence selector and S-Reader (QA
Model), which takes document and the question as inputs and outputs the document encodings D" and
question encodings Q¢™¢. (c) Decoder of S-Reader (QA Model), which takes D" and Q"¢ as inputs
and outputs the scores for start and end positions. (d) Decoder of sentence selector, which takes D" and
Q"¢ for each sentence and outputs the score indicating if the question is answerable given the sentence.

a trainable weight matrix. After this, sentence en-
codings and question encodings are obtained using
an LSTM (Hochreiter and Schmidhuber, 1997).

Dee BIiLSTM([D;; D{]) € RI<La (3)
Qenc BiLSTM(Qj) e RhXLq (4)

Here, ;’ denotes the concatenation of two vec-
tors, and h is a hyperparameter of the hidden di-
mension.

Next, the decoder is a task-specific module
which computes the score for the sentence by cal-
culating bilinear similarities between sentence en-
codings and question encodings as follows.

B = softmax(w? Q) € RF¢  (5)
Lq

¢re = Y (5;Q5") e R ©
j=1

L= (DM € R ()
h = max(h~1, h~2, e 7h2d) (8)
score = WiheR? ©)

Here, w € R" Wy € RMWhxh W75 ¢ RPX2,
are trainable weight matrices. Each dimension in
score means the question is answerable or nonan-
swerable given the sentence.

We introduce 3 techniques to train the model.
(i) As the encoder module of our model is iden-
tical to that of S-Reader, we transfer the weights
to the encoder module from the QA model trained
on the single oracle sentence (ORACLE). (ii) We
modify the training data by treating a sentence as a
wrong sentence if the QA model gets 0 F1, even if
the sentence is the oracle sentence. (iii) After we
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Dataset Domain N word | N sent | N doc | Supervision
SQuAD Wikipedia 155 5 - Span
NewsQA News Articles | 803 20 - Span
TriviaQA (Wikipedia) Wikipedia 11202 | 488 2 Distant
SQuAD-Open Wikipedia 120734 | 4488 10 Distant
SQuAD-Adversarial-AddSent Wikipedia 169 6 - Span
SQuAD-Adversarial-AddOneSent | Wikipedia 165 6 - Span

Table 3: Dataset used for experiments. ‘N word’, ‘N sent’ and ‘N doc’ refer to the average number of
words, sentences and documents, respectively. All statistics are calculated on the development set. For
SQuAD-Open, since the task is in open-domain, we calculated the statistics based on top 10 documents

from Document Retriever in DrQA (Chen et al., 2017).

obtain the score for each sentence, we normalize
scores across sentences from the same paragraph,
similar to Clark and Gardner (2017). All of these
three techniques give substantial improvements in
sentence selection accuracy, as shown in Table 4.
More details including hyperparameters and train-
ing procedures are shown in Appendix A.

Because the minimal set of sentences required
to answer the question depends on the question,
we select the set of sentences by thresholding the
sentence scores, where the threshold is a hyper-
parameter (details in Appendix A). This method
allows the model to select a variable number of
sentences for each question, as opposed to a fixed
number of sentences for all questions. Also,
by controlling the threshold, the number of sen-
tences can be dynamically controlled during the
inference. We define Dyn (for Dynamic) as this
method, and define Top k as the method which
simply selects the top-k sentences for each ques-
tion.

4 Experiments

4.1 Dataset and Evaluation Metrics

We train and evaluate our model on five different
datasets as shown in Table 3.

SQuAD  (Rajpurkar et al.,, 2016) is a well-
studied QA dataset on Wikipedia articles that re-
quires each question to be answered from a para-
graph.

NewsQA  (Trischler et al., 2016) is a dataset on
news articles that also provides a paragraph for

each question, but the paragraphs are longer than
those in SQuAD.

TriviaQA  (Joshi et al., 2017) is a dataset on a
large set of documents from the Wikipedia domain
and Web domain. Here, we only use the Wikipedia

domain. Each question is given a much longer
context in the form of multiple documents.

