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Abstract

Though impressive results have been
achieved in visual captioning, the task
of generating abstract stories from photo
streams is still a little-tapped problem.
Different from captions, stories have more
expressive language styles and contain
many imaginary concepts that do not ap-
pear in the images. Thus it poses chal-
lenges to behavioral cloning algorithms.
Furthermore, due to the limitations of au-
tomatic metrics on evaluating story qual-
ity, reinforcement learning methods with
hand-crafted rewards also face difficul-
ties in gaining an overall performance
boost. Therefore, we propose an Adver-
sarial REward Learning (AREL) frame-
work to learn an implicit reward function
from human demonstrations, and then op-
timize policy search with the learned re-
ward function. Though automatic eval-
uation indicates slight performance boost
over state-of-the-art (SOTA) methods in
cloning expert behaviors, human evalua-
tion shows that our approach achieves sig-
nificant improvement in generating more
human-like stories than SOTA systems.
Code will be made available here1.

1 Introduction

Recently, increasing attention has been focused on
visual captioning (Chen et al., 2015; Xu et al.,
2016; Wang et al., 2018c), which aims at describ-
ing the content of an image or a video. Though it
has achieved impressive results, its capability of
performing human-like understanding is still re-
strictive. To further investigate machine’s capa-

∗ Equal contribution
1
https://github.com/littlekobe/AREL

Story	#1:	The	brother	and	sister	were	ready for	the	first	
day	of	school.	They	were	excited to	go	to	their	first	day	
and	meet	new	friends.	They	told	their	mom how	happy
they	were.	They	said	they	were	going	to	make	a	lot	of	new	
friends	.	Then	they	got	up	and	got	ready to	get	in	the	car .
Story	#2:	The	brother did	not	want	to	talk	to	his	sister.	
The	siblings	made	up.	They	started	to	talk	and	smile.	
Their	parents showed	up.	They	were	happy to	see	them.

(a) (b) (c) (d) (e)
Captions:	
(a)	A	small	boy	and	a	girl	are	sitting	together.
(b)	Two	kids	sitting	on	a	porch	with	their	backpacks	on.
(c)	Two	young	kids	with	backpacks	sitting	on	the	porch.	
(d)	Two	young	children	that	are	very	close	to	one	another.	
(e)	A	boy	and	a	girl	smiling	at	the	camera	together.

Figure 1: An example of visual storytelling and
visual captioning. Both captions and stories are
shown here: each image is captioned with one sen-
tence, and we also demonstrate two diversified sto-
ries that match the same image sequence.

bilities in understanding more complicated visual
scenarios and composing more structured expres-
sions, visual storytelling (Huang et al., 2016) has
been proposed. Visual captioning is aimed at de-
picting the concrete content of the images, and its
expression style is rather simple. In contrast, vi-
sual storytelling goes one step further: it summa-
rizes the idea of a photo stream and tells a story
about it. Figure 1 shows an example of visual
captioning and visual storytelling. We have ob-
served that stories contain rich emotions (excited,
happy, not want) and imagination (siblings, par-
ents, school, car). It, therefore, requires the capa-
bility to associate with concepts that do not explic-
itly appear in the images. Moreover, stories are
more subjective, so there barely exists standard

https://github.com/littlekobe/AREL
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templates for storytelling. As shown in Figure 1,
the same photo stream can be paired with diverse
stories, different from each other. This heavily in-
creases the evaluation difficulty.

So far, prior work for visual storytelling (Huang
et al., 2016; Yu et al., 2017b) is mainly inspired
by the success of visual captioning. Nevertheless,
because these methods are trained by maximizing
the likelihood of the observed data pairs, they are
restricted to generate simple and plain description
with limited expressive patterns. In order to cope
with the challenges and produce more human-like
descriptions, Rennie et al. (2016) have proposed
a reinforcement learning framework. However, in
the scenario of visual storytelling, the common re-
inforced captioning methods are facing great chal-
lenges since the hand-crafted rewards based on
string matches are either too biased or too sparse
to drive the policy search. For instance, we used
the METEOR (Banerjee and Lavie, 2005) score
as the reward to reinforce our policy and found
that though the METEOR score is significantly
improved, the other scores are severely harmed.
Here we showcase an adversarial example with an
average METEOR score as high as 40.2:

We had a great time to have a lot of the.
They were to be a of the. They were to be in
the. The and it were to be the. The, and it
were to be the.

