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Abstract

Recent work has managed to learn cross-

lingual word embeddings without parallel

data by mapping monolingual embeddings

to a shared space through adversarial train-

ing. However, their evaluation has focused

on favorable conditions, using comparable

corpora or closely-related languages, and

we show that they often fail in more re-

alistic scenarios. This work proposes an

alternative approach based on a fully un-

supervised initialization that explicitly ex-

ploits the structural similarity of the em-

beddings, and a robust self-learning algo-

rithm that iteratively improves this solu-

tion. Our method succeeds in all tested

scenarios and obtains the best published

results in standard datasets, even surpass-

ing previous supervised systems. Our

implementation is released as an open

source project at https://github.

com/artetxem/vecmap.

1 Introduction

Cross-lingual embedding mappings have shown to

be an effective way to learn bilingual word em-

beddings (Mikolov et al., 2013; Lazaridou et al.,

2015). The underlying idea is to independently

train the embeddings in different languages us-

ing monolingual corpora, and then map them to

a shared space through a linear transformation.

This allows to learn high-quality cross-lingual rep-

resentations without expensive supervision, open-

ing new research avenues like unsupervised neural

machine translation (Artetxe et al., 2018b; Lample

et al., 2018).

While most embedding mapping methods rely

on a small seed dictionary, adversarial training has

recently produced exciting results in fully unsu-

pervised settings (Zhang et al., 2017a,b; Conneau

et al., 2018). However, their evaluation has fo-

cused on particularly favorable conditions, lim-

ited to closely-related languages or comparable

Wikipedia corpora. When tested on more realis-

tic scenarios, we find that they often fail to pro-

duce meaningful results. For instance, none of the

existing methods works in the standard English-

Finnish dataset from Artetxe et al. (2017), obtain-

ing translation accuracies below 2% in all cases

(see Section 5).

On another strand of work, Artetxe et al. (2017)

showed that an iterative self-learning method is

able to bootstrap a high quality mapping from very

small seed dictionaries (as little as 25 pairs of

words). However, their analysis reveals that the

self-learning method gets stuck in poor local op-

tima when the initial solution is not good enough,

thus failing for smaller training dictionaries.

In this paper, we follow this second approach

and propose a new unsupervised method to build

an initial solution without the need of a seed dic-

tionary, based on the observation that, given the

similarity matrix of all words in the vocabulary,

each word has a different distribution of similar-

ity values. Two equivalent words in different lan-

guages should have a similar distribution, and we

can use this fact to induce the initial set of word

pairings (see Figure 1). We combine this initial-

ization with a more robust self-learning method,

which is able to start from the weak initial solu-

tion and iteratively improve the mapping. Coupled

together, we provide a fully unsupervised cross-

lingual mapping method that is effective in re-

alistic settings, converges to a good solution in

all cases tested, and sets a new state-of-the-art in

bilingual lexicon extraction, even surpassing pre-

vious supervised methods.

https://github.com/artetxem/vecmap
https://github.com/artetxem/vecmap
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EN  −  two IT  −  due (two) IT  −  cane (dog)
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Figure 1: Motivating example for our unsupervised initialization method, showing the similarity distri-

butions of three words (corresponding to the smoothed density estimates from the normalized square root

of the similarity matrices as defined in Section 3.2). Equivalent translations (two and due) have more

similar distributions than non-related words (two and cane - meaning dog). This observation is used to

build an initial solution that is later improved through self-learning.

2 Related work

Cross-lingual embedding mapping methods work

by independently training word embeddings in

two languages, and then mapping them to a shared

space using a linear transformation.

Most of these methods are supervised, and use

a bilingual dictionary of a few thousand entries

to learn the mapping. Existing approaches can

be classified into regression methods, which map

the embeddings in one language using a least-

squares objective (Mikolov et al., 2013; Shigeto

et al., 2015; Dinu et al., 2015), canonical methods,

which map the embeddings in both languages to

a shared space using canonical correlation analy-

sis and extensions of it (Faruqui and Dyer, 2014;

Lu et al., 2015), orthogonal methods, which map

the embeddings in one or both languages under

the constraint of the transformation being orthog-

onal (Xing et al., 2015; Artetxe et al., 2016; Zhang

et al., 2016; Smith et al., 2017), and margin meth-

ods, which map the embeddings in one language

to maximize the margin between the correct trans-

lations and the rest of the candidates (Lazaridou

et al., 2015). Artetxe et al. (2018a) showed that

many of them could be generalized as part of a

multi-step framework of linear transformations.