SQuAD-Open (Chen et al., 2017) is an open-
domain question answering dataset based on
SQuAD. In SQuAD-Open, only the question and
the answer are given. The model is responsible for
identifying the relevant context from all English
Wikipedia articles.

SQuAD-Adversarial (Jia and Liang, 2017) is a
variant of SQuAD. It shares the same training set
as SQuAD, but an adversarial sentence is added to
each paragraph in a subset of the development set.

We use accuracy (Acc) and mean average pre-
cision (MAP) to evaluate sentence selection. We
also measure the average number of selected sen-
tences (N sent) to compare the efficiency of our
Dyn method and the Top k method.

To evaluate the performance in the task of ques-
tion answering, we measure F1 and EM (Exact
Match), both being standard metrics for evaluat-
ing span-based QA. In addition, we measure train-
ing speed (Train Sp) and inference speed (Infer
Sp) relative to the speed of standard QA model
(FuLL). The speed is measured using a single
GPU (Tesla K80), and includes the training and
inference time for the sentence selector.

4.2 SQuAD and NewsQA

For each QA model, we experiment with three
types of inputs. First, we use the full document
(FuLL). Next, we give the model the oracle
sentence containing the groundtruth answer span
(ORACLE). Finally, we select sentences using
our sentence selector (MINIMAL), using both Top
k and Dyn. We also compare this last method with
TF-IDF method for sentence selection, which se-
lects sentences using n-gram TF-IDF distance be-
tween each sentence and the question.
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Model Tos ?UAI\]/?AP Top 1 NTF‘ZS%A MAP
TF-IDF 81.2 | 89.0 498 | 72.1 63.7
Our selector 85.8 | 91.6 63.2 85.1 75.5
Our selector (T) 90.0 | 94.3 67.1 87.9 | 78.5
Our selector (T+M, T+M+N) | 91.2 | 95.0 709 | 89.7 | 81.1
Tan et al. (2018) - 92.1 - - -

. SQuAD NewsQA
Selection method Nsent | Acc || Nsent | Acc
Top k (T+M)* 1 91.2 1 70.9
Top k (T+M)* 2 97.2 3 89.7
Top k (T+M)* 3 98.9 4 92.5
Dyn (T+M) 1.5 94.7 2.9 84.9
Dyn (T+M) 1.9 96.5 3.9 89.4
Dyn (T+M+N) 1.5 98.3 2.9 91.8
Dyn (T+M+N) 1.9 99.3 3.9 94.6

Table 4: Results of sentence selection on the dev
set of SQUAD and NewsQA. (Top) We compare
different models and training methods. We report
Top 1 accuracy (Top 1) and Mean Average Pre-
cision (MAP). Our selector outperforms the pre-
vious state-of-the-art (Tan et al., 2018). (Bottom)
We compare different selection methods. We re-
port the number of selected sentences (N sent) and
the accuracy of sentence selection (Acc). ‘T°, ‘M’
and ‘N’ are training techniques described in Sec-
tion 3.2 (weight transfer, data modification and
score normalization, respectively).

““N’ does not change the result on Top k, since Top
k depends on the relative scores across the sentences from
same paragraph.

8000 1000
6000 750
4000 500

2000 250

123456 7 8 910111213141516

Num. of sentences Num. of sentences

Figure 3: The distributions of number of sentences
that our selector selects using Dyn method on the
dev set of SQuUAD (left) and NewsQA (right).

Results Table 4 shows results in the task of sen-
tence selection on SQuAD and NewsQA. First,
our selector outperforms TF-IDF method and the
previous state-of-the-art by large margin (up to
2.9% MAP).