Apparently, the machine is gaming the metrics.
Conversely, when using some other metrics (e.g.
BLEU, CIDEr) to evaluate the stories, we observe
an opposite behavior: many relevant and coherent
stories are receiving a very low score (nearly zero).

In order to resolve the strong bias brought by
the hand-coded evaluation metrics in RL training
and produce more human-like stories, we propose
an Adversarial REward Learning (AREL) frame-
work for visual storytelling. We draw our inspi-
ration from recent progress in inverse reinforce-
ment learning (Ho and Ermon, 2016; Finn et al.,
2016; Fu et al., 2017) and propose the AREL algo-
rithm to learn a more intelligent reward function.
Specifically, we first incorporate a Boltzmann dis-
tribution to associate reward learning with distri-
bution approximation, then design the adversarial
process with two models – a policy model and a
reward model. The policy model performs the
primitive actions and produces the story sequence,
while the reward model is responsible for learning

the implicit reward function from human demon-
strations. The learned reward function would be
employed to optimize the policy in return.

For evaluation, we conduct both automatic met-
rics and human evaluation but observe a poor cor-
relation between them. Particularly, our method
gains slight performance boost over the base-
line systems on automatic metrics; human evalu-
ation, however, indicates significant performance
boost. Thus we further discuss the limitations
of the metrics and validate the superiority of our
AREL method in performing more intelligent un-
derstanding of the visual scenes and generating
more human-like stories.

Our main contributions are four-fold:

• We propose an adversarial reward learning
framework and apply it to boost visual story
generation.

• We evaluate our approach on the Visual
Storytelling (VIST) dataset and achieve the
state-of-the-art results on automatic metrics.

• We empirically demonstrate that automatic
metrics are not perfect for either training or
evaluation.

• We design and perform a comprehensive
human evaluation via Amazon Mechanical
Turk, which demonstrates the superiority of
the generated stories of our method on rele-
vance, expressiveness, and concreteness.

2 Related Work

Visual Storytelling Visual storytelling is the
task of generating a narrative story from a photo
stream, which requires a deeper understanding
of the event flow in the stream. Park and Kim
(2015) has done some pioneering research on sto-
rytelling. Chen et al. (2017) proposed a multi-
modal approach for storyline generation to pro-
duce a stream of entities instead of human-like de-
scriptions. Recently, a more sophisticated dataset
for visual storytelling (VIST) has been released
to explore a more human-like understanding of
grounded stories (Huang et al., 2016). Yu et al.
(2017b) proposes a multi-task learning algorithm
for both album summarization and paragraph gen-
eration, achieving the best results on the VIST
dataset. But these methods are still based on be-
havioral cloning and lack the ability to generate
more structured stories.
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Reinforcement Learning in Sequence Genera-
tion Recently, reinforcement learning (RL) has
gained its popularity in many sequence generation
tasks such as machine translation (Bahdanau et al.,
2016), visual captioning (Ren et al., 2017; Wang
et al., 2018b), summarization (Paulus et al., 2017;
Chen et al., 2018), etc. The common wisdom of
using RL is to view generating a word as an ac-
tion and aim at maximizing the expected return
by optimizing its policy. As pointed in (Ranzato
et al., 2015), traditional maximum likelihood al-
gorithm is prone to exposure bias and label bias,
while the RL agent exposes the generative model
to its own distribution and thus can perform bet-
ter. But these works usually utilize hand-crafted
metric scores as the reward to optimize the model,
which fails to learn more implicit semantics due to
the limitations of automatic metrics.

Rethinking Automatic Metrics Automatic
metrics, including BLEU (Papineni et al., 2002),
CIDEr (Vedantam et al., 2015), METEOR (Baner-
jee and Lavie, 2005), and ROUGE (Lin, 2004),
have been widely applied to the sequence gener-
ation tasks. Using automatic metrics can ensure
rapid prototyping and testing new models with
fewer expensive human evaluation. However, they
have been criticized to be biased and correlate
poorly with human judgments, especially in many
generative tasks like response generation (Lowe
et al., 2017; Liu et al., 2016), dialogue sys-
tem (Bruni and Fernández, 2017) and machine
translation (Callison-Burch et al., 2006). The
naive overlap-counting methods are not able
to reflect many semantic properties in natural
language, such as coherence, expressiveness, etc.