A related research line is to adapt these methods

to the semi-supervised scenario, where the train-

ing dictionary is much smaller and used as part of a

bootstrapping process. While similar ideas where

already explored for traditional count-based vec-

tor space models (Peirsman and Padó, 2010; Vulić

and Moens, 2013), Artetxe et al. (2017) brought

this approach to pre-trained low-dimensional word

embeddings, which are more widely used nowa-

days. More concretely, they proposed a self-

learning approach that alternates the mapping and

dictionary induction steps iteratively, obtaining re-

sults that are comparable to those of supervised

methods when starting with only 25 word pairs.

A practical approach for reducing the need of

bilingual supervision is to design heuristics to

build the seed dictionary. The role of the seed

lexicon in learning cross-lingual embedding map-

pings is analyzed in depth by Vulić and Korho-

nen (2016), who propose using document-aligned

corpora to extract the training dictionary. A more

common approach is to rely on shared words and

cognates (Peirsman and Padó, 2010; Smith et al.,

2017), while Artetxe et al. (2017) go further and

restrict themselves to shared numerals. However,

while these approaches are meant to eliminate the

need of bilingual data in practice, they also make

strong assumptions on the writing systems of lan-

guages (e.g. that they all use a common alpha-

bet or Arabic numerals). Closer to our work,

a recent line of fully unsupervised approaches

drops these assumptions completely, and attempts

to learn cross-lingual embedding mappings based

on distributional information alone. For that pur-

pose, existing methods rely on adversarial train-

ing. This was first proposed by Miceli Barone

(2016), who combine an encoder that maps source

language embeddings into the target language, a

decoder that reconstructs the source language em-

beddings from the mapped embeddings, and a dis-

criminator that discriminates between the mapped

embeddings and the true target language embed-
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dings. Despite promising, they conclude that their

model “is not competitive with other cross-lingual

representation approaches”. Zhang et al. (2017a)

use a very similar architecture, but incorporate ad-

ditional techniques like noise injection to aid train-

ing and report competitive results on bilingual lex-

icon extraction. Conneau et al. (2018) drop the

reconstruction component, regularize the mapping

to be orthogonal, and incorporate an iterative re-

finement process akin to self-learning, reporting

very strong results on a large bilingual lexicon

extraction dataset. Finally, Zhang et al. (2017b)

adopt the earth mover’s distance for training, opti-

mized through a Wasserstein generative adversar-

ial network followed by an alternating optimiza-

tion procedure. However, all this previous work

used comparable Wikipedia corpora in most ex-

periments and, as shown in Section 5, face diffi-

culties in more challenging settings.

3 Proposed method

Let X and Z be the word embedding matrices in

two languages, so that their ith row Xi∗ and Zi∗

denote the embeddings of the ith word in their re-

spective vocabularies. Our goal is to learn the lin-

ear transformation matrices WX and WZ so the

mapped embeddings XWX and ZWZ are in the

same cross-lingual space. At the same time, we

aim to build a dictionary between both languages,

encoded as a sparse matrix D where Dij = 1 if

the jth word in the target language is a translation

of the ith word in the source language.

Our proposed method consists of four sequen-

tial steps: a pre-processing that normalizes the

embeddings (§3.1), a fully unsupervised initializa-

tion scheme that creates an initial solution (§3.2), a

robust self-learning procedure that iteratively im-

proves this solution (§3.3), and a final refinement

step that further improves the resulting mapping

through symmetric re-weighting (§3.4).

3.1 Embedding normalization

Our method starts with a pre-processing that

length normalizes the embeddings, then mean

centers each dimension, and then length normal-

izes them again. The first two steps have been

shown to be beneficial in previous work (Artetxe

et al., 2016), while the second length normaliza-

tion guarantees the final embeddings to have a unit

length. As a result, the dot product of any two

embeddings is equivalent to their cosine similarity

and directly related to their Euclidean distance1,

and can be taken as a measure of their similarity.