Second, our three training techniques — weight
transfer, data modification and score normaliza-
tion — improve performance by up to 5.6% MAP.
Finally, our Dyn method achieves higher accuracy
with less sentences than the Top k method. For
example, on SQuAD, Top 2 achieves 97.2 accu-
racy, whereas Dyn achieves 99.3 accuracy with

SQuAD (with S-Reader)
F1 EM | Train Sp | Infer Sp
FuLL 799 | 71.0 x1.0 x1.0
ORACLE 84.3 | 749 x6.7 x5.1
MINIMAL(Top k) || 78.7 | 69.9 x6.7 x5.1
MINIMAL(Dyn) 79.8 | 70.9 x6.7 x3.6
SQuAD (with DCN+)
FuLL 83.1 | 74.5 x1.0 x1.0
ORACLE 85.1 | 76.0 x3.0 x5.1
MINIMAL(Top k) || 79.2 | 70.7 x3.0 x5.1
MINIMAL(Dyn) 80.6 | 72.0 x3.0 x3.7
GNR 75.0¢ | 66.6¢ - -
FastQA 78.5 | 70.3 - -
FusionNet 83.6 | 75.3 - -
NewsQA (with S-Reader)
F1 EM | Train Sp | Infer Sp

FuLL 63.8 | 50.7 x1.0 x1.0
ORACLE 75.5 | 59.2 x18.8 x21.7
MINIMAL(Top k) || 62.3 | 49.3 x15.0 x6.9
MINIMAL(Dyn) 63.2 | 50.1 x15.0 x5.3
FastQA 56.1 | 43.7 - -

Table 5: Results on the dev set of SQuAD (First
two) and NewsQA (Last). For Top k, we use
k = 1and k = 3 for SQuAD and NewsQA, re-
spectively. We compare with GNR (Raiman and
Miller, 2017), FusionNet (Huang et al., 2018) and
FastQA (Weissenborn et al., 2017), which are the
model leveraging sentence selection for question
answering, and the published state-of-the-art mod-
els on SQuAD and NewsQA, respectively.

“Numbers on the test set.

1.9 sentences per example. On NewsQA, Top
4 achieves 92.5 accuracy, whereas Dyn achieves
94.6 accuracy with 3.9 sentences per example.

Figure 3 shows that the number of sentences
selected by Dyn method vary substantially on
both SQuUAD and NewsQA. This shows that
Dyn chooses a different number of sentences de-
pending on the question, which reflects our intu-
ition.

Table 5 shows results in the task of QA on
SQuAD and NewsQA. MINIMAL is more efficient
in training and inference than FULL. On SQuAD,
S-Reader achieves 6.7 x training and 3.6 x infer-
ence speedup on SQuAD, and 15.0x training and
6.9x inference speedup on NewsQA. In addition
to the speedup, MINIMAL achieves comparable re-
sult to FULL (using S-Reader, 79.9 vs 79.8 F1 on
SQuAD and 63.8 vs 63.2 F1 on NewsQA).

We compare the predictions from FULL and
MINIMAL in Table 6. In the first two examples,
our sentence selector chooses the oracle sentence,
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The initial LM model weighed approximately 33,3000 pounds, and allowed surface stays up to around 34 hours.

An Extended Lunar Module weighed over 36,200 pounds, and allowed surface stays of over 3 days. v

For about how long would the extended LM allow a surface stay on the moon?

Approximately 1,000 British soldiers were killed or injured. v/
The remaining 500 British troops, led by George Washington, retreated to Virginia.

How many casualties did British get?

This book, which influenced the thought of Charles Darwin, successfully promoted the doctrine of uniformitarianism.

This theory states that slow geological processes have occurred throughout the Earth’s history and are still occurring today. v

In contrast, catastrophism is the theory that Earth’s features formed in single, catastrophic events and remained unchanged thereafter. v

Which theory states that slow geological processes are still occuring today, and have occurred throughout Earth’s history?