Generative Adversarial Network Generative
adversarial network (GAN) (Goodfellow et al.,
2014) is a very popular approach for estimating
intractable probabilities, which sidestep the diffi-
culty by alternately training two models to play a
min-max two-player game:

min
D

max
G

E
x∼pdata

[logD(x)] + E
z∼pz

[logD(G(z))] ,

where G is the generator and D is the discrimina-
tor, and z is the latent variable. Recently, GAN
has quickly been adopted to tackle discrete prob-
lems (Yu et al., 2017a; Dai et al., 2017; Wang et al.,
2018a). The basic idea is to use Monte Carlo pol-
icy gradient estimation (Williams, 1992) to update
the parameters of the generator.

Adversarial
Objective Reward Model Policy Model

Environment

Reward

Inverse	RL

RL

Images	 references

Sampled
Story

Images

Figure 2: AREL framework for visual storytelling.

Inverse Reinforcement Learning Reinforce-
ment learning is known to be hindered by the
need for an extensive feature and reward engi-
neering, especially under the unknown dynamics.
Therefore, inverse reinforcement learning (IRL)
has been proposed to infer expert’s reward func-
tion. Previous IRL approaches include maximum
margin approaches (Abbeel and Ng, 2004; Ratliff
et al., 2006) and probabilistic approaches (Ziebart,
2010; Ziebart et al., 2008). Recently, adversarial
inverse reinforcement learning methods provide
an efficient and scalable promise for automatic re-
ward acquisition (Ho and Ermon, 2016; Finn et al.,
2016; Fu et al., 2017; Henderson et al., 2017).
These approaches utilize the connection between
IRL and energy-based model and associate every
data with a scalar energy value by using Boltz-
mann distribution pθ(x) ∝ exp(−Eθ(x)). In-
spired by these methods, we propose a practical
AREL approach for visual storytelling to uncover
a robust reward function from human demonstra-
tions and thus help produce human-like stories.

3 Our Approach

3.1 Problem Statement

Here we consider the task of visual storytelling,
whose objective is to output a word sequenceW =
(w1, w1, · · · , wT ), wt ∈ V given an input image
stream of 5 ordered images I = (I1, I2, · · · , I5),
where V is the vocabulary of all output token.
We formulate the generation as a markov deci-
sion process and design a reinforcement learning
framework to tackle it. As described in Figure 2,
our AREL framework is mainly composed of two
modules: a policy model πβ(W ) and a reward
model Rθ(W ). The policy model takes an image
sequence I as the input and performs sequential
actions (choosing wordsw from the vocabulary V)
to form a narrative story W . The reward model
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CNN

My	brother	recently	graduated	college.

It	was	a	formal	cap	and	gown	event.

My	mom	and	dad	attended.

Later,	my	aunt	and	grandma	showed	up.

When	the	event	was	over	he	even	
got	congratulated	by	the	mascot.

Encoder Decoder

Figure 3: Overview of the policy model. The vi-
sual encoder is a bidirectional GRU, which en-
codes the high-level visual features extracted from
the input images. Its outputs are then fed into the
RNN decoders to generate sentences in parallel.
Finally, we concatenate all the generated sentences
as a full story. Note that the five decoders share the
same weights.

is optimized by the adversarial objective (see Sec-
tion 3.3) and aims at deriving a human-like reward
from both human-annotated stories and sampled
predictions.

3.2 Model
Policy Model As is shown in Figure 3, the pol-
icy model is a CNN-RNN architecture. We fist
feed the photo stream I = (I1, · · · , I5) into a
pretrained CNN and extract their high-level image
features. We then employ a visual encoder to fur-
ther encode the image features as context vectors
hi = [

←−
hi ;
−→
hi ]. The visual encoder is a bidirectional

gated recurrent units (GRU).
In the decoding stage, we feed each context vec-

tor hi into a GRU-RNN decoder to generate a sub-
story Wi. Formally, the generation process can be
written as:

sit = GRU(sit−1, [w
i
t−1, hi]) , (1)

πβ(w
i
t|wi1:t−1) = softmax(Wss

i
t + bs) , (2)

where sit denotes the t-th hidden state of i-th de-
coder. We concatenate the previous token wit−1
and the context vector hi as the input. Ws and
bs are the projection matrix and bias, which out-
put a probability distribution over the whole vo-
cabulary V. Eventually, the final story W is the
concatenation of the sub-stories Wi. β denotes all
the parameters of the encoder, the decoder, and the
output layer.