3.2 Fully unsupervised initialization

The underlying difficulty of the mapping problem

in its unsupervised variant is that the word embed-

ding matrices X and Z are unaligned across both

axes: neither the ith vocabulary item Xi∗ and Zi∗

nor the jth dimension of the embeddings X∗j and

Z∗j are aligned, so there is no direct correspon-

dence between both languages. In order to over-

come this challenge and build an initial solution,

we propose to first construct two alternative repre-

sentations X ′ and Z ′ that are aligned across their

jth dimension X ′
∗j and Z ′

∗j , which can later be

used to build an initial dictionary that aligns their

respective vocabularies.

Our approach is based on a simple idea: while

the axes of the original embeddings X and Z are

different in nature, both axes of their correspond-

ing similarity matrices MX = XXT and MZ =
ZZT correspond to words, which can be exploited

to reduce the mismatch to a single axis. More con-

cretely, assuming that the embedding spaces are

perfectly isometric, the similarity matrices MX

and MZ would be equivalent up to a permutation

of their rows and columns, where the permutation

in question defines the dictionary across both lan-

guages. In practice, the isometry requirement will

not hold exactly, but it can be assumed to hold ap-

proximately, as the very same problem of map-

ping two embedding spaces without supervision

would otherwise be hopeless. Based on that, one

could try every possible permutation of row and

column indices to find the best match between MX

and MZ , but the resulting combinatorial explosion

makes this approach intractable.

In order to overcome this problem, we pro-

pose to first sort the values in each row of MX

and MZ , resulting in matrices sorted(MX) and

sorted(MZ)
2. Under the strict isometry condition,

equivalent words would get the exact same vec-

tor across languages, and thus, given a word and

its row in sorted(MX), one could apply nearest

neighbor retrieval over the rows of sorted(MZ) to

find its corresponding translation.

On a final note, given the singular value de-

composition X = USV T , the similarity matrix

1Given two length normalized vectors u and v, u · v =
cos(u, v) = 1− ||u− v||2/2.

2Note that the values in each row are sorted independently
from other rows.
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is MX = US2UT . As such, its square root√
MX = USUT is closer in nature to the origi-

nal embeddings, and we also find it to work better

in practice. We thus compute sorted(
√
MX) and

sorted(
√
MZ) and normalize them as described in

Section 3.1, yielding the two matrices X ′ and Z ′

that are later used to build the initial solution for

self-learning (see Section 3.3).

In practice, the isometry assumption is strong

enough so the above procedure captures some

cross-lingual signal. In our English-Italian exper-

iments, the average cosine similarity across the

gold standard translation pairs is 0.009 for a ran-

dom solution, 0.582 for the optimal supervised so-

lution, and 0.112 for the mapping resulting from

this initialization. While the latter is far from be-

ing useful on its own (the accuracy of the resulting

dictionary is only 0.52%), it is substantially better

than chance, and it works well as an initial solution

for the self-learning method described next.

3.3 Robust self-learning

Previous work has shown that self-learning can

learn high-quality bilingual embedding mappings

starting with as little as 25 word pairs (Artetxe

et al., 2017). In this method, training iterates

through the following two steps until convergence:

1. Compute the optimal orthogonal mapping

maximizing the similarities for the current

dictionary D:

arg max
WX ,WZ

∑

i

∑

j

Dij((Xi∗WX) · (Zj∗WZ))

An optimal solution is given by WX = U

and WZ = V , where USV T = XTDZ is

the singular value decomposition of XTDZ.

2. Compute the optimal dictionary over the sim-

ilarity matrix of the mapped embeddings

XWXW T
Z ZT . This typically uses nearest

neighbor retrieval from the source language

into the target language, so Dij = 1 if j =
argmaxk (Xi∗WX) · (Zk∗WZ) and Dij = 0
otherwise.

The underlying optimization objective is inde-

pendent from the initial dictionary, and the algo-

rithm is guaranteed to converge to a local opti-

mum of it. However, the method does not work if

starting from a completely random solution, as it

tends to get stuck in poor local optima in that case.