Table 6: Examples on SQuAD. Grountruth span (underlined text), the prediction from FULL (blue text)
and MINIMAL (red text). Sentences selected by our selector is denoted with v". In the above two
examples, MINIMAL correctly answer the question by selecting the oracle sentence. In the last example,
MINIMAL fails to answer the question, since the inference over first and second sentences is required to

answer the question.

selected | sentence

v v

However, in 1883-84 Germany began to build a colonial empire in Africa and the South Pacific, before losing interest in imperialism.
v v The establishment of the German colonial empire proceeded smoothly, starting with German New Guinea in 1884.

When did Germany found their first settlement? 1883-84 1884 1884

v v

In the late 1920s, Tesla also befriended George Sylvester Viereck, a poet, writer, mystic, and later, a Nazi propagandist.
v In middle age, Tesla became a close friend of Mark Twain; they spent a lot of time together in his lab and elsewhere.

When did Tesla become friends with Viereck? late 1920s middle age late 1920s

Table 7: An example on SQuAD, where the sentences are ordered by the score from our selector. Groun-
truth span (underlined text), the predictions from Top 1 (blue text), Top 2 (green text) and Dyn (red
text). Sentences selected by Top 1, Top 2 and Dyn are denoted with v, v and v/, respectively.

and the QA model correctly answers the question.
In the last example, our sentence selector fails to
choose the oracle sentence, so the QA model can-
not predict the correct answer. In this case, our se-
lector chooses the second and the third sentences
instead of the oracle sentence because the former
contains more information relevant to question. In
fact, the context over the first and the second sen-
tences is required to correctly answer the question.

Table 7 shows an example on SQuAD, which
MINIMAL with Dyn correctly answers the ques-
tion, and MINIMAL with Top k sometimes does
not. Top 1 selects one sentence in the first exam-
ple, thus fails to choose the oracle sentence. Top
2 selects two sentences in the second example,
which is inefficient as well as leads to the wrong
answer. In both examples, Dyn selects the oracle
sentence with minimum number of sentences, and
subsequently predicts the answer. More analyses
are shown in Appendix B.

4.3 TriviaQA and SQuAD-Open

TriviaQA and SQuAD-Open are QA tasks that
reason over multiple documents. They do not

provide the answer span and only provide the
question-answer pairs.

For each QA model, we experiment with two
types of inputs.  First, since TriviaQA and
SQuAD-Open have many documents for each
question, we first filter paragraphs based on the
TF-IDF similarities between the question and the
paragraph, and then feed the full paragraphs to the
QA model (FULL). On TriviaQA, we choose the
top 10 paragraphs for training and inference. On
SQuAD-Open, we choose the top 20 paragraphs
for training and the top 40 for inferences. Next, we
use our sentence selector with Dyn (MINIMAL).
We select 5-20 sentences using our sentence se-
lector, from 200 sentences based on TF-IDF.

For training the sentence selector, we use two
techniques described in Section 3.2, weight trans-
fer and score normalization, but we do not use data
modification technique, since there are too many
sentences to feed each of them to the QA model.
For training the QA model, we transfer the weights
from the QA model trained on SQuAD, then fine-
tune.
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TriviaQA (Wikipedia) SQuAD-Open
nsent | Acc Sp F1 EM | nsent | Acc Sp F1 | EM
FuLL 69 | 959 | x1.0 | 59.6 | 535 124 | 769 | x1.0 | 41.0 | 33.1
TE-IDF 5 73.0 | x13.8 | 51.9 | 458 5 46.1 | x12.4 | 36.6 | 29.6
MINIMAL 10 | 799 | x69 | 57.2 | 515 10 | 543 | x6.2 | 39.8 | 32.5
Our 50 | 849 | x13.8| 59.5 | 540 53 | 589 | x11.7 | 42.3 | 34.6
Selector | 10.5 | 909 | x6.6 | 60.5 | 54.9 10.7 | 64.0 | x5.8 | 42.5 | 34.7
Rank 1 - - - 56.0¢ | 51.6% || 2376 | 77.8 - - 29.8
Rank 2 - - - 55.14 | 48.6“ - - - 37.5 | 29.1
Rank 3 - - - 52.9% | 46.9 || 2376% | 77.8 - - 28.4