Story Convolution FC	layerPooling

CNN

my
mom
and
dad

attended
.

<EOS>

+

Reward

Figure 4: Overview of the reward model. Our re-
ward model is a CNN-based architecture, which
utilizes convolution kernels with size 2, 3 and 4
to extract bigram, trigram and 4-gram representa-
tions from the input sequence embeddings. Once
the sentence representation is learned, it will be
concatenated with the visual representation of the
input image, and then be fed into the final FC layer
to obtain the reward.

Reward Model The reward model Rθ(W ) is a
CNN-based architecture (see Figure 4). Instead of
giving an overall score for the whole story, we ap-
ply the reward model to different story parts (sub-
stories) Wi and compute partial rewards, where
i = 1, · · · , 5. We observe that the partial rewards
are more fine-grained and can provide better guid-
ance for the policy model.

We first query the word embeddings of the sub-
story (one sentence in most cases). Next, multi-
ple convolutional layers with different kernel sizes
are used to extract the n-grams features, which
are then projected into the sentence-level repre-
sentation space by pooling layers (the design here
is inspired by Kim (2014)). In addition to the
textual features, evaluating the quality of a story
should also consider the image features for rele-
vance. Therefore, we then combine the sentence
representation with the visual feature of the input
image through concatenation and feed them into
the final fully connected decision layer. In the
end, the reward model outputs an estimated reward
value Rθ(W ). The process can be written in for-
mula:

Rθ(W ) =Wr(fconv(W ) +WiICNN ) + br, (3)

where Wr, br denotes the weights in the output
layer, and fconv denotes the operations in CNN.
ICNN is the high-level visual feature extracted
from the image, and Wi projects it into the sen-
tence representation space. θ includes all the pa-
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rameters above.

3.3 Learning

Reward Boltzmann Distribution In order to
associate story distribution with reward function,
we apply EBM to define a Reward Boltzmann dis-
tribution:

pθ(W ) =
exp(Rθ(W ))

Zθ
, (4)

Where W is the word sequence of the story and
pθ(W ) is the approximate data distribution, and
Zθ =

∑
W

exp(Rθ(W )) denotes the partition func-

tion. According to the energy-based model (Le-
Cun et al., 2006), the optimal reward function
R∗(W ) is achieved when the Reward-Boltzmann
distribution equals to the “real” data distribution
pθ(W ) = p∗(W ).

Adversarial Reward Learning We first intro-
duce an empirical distribution pe(W ) = 1(W∈D)

|D|
to represent the empirical distribution of the train-
ing data, whereD denotes the dataset with |D| sto-
ries and 1 denotes an indicator function. We use
this empirical distribution as the “good” examples,
which provides the evidence for the reward func-
tion to learn from.

In order to approximate the Reward Boltzmann
distribution towards the “real” data distribution
p∗(W ), we design a min-max two-player game,
where the Reward Boltzmann distribution pθ aims
at maximizing the its similarity with empirical
distribution pe while minimizing that with the
“faked” data generated from policy model πβ . On
the contrary, the policy distribution πβ tries to
maximize its similarity with the Boltzmann dis-
tribution pθ. Formally, the adversarial objective
function is defined as

max
β

min
θ
KL(pe(W )||pθ(W ))−KL(πβ(W )||pθ(W )) .