For that reason, we use the unsupervised initial-

ization procedure at Section 3.2 to build an initial

solution. However, simply plugging in both meth-

ods did not work in our preliminary experiments,

as the quality of this initial method is not good

enough to avoid poor local optima. For that rea-

son, we next propose some key improvements in

the dictionary induction step to make self-learning

more robust and learn better mappings:

• Stochastic dictionary induction. In or-

der to encourage a wider exploration of the

search space, we make the dictionary induc-

tion stochastic by randomly keeping some el-

ements in the similarity matrix with probabil-

ity p and setting the remaining ones to 0. As a

consequence, the smaller the value of p is, the

more the induced dictionary will vary from

iteration to iteration, thus enabling to escape

poor local optima. So as to find a fine-grained

solution once the algorithm gets into a good

region, we increase this value during train-

ing akin to simulated annealing, starting with

p = 0.1 and doubling this value every time

the objective function at step 1 above does

not improve more than ǫ = 10−6 for 50 it-

erations.

• Frequency-based vocabulary cutoff. The

size of the similarity matrix grows quadrat-

ically with respect to that of the vocabular-

ies. This does not only increase the cost of

computing it, but it also makes the number of

possible solutions grow exponentially3, pre-

sumably making the optimization problem

harder. Given that less frequent words can be

expected to be noisier, we propose to restrict

the dictionary induction process to the k most

frequent words in each language, where we

find k = 20, 000 to work well in practice.

• CSLS retrieval. Dinu et al. (2015) showed

that nearest neighbor suffers from the hub-

ness problem. This phenomenon is known

to occur as an effect of the curse of dimen-

sionality, and causes a few points (known as

hubs) to be nearest neighbors of many other

points (Radovanović et al., 2010a,b). Among

the existing solutions to penalize the similar-

ity score of hubs, we adopt the Cross-domain

3There are mn possible combinations that go from a
source vocabulary of n entries to a target vocabulary of m
entries.
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Similarity Local Scaling (CSLS) from Con-

neau et al. (2018). Given two mapped em-

beddings x and y, the idea of CSLS is to

compute rT(x) and rS(y), the average co-

sine similarity of x and y for their k near-

est neighbors in the other language, respec-

tively. Having done that, the corrected score

CSLS(x, y) = 2 cos(x, y) − rT(x) − rS(y).
Following the authors, we set k = 10.

• Bidirectional dictionary induction. When

the dictionary is induced from the source into

the target language, not all target language

words will be present in it, and some will oc-

cur multiple times. We argue that this might

accentuate the problem of local optima, as re-

peated words might act as strong attractors

from which it is difficult to escape. In or-

der to mitigate this issue and encourage di-

versity, we propose inducing the dictionary in

both directions and taking their correspond-

ing concatenation, so D = DX→Z +DZ→X .

In order to build the initial dictionary, we com-

pute X ′ and Z ′ as detailed in Section 3.2 and apply

the above procedure over them. As the only differ-

ence, this first solution does not use the stochastic

zeroing in the similarity matrix, as there is no need

to encourage diversity (X ′ and Z ′ are only used

once), and the threshold for vocabulary cutoff is

set to k = 4, 000, so X ′ and Z ′ can fit in memory.

Having computed the initial dictionary, X ′ and Z ′

are discarded, and the remaining iterations are per-

formed over the original embeddings X and Z.

3.4 Symmetric re-weighting

As part of their multi-step framework, Artetxe

et al. (2018a) showed that re-weighting the tar-

get language embeddings according to the cross-

correlation in each component greatly improved

the quality of the induced dictionary. Given the

singular value decomposition USV T = XTDZ,

this is equivalent to taking WX = U and WZ =
V S, where X and Z are previously whitened

applying the linear transformations (XTX)−
1

2

and (ZTZ)−
1

2 , and later de-whitened applying

UT (XTX)
1

2U and V T (ZTZ)
1

2V .

However, re-weighting also accentuates the

problem of local optima when incorporated into

self-learning as, by increasing the relevance of

dimensions that best match for the current solu-

tion, it discourages to explore other regions of the

search space. For that reason, we propose using

it as a final step once self-learning has converged

to a good solution. Unlike Artetxe et al. (2018a),

we apply re-weighting symmetrically in both lan-

guages, taking WX = US
1

2 and WZ = V S
1

2 .