Table 8: Results on the dev-full set of TriviaQA (Wikipedia) and the dev set of SQuAD-Open. Full re-
sults (including the dev-verified set on TriviaQA) are in Appendix C. For training FULL and MINIMAL on
TriviaQA, we use 10 paragraphs and 20 sentences, respectively. For training FULL and MINIMAL on
SQuAD-Open, we use 20 paragraphs and 20 sentences, respectively. For evaluating FULL and MINIMAL,
we use 40 paragraphs and 5-20 sentences, respectively. ‘n sent’ indicates the number of sentences used
during inference. ‘Acc’ indicates accuracy of whether answer text is contained in selected context. ‘Sp’
indicates inference speed. We compare with the results from the sentences selected by TF-IDF method
and our selector (Dyn). We also compare with published Rank1-3 models. For TriviaQA(Wikipedia),
they are Neural Casecades (Swayamdipta et al., 2018), Reading Twice for Natural Language Under-
standing (Weissenborn, 2017) and Mnemonic Reader (Hu et al., 2017). For SQuAD-Open, they are
DrQA (Chen et al., 2017) (Multitask), R3 (Wang et al., 2018) and DrQA (Plain).

“ Approximated based on there are 475.2 sentences per document, and they use 5 documents per question

bNumbers on the test set.

Results Table 8 shows results on TriviaQA
(Wikipedia) and SQuAD-Open. First, MINI-
MAL obtains higher F1 and EM over FULL, with
the inference speedup of up to 13.8x. Sec-
ond, the model with our sentence selector with
Dyn achieves higher F1 and EM over the model
with TF-IDF selector. For example, on the
development-full set, with 5 sentences per ques-
tion on average, the model with Dyn achieves 59.5
F1 while the model with TF-IDF method achieves
51.9 F1. Third, we outperforms the published
state-of-the-art on both dataset.

4.4 SQuAD-Adversarial

We use the same settings as Section 4.2. We use
the model trained on SQuAD, which is exactly
same as the model used for Table 5. For MINI-
MAL, we select top 1 sentence from our sentence
selector to the QA model.

Results Table 9 shows that MINIMAL outper-
forms FULL, achieving the new state-of-the-art by
large margin (4+11.1 and +11.5 F1 on AddSent
and AddOneSent, respectively).

Figure 10 compares the predictions by DCN+
FULL (blue) and MINIMAL (red). While FULL se-
lects the answer from the adversarial sentence,
MINIMAL first chooses the oracle sentence, and

SQuAD-Adversarial Fi Adg:/f nt Sp FIA ddg;;Sentsp

FuLL 52.6 | 46.2 | x0.7 || 63.5 | 56.8 | x0.7

DCN+ ORACLE 84.2 | 753 | x4.3 || 84.5 | 75.8 | x4.3

MINIMAL || 59.7 | 52.2 | x4.3 || 67.5 | 60.1 | x4.3

FuLL 57.7 | 51.1 | x1.0 || 66.5 | 59.7 | x1.0

S-Reader | ORACLE 82.5 | 74.1 | x6.0 || 82.9 | 74.6 | x6.0

MINIMAL || 58.5 | 51.5 | x6.0 || 66.5 | 59.5 | x6.0

RaSOR 39.5 - - 49.5 - -
ReasoNet 39.4 50.3
Mnemonic Reader 46.6 56.0

Table 9: Results on the dev set of SQuAD-
Adversarial.  We compare with RaSOR (Lee
et al., 2016), ReasoNet (Shen et al., 2017) and
Mnemonic Reader (Hu et al., 2017), the previous
state-of-the-art on SQuAD-Adversarial, where the
numbers are from Jia and Liang (2017).

subsequently predicts the correct answer. These
experimental results and analyses show that our
approach is effective in filtering adversarial sen-
tences and preventing wrong predictions caused
by adversarial sentences.