(5)

We further decompose it into two parts. First,
because the objective Jβ of the story genera-
tion policy is to minimize its similarity with the
Boltzmann distribution pθ, the optimal policy
that minimizes KL-divergence is thus π(W ) ∼
exp(Rθ(W )), meaning if Rθ is optimal, the op-
timal πβ = π∗. In formula,

Jβ =−KL(πβ(W )||pθ(W ))

= E
W∼πβ(W )

[Rθ(W )] +H(πβ(W )) , (6)

Algorithm 1 The AREL Algorithm.
1: for episode← 1 to N do
2: collect story W by executing policy πθ
3: if Train-Reward then
4: θ ← θ − η × ∂Jθ

∂θ (see Equation 9)
5: else if Train-Policy then
6: collect story W̃ from empirical pe
7: β ← β − η × ∂Jβ

∂β (see Equation 9)
8: end if
9: end for

where H denotes the entropy of the policy model.
On the other hand, the objective Jθ of the re-
ward function is to distinguish between human-
annotated stories and machine-generated stories.
Hence it is trying to minimize the KL-divergence
with the empirical distribution pe and maximize
the KL-divergence with the approximated policy
distribution πβ:

Jθ =KL(pe(W )||pθ(W ))−KL(πβ(W )||pθ(W ))

=
∑
W

[pe(W )Rθ(W )− πβ(W )Rθ(W )]

−H(pe) +H(πβ) ,

(7)

SinceH(πβ) andH(pe) are irrelevant to θ, we de-
note them as constant C. Therefore, the objective
Jθ can be further derived as

Jθ = E
W∼pe(W )

[Rθ(W )]− E
W∼πβ(W )

[Rθ(W )] + C . (8)

Here we propose to use stochastic gradient de-
scent to optimize these two models alternately.
Formally, the gradients can be written as

∂Jθ
∂θ

= E
W∼pe(W )

∂Rθ(W )

∂θ
− E
W∼πβ(W )

∂Rθ(W )

∂θ
,

∂Jβ
∂β

= E
W∼πβ(W )

(Rθ(W ) + log πθ(W )− b)∂ log πβ(W )

∂β
,

(9)

where b is the estimated baseline to reduce the
variance.

Training & Testing As described in Algo-
rithm 1, we introduce an alternating algorithm to
train these two models using stochastic gradient
descent. During testing, the policy model is used
with beam search to produce the story.

4 Experiments and Analysis

4.1 Experimental Setup
VIST Dataset The VIST dataset (Huang et al.,
2016) is the first dataset for sequential vision-to-
language tasks including visual storytelling, which
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consists of 10,117 Flickr albums with 210,819
unique photos. In this paper, we mainly evalu-
ate our AREL method on this dataset. After filter-
ing the broken images2, there are 40,098 training,
4,988 validation, and 5,050 testing samples. Each
sample contains one story that describes 5 selected
images from a photo album (mostly one sentence
per image). And the same album is paired with 5
different stories as references. In our experiments,
we used the same split settings as in (Huang et al.,
2016; Yu et al., 2017b) for a fair comparison.

Evaluation Metrics In order to comprehen-
sively evaluate our method on storytelling dataset,
we adopted both the automatic metrics and human
evaluation as our criterion. Four diverse automatic
metrics were used in our experiments: BLEU,
METEOR, ROUGE-L, and CIDEr. We utilized
the open source evaluation code3 used in (Yu et al.,
2017b). For human evaluation, we employed the
Amazon Mechanical Turk to perform two kinds of
user studies (see Section 4.3 for more details).

Training Details We employ pretrained
ResNet-152 model (He et al., 2016) to extract
image features from the photo stream. We built a
vocabulary of size 9,837 to include words appear-
ing more than three times in the training set. More
training details can be found at Appendix B.

4.2 Automatic Evaluation
In this section, we compare our AREL method
with the state-of-the-art methods as well as stan-
dard reinforcement learning algorithms on auto-
matic evaluation metrics. Then we further discuss
the limitations of the hand-crafted metrics on eval-
uating human-like stories.

Comparison with SOTA on Automatic Metrics
In Table 1, we compare our method with Huang
et al. (2016) and Yu et al. (2017b), which report
achieving best-known results on the VIST dataset.
We first implement a strong baseline model (XE-
ss), which share the same architecture with our
policy model but is trained with cross-entropy loss
and scheduled sampling. Besides, we adopt the
traditional generative adversarial training for com-
parison (GAN). As shown in Table 1, our XE-
ss model already outperforms the best-known re-

2There are only 3 (out of 21,075) broken images in the
test set, which basically has no influence on the final results.
Moreover, Yu et al. (2017b) also removed the 3 pictures, so it
is a fair comparison.