This approach is neutral in the direction of the

mapping, and gives good results as shown in our

experiments.

4 Experimental settings

Following common practice, we evaluate our

method on bilingual lexicon extraction, which

measures the accuracy of the induced dictionary

in comparison to a gold standard.

As discussed before, previous evaluation has

focused on favorable conditions. In particular, ex-

isting unsupervised methods have almost exclu-

sively been tested on Wikipedia corpora, which is

comparable rather than monolingual, exposing a

strong cross-lingual signal that is not available in

strictly unsupervised settings. In addition to that,

some datasets comprise unusually small embed-

dings, with only 50 dimensions and around 5,000-

10,000 vocabulary items (Zhang et al., 2017a,b).

As the only exception, Conneau et al. (2018) re-

port positive results on the English-Italian dataset

of Dinu et al. (2015) in addition to their main

experiments, which are carried out in Wikipedia.

While this dataset does use strictly monolingual

corpora, it still corresponds to a pair of two rela-

tively close indo-european languages.

In order to get a wider picture of how our

method compares to previous work in differ-

ent conditions, including more challenging set-

tings, we carry out our experiments in the widely

used dataset of Dinu et al. (2015) and the

subsequent extensions of Artetxe et al. (2017,

2018a), which together comprise English-Italian,

English-German, English-Finnish and English-

Spanish. More concretely, the dataset consists of

300-dimensional CBOW embeddings trained on

WacKy crawling corpora (English, Italian, Ger-

man), Common Crawl (Finnish) and WMT News

Crawl (Spanish). The gold standards were de-

rived from dictionaries built from Europarl word

alignments and available at OPUS (Tiedemann,

2012), split in a test set of 1,500 entries and

a training set of 5,000 that we do not use in

our experiments. The datasets are freely avail-

able. As a non-european agglutinative language,

the English-Finnish pair is particularly challeng-
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ES-EN IT-EN TR-EN

best avg s t best avg s t best avg s t

Zhang et al. (2017a), λ = 1 71.43 68.18 10 13.2 60.38 56.45 10 12.3 0.00 0.00 0 13.0
Zhang et al. (2017a), λ = 10 70.24 66.37 10 13.0 57.64 52.60 10 12.6 21.07 17.95 10 13.2
Conneau et al. (2018), code 76.18 75.82 10 25.1 67.32 67.00 10 25.9 32.64 14.34 5 25.3
Conneau et al. (2018), paper 76.15 75.81 10 25.1 67.21 60.22 9 25.5 29.79 16.48 7 25.5
Proposed method 76.43 76.28 10 0.6 66.96 66.92 10 0.9 36.10 35.93 10 1.7

Table 1: Results of unsupervised methods on the dataset of Zhang et al. (2017a). We perform 10 runs for

each method and report the best and average accuracies (%), the number of successful runs (those with

>5% accuracy) and the average runtime (minutes).

EN-IT EN-DE EN-FI EN-ES

best avg s t best avg s t best avg s t best avg s t

Zhang et al. (2017a), λ = 1 0.00 0.00 0 47.0 0.00 0.00 0 47.0 0.00 0.00 0 45.4 0.00 0.00 0 44.3
Zhang et al. (2017a), λ = 10 0.00 0.00 0 46.6 0.00 0.00 0 46.0 0.07 0.01 0 44.9 0.07 0.01 0 43.0
Conneau et al. (2018), code 45.40 13.55 3 46.1 47.27 42.15 9 45.4 1.62 0.38 0 44.4 36.20 21.23 6 45.3
Conneau et al. (2018), paper 45.27 9.10 2 45.4 0.07 0.01 0 45.0 0.07 0.01 0 44.7 35.47 7.09 2 44.9
Proposed method 48.53 48.13 10 8.9 48.47 48.19 10 7.3 33.50 32.63 10 12.9 37.60 37.33 10 9.1

Table 2: Results of unsupervised methods on the dataset of Dinu et al. (2015) and the extensions of

Artetxe et al. (2017, 2018a). We perform 10 runs for each method and report the best and average accu-

racies (%), the number of successful runs (those with >5% accuracy) and the average runtime (minutes).

ing due to the linguistic distance between them.