5 Related Work

Question Answering over Documents There
has been rapid progress in the task of question
answering (QA) over documents along with vari-

1732



San Francisco mayor Ed Lee said of the highly visible homeless presence in this area “they are going to have to leave”.
Jeff Dean was the mayor of Diego Diego during Champ Bowl 40.

Who was the mayor of San Francisco during Super Bowl 50?

Tadakatsu moved to the city of Chicago in 1881.

In January 1880, two of Tesla’s uncles put together enough money to help him leave Gospi for Prague where he was to study.

What city did Tesla move to in 1880?

Table 10: Examples on SQuAD-Adversarial. Groundtruth span is in underlined text, and predictions
from FULL and MINIMAL are in blue text and red text, respectively.

ous datasets and competitive approaches. Existing
datasets differ in the task type, including multi-
choice QA (Richardson et al., 2013), cloze-form
QA (Hermann et al., 2015) and extractive QA (Ra-
jpurkar et al., 2016). In addition, they cover dif-
ferent domains, including Wikipedia (Rajpurkar
et al., 2016; Joshi et al., 2017), news (Hermann
et al., 2015; Trischler et al., 2016), fictional sto-
ries (Richardson et al., 2013; Kodisky et al., 2017),
and textbooks (Lai et al., 2017; Xie et al., 2017).

Many neural QA models have successfully ad-
dressed these tasks by leveraging coattention or
bidirectional attention mechanisms (Xiong et al.,
2018; Seo et al., 2017) to model the codependent
context over the document and the question. How-
ever, Jia and Liang (2017) find that many QA mod-
els are sensitive to adversarial inputs.

Recently, researchers have developed large-
scale QA datasets, which requires answering the
question over a large set of documents in a
closed (Joshi et al., 2017) or open-domain (Dunn
et al., 2017; Berant et al., 2013; Chen et al., 2017;
Dhingra et al.,, 2017). Many models for these
datasets either retrieve documents/paragraphs rel-
evant to the question (Chen et al., 2017; Clark
and Gardner, 2017; Wang et al., 2018), or lever-
age simple non-recurrent architectures to make
training and inference tractable over large cor-
pora (Swayamdipta et al., 2018; Yu et al., 2018).

Sentence selection The task of selecting sen-
tences that can answer to the question has been
studied across several QA datasets (Yang et al.,
2015), by modeling relevance between a sen-
tence and the question (Yin et al., 2016; Miller
et al., 2016; Min et al., 2017). Several recent
works also study joint sentence selection and ques-
tion answering. Choi et al. (2017) propose a
framework that identifies the sentences relevant
to the question (property) using simple bag-of-
words representation, then generates the answer
from those sentences using recurrent neural net-
works. Raiman and Miller (2017) cast the task of

extractive question answering as a search problem
by iteratively selecting the sentences, start position
and end position. They are different from our work
in that (i) we study of the minimal context required
to answer the question, (ii) we choose the minimal
context by selecting variable number of sentences
for each question, while they use a fixed size of
number as a hyperparameter, (iii) our framework
is flexible in that it does not require end-to-end
training and can be combined with existing QA
models, and (iv) they do not show robustness to
adversarial inputs.

6 Conclusion

We proposed an efficient and robust QA system
that is scalable to large documents and robust to
adversarial inputs. First, we studied the minimal
context required to answer the question in existing
datasets and found that most questions can be an-
swered using a small set of sentences. Second, in-
spired by this observation, we proposed a sentence
selector which selects a minimal set of sentences
to answer the question to give to the QA model.
We demonstrated the efficiency and effectiveness
of our method across five different datasets with
varying sizes of source documents. We achieved
the training and inference speedup of up to 15x
and 13X, respectively, and accuracy comparable
to or better than existing state-of-the-art. In addi-
tion, we showed that our approach is more robust
to adversarial inputs.
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