3
https://github.com/lichengunc/vist_eval

Method B-1 B-2 B-3 B-4 M R C

Huang et al. - - - - 31.4 - -
Yu et al. - - 21.0 - 34.1 29.5 7.5
XE-ss 62.3 38.2 22.5 13.7 34.8 29.7 8.7
GAN 62.8 38.8 23.0 14.0 35.0 29.5 9.0
AREL-s-50 63.8 38.9 22.9 13.8 34.9 29.4 9.5
AREL-t-50 63.4 39.0 23.1 14.1 35.2 29.6 9.5
AREL-s-100 63.9 39.1 23.0 13.9 35.0 29.7 9.6
AREL-t-100 63.8 39.1 23.2 14.1 35.0 29.5 9.4

Table 1: Automatic evaluation on the VIST
dataset. We report BLEU (B), METEOR (M),
ROUGH-L (R), and CIDEr (C) scores of the
SOTA systems and the models we implemented,
including XE-ss, GAN and AREL. AREL-s-N de-
notes AREL models with sigmoid as output acti-
vation and alternate frequency as N, while AREL-
t-N denoting AREL models with tahn as the output
activation (N = 50 or 100).

sults on the VIST dataset, and the GAN model can
bring a performance boost. We then use the XE-
ss model to initialize our policy model and further
train it with AREL. Evidently, our AREL model
performs the best and achieves the new state-of-
the-art results across all metrics.

But, compared with the XE-ss model, the per-
formance gain is minor, especially on METEOR
and ROUGE-L scores. However, in Sec. 4.3, the
extensive human evaluation has indicated that our
AREL framework brings a significant improve-
ment on generating human-like stories over the
XE-ss model. The inconsistency of automatic
evaluation and human evaluation lead to a suspect
that these hand-crafted metrics lack the ability to
fully evaluate stories’ quality due to the compli-
cated characteristics of the stories. Therefore, we
conduct experiments to analyze and discuss the
defects of the automatic metrics in section 4.2.

Limitations of Automatic Metrics As we
claimed in the introduction, string-match-based
automatic metrics are not perfect and fail to eval-
uate some semantic characteristics of the stories,
like the expressiveness and coherence of the sto-
ries. In order to confirm our conjecture, we uti-
lize automatic metrics as rewards to reinforce the
visual storytelling model by adopting policy gra-
dient with baseline to train the policy model. The
quantitative results are demonstrated in Table 1.

Apparently, METEOR-RL and ROUGE-RL are
severely ill-posed: they obtain the highest scores
on their own metrics but damage the other met-

https://github.com/lichengunc/vist_eval
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Method B-1 B-2 B-3 B-4 M R C

XE-ss 62.3 38.2 22.5 13.7 34.8 29.7 8.7
BLEU-RL 62.1 38.0 22.6 13.9 34.6 29.0 8.9
METEOR-RL 68.1 35.0 15.4 6.8 40.2 30.0 1.2
ROUGE-RL 58.1 18.5 1.6 0 27.0 33.8 0
CIDEr-RL 61.9 37.8 22.5 13.8 34.9 29.7 8.1
AREL (avg) 63.7 39.0 23.1 14.0 35.0 29.6 9.5

Table 2: Comparison with different RL mod-
els with different metric scores as the rewards.
We report the average scores of the AREL mod-
els as AREL (avg). Although METEOR-RL
and ROUGE-RL models achieve very high scores
on their own metrics, the underlined scores are
severely damaged. Actually, they are gaming their
own metrics with nonsense sentences.

rics severely. We observe that these models are
actually overfitting to a given metric while losing
the overall coherence and semantical correctness.
Same as METEOR score, there is also an adver-
sarial example for ROUGE-L4, which is nonsense
but achieves an average ROUGE-L score of 33.8.

Besides, as can be seen in Table 1, after rein-
forced training, BLEU-RL and CIDEr-RL do not
bring a consistent improvement over the XE-ss
model. We plot the histogram distributions of both
BLEU-3 and CIDEr scores on the test set in Fig-
ure 5. An interesting fact is that there are a large
number of samples with nearly zero score on both
metrics. However, we observed those “zero-score”
samples are not pointless results; instead, lots of
them make sense and deserve a better score than
zero. Here is a “zero-score” example on BLEU-3:

I had a great time at the restaurant today.
The food was delicious. I had a lot of food.
The food was delicious. T had a great time.

The corresponding reference is

The table of food was a pleasure to see!
Our food is both nutritious and beautiful!
Our chicken was especially tasty! We love
greens as they taste great and are healthy!
The fruit was a colorful display that tanta-
lized our palette..

Although the prediction is not as good as the ref-
erence, it is actually coherent and relevant to the

4An adversarial example for ROUGE-L: we the was a .
and to the . we the was a . and to the . we the was a . and to
the . we the was a . and to the . we the was a . and to the .

Method Win Lose Unsure
XE-ss 22.4% 71.7% 5.9%
BLEU-RL 23.4% 67.9% 8.7%
CIDEr-RL 13.8% 80.3% 5.9%
GAN 34.3% 60.5% 5.2%
AREL 38.4% 54.2% 7.4%

Table 3: Turing test results.

theme “food and eating”, which showcases the de-
feats of using BLEU and CIDEr scores as a reward
for RL training.

Moreover, we compare the human evaluation
scores with these two metric scores in Figure 5.
Noticeably, both BLEU-3 and CIDEr have a poor
correlation with the human evaluation scores.
Their distributions are more biased and thus can-
not fully reflect the quality of the generated sto-
ries. In terms of BLEU, it is extremely hard for
machines to produce the exact 3-gram or 4-gram
matching, so the scores are too low to provide use-
ful guidance. CIDEr measures the similarity of a
sentence to the majority of the references. How-
ever, the references to the same image sequence
are photostream different from each other, so the
score is very low and not suitable for this task. In
contrast, our AREL framework can lean a more
robust reward function from human-annotated sto-
ries, which is able to provide better guidance to
the policy and thus improves its performances over
different metrics.

Comparison with GAN We here compare our
method with traditional GAN (Goodfellow et al.,
2014), the update rule for generator can be gener-
ally classified into two categories. We demonstrate
their corresponding objectives and ours as follows:

GAN1 : Jβ = E
W∼pβ

[− logRθ(W )] ,

GAN2 : Jβ = E
W∼pβ

[log(1−Rθ(W ))] ,

ours : Jβ = E
W∼pβ

[−Rθ(W )] .

As discussed in Arjovsky et al. (2017), GAN1 is
prone to the unstable gradient issue and GAN2
is prone to the vanishing gradient issue. Analyti-
cally, our method does not suffer from these two
common issues and thus is able converge to op-
timum solutions more easily. From Table 1, we
can observe slight gains of using AREL over GAN
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Figure 5: Metric score distributions. We plot the histogram distributions of BLEU-3 and CIDEr scores on
the test set, as well as the human evaluation score distribution on the test samples. For a fair comparison,
we use the Turing test results to calculate the human evaluation scores (see Section 4.3). Basically, 0.2
score is given if the generated story wins the Turing test, 0.1 for tie, and 0 if losing. Each sample has 5
scores from 5 judges, and we use the sum as the human evaluation score, so it is in the range [0, 1].

AREL vs XE-ss AREL vs BLEU-RL AREL vs CIDEr-RL AREL vs GAN
Choice (%) AREL XE-ss Tie AREL BLEU-RL Tie AREL CIDEr-RL Tie AREL GAN Tie
Relevance 61.7 25.1 13.2 55.8 27.9 16.3 56.1 28.2 15.7 52.9 35.8 11.3
Expressiveness 66.1 18.8 15.1 59.1 26.4 14.5 59.1 26.6 14.3 48.5 32.2 19.3
Concreteness 63.9 20.3 15.8 60.1 26.3 13.6 59.5 24.6 15.9 49.8 35.8 14.4

Table 4: Pairwise human comparisons. The results indicate the consistent superiority of our AREL model
in generating more human-like stories than the SOTA methods.

with automatic metrics, therefore we further de-
ploy human evaluation for a better comparison.

4.3 Human Evaluation
Automatic metrics cannot fully evaluate the ca-
pability of our AREL method. Therefore, we
perform two different kinds of human evaluation
studies on Amazon Mechanical Turk: Turing test
and pairwise human evaluation. For both tasks,
we use 150 stories (750 images) sampled from the
test set, each assigned to 5 workers to eliminate
human variance. We batch six items as one assign-
ment and insert an additional assignment as a san-
ity check. Besides, the order of the options within
each item is shuffled to make a fair comparison.

Turing Test We first conduct five indepen-
dent Turing tests for XE-ss, BLEU-RL, CIDEr-
RL, GAN, and AREL models, during which the
worker is given one human-annotated sample and
one machine-generated sample, and needs to de-
cide which is human-annotated. As shown in Ta-
ble 3, our AREL model significantly outperforms
all the other baseline models in the Turing test: it
has much more chances to fool AMT worker (the
ratio is AREL:XE-ss:BLEU-RL:CIDEr-RL:GAN
= 45.8%:28.3%:32.1%:19.7%:39.5%), which con-
firms the superiority of our AREL framework in
generating human-like stories. Unlike automatic
metric evaluation, the Turing test has indicated

a much larger margin between AREL and other
competing algorithms. Thus, we empirically con-
firm that metrics are not perfect in evaluating many
implicit semantic properties of natural language.
Besides, the Turing test of our AREL model re-
veals that nearly half of the workers are fooled by
our machine generation, indicating a preliminary
success toward generating human-like stories.

Pairwise Comparison In order to have a clear
comparison with competing algorithms with re-
spect to different semantic features of the sto-
ries, we further perform four pairwise compar-
ison tests: AREL vs XE-ss/BLEU-RL/CIDEr-
RL/GAN. For each photo stream, the worker is
presented with two generated stories and asked to
make decisions from the three aspects: relevance5,
expressiveness6 and concreteness7. This head-to-
head compete is designed to help us understand in
what aspect our model outperforms the competing
algorithms, which is displayed in Table 4.

Consistently on all the three comparisons, a
large majority of the AREL stories trumps the
competing systems with respect to their relevance,

5Relevance: the story accurately describes what is hap-
pening in the image sequence and covers the main objects.

6Expressiveness: coherence, grammatically and semanti-
cally correct, no repetition, expressive language style.

7Concreteness: the story should narrate concretely what
is in the image rather than giving very general descriptions.
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XE-ss We	took	a	trip	to	the	
mountains.

There	were	many	
different	kinds	of	
different	kinds.	

We	had	a	great	time.	 He	was	a	great	time.	 It	was	a	beautiful	day.

AREL
The	family	decided	to	
take	a	trip	to	the	
countryside.

There	were	so	many	
different	kinds	of	
things	to	see.

The	family	decided	to	
go	on	a	hike. I	had	a	great	time.	

At	the	end	of	the	day,	
we	were	able	to	take	
a	picture	of	the	
beautiful	scenery.

Human-
created	Story

We	went	on	a	hike	
yesterday.	

There	were	a	lot	of	
strange	plants	there. I	had	a	great	time.	

We	drank	a	lot	of	
water	while	we	were	
hiking.

The	view	was	
spectacular.

Figure 6: Qualitative comparison example with XE-ss. The direct comparison votes (AREL:XE-ss:Tie)
were 5:0:0 on Relevance, 4:0:1 on Expressiveness, and 5:0:0 on Concreteness.

expressiveness, and concreteness. Therefore, it
empirically confirms that our generated stories are
more relevant to the image sequences, more coher-
ent and concrete than the other algorithms, which
however is not explicitly reflected by the auto-
matic metric evaluation.

4.4 Qualitative Analysis

Figure 6 gives a qualitative comparison example
between AREL and XE-ss models. Looking at the
individual sentences, it is obvious that our results
are more grammatically and semantically correct.
Then connecting the sentences together, we ob-
serve that the AREL story is more coherent and
describes the photo stream more accurately. Thus,
our AREL model significantly surpasses the XE-
ss model on all the three aspects of the qualitative
example. Besides, it won the Turing test (3 out 5
AMT workers think the AREL story is created by
a human). In the appendix, we also show a nega-
tive case that fails the Turing test.

5 Conclusion

In this paper, we not only introduce a novel ad-
versarial reward learning algorithm to generate
more human-like stories given image sequences,
but also empirically analyze the limitations of the
automatic metrics for story evaluation. We believe
there are still lots of improvement space in the
narrative paragraph generation tasks, like how to
better simulate human imagination to create more
vivid and diversified stories.
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