For completeness, we also test our method in

the Spanish-English, Italian-English and Turkish-

English datasets of Zhang et al. (2017a), which

consist of 50-dimensional CBOW embeddings

trained on Wikipedia, as well as gold standard

dictionaries4 from Open Multilingual WordNet

(Spanish-English and Italian-English) and Google

Translate (Turkish-English). The lower dimen-

sionality and comparable corpora make an easier

scenario, although it also contains a challenging

pair of distant languages (Turkish-English).

Our method is implemented in Python using

NumPy and CuPy. Together with it, we also test

the methods of Zhang et al. (2017a) and Conneau

et al. (2018) using the publicly available imple-

mentations from the authors5. Given that Zhang

et al. (2017a) report using a different value of

their hyperparameter λ for different language pairs

(λ = 10 for English-Turkish and λ = 1 for the

rest), we test both values in all our experiments to

4The test dictionaries were obtained through personal
communication with the authors. The rest of the language
pairs were left out due to licensing issues.

5Despite our efforts, Zhang et al. (2017b) was left out be-
cause: 1) it does not create a one-to-one dictionary, thus diffi-
culting direct comparison, 2) it depends on expensive propri-
etary software 3) its computational cost is orders of magni-
tude higher (running the experiments would have taken sev-
eral months).

better understand its effect. In the case of Conneau

et al. (2018), we test both the default hyperparam-

eters in the source code as well as those reported

in the paper, with iterative refinement activated in

both cases. Given the instability of these methods,

we perform 10 runs for each, and report the best

and average accuracies, the number of successful

runs (those with >5% accuracy) and the average

runtime. All the experiments were run in a single

Nvidia Titan Xp.

5 Results and discussion

We first present the main results (§5.1), then the

comparison to the state-of-the-art (§5.2), and fi-

nally ablation tests to measure the contribution of

each component (§5.3).

5.1 Main results

We report the results in the dataset of Zhang et al.

(2017a) at Table 1. As it can be seen, the pro-

posed method performs at par with that of Con-

neau et al. (2018) both in Spanish-English and

Italian-English, but gets substantially better re-

sults in the more challenging Turkish-English pair.

While we are able to reproduce the results re-

ported by Zhang et al. (2017a), their method gets

the worst results of all by a large margin. An-

other disadvantage of that model is that different
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Supervision Method EN-IT EN-DE EN-FI EN-ES

5k dict.

Mikolov et al. (2013) 34.93† 35.00† 25.91† 27.73†

Faruqui and Dyer (2014) 38.40* 37.13* 27.60* 26.80*

Shigeto et al. (2015) 41.53† 43.07† 31.04† 33.73†

Dinu et al. (2015) 37.7 38.93* 29.14* 30.40*

Lazaridou et al. (2015) 40.2 - - -

Xing et al. (2015) 36.87† 41.27† 28.23† 31.20†

Zhang et al. (2016) 36.73† 40.80† 28.16† 31.07†

Artetxe et al. (2016) 39.27 41.87* 30.62* 31.40*

Artetxe et al. (2017) 39.67 40.87 28.72 -

Smith et al. (2017) 43.1 43.33† 29.42† 35.13†

Artetxe et al. (2018a) 45.27 44.13 32.94 36.60

25 dict. Artetxe et al. (2017) 37.27 39.60 28.16 -

Init. Smith et al. (2017), cognates 39.9 - - -
heurist. Artetxe et al. (2017), num. 39.40 40.27 26.47 -

None

Zhang et al. (2017a), λ = 1 0.00* 0.00* 0.00* 0.00*

Zhang et al. (2017a), λ = 10 0.00* 0.00* 0.01* 0.01*

Conneau et al. (2018), code‡ 45.15* 46.83* 0.38* 35.38*

Conneau et al. (2018), paper‡ 45.1 0.01* 0.01* 35.44*

Proposed method 48.13 48.19 32.63 37.33

Table 3: Accuracy (%) of the proposed method in comparison with previous work. *Results obtained

with the official implementation from the authors. †Results obtained with the framework from Artetxe

et al. (2018a). The remaining results were reported in the original papers. For methods that do not

require supervision, we report the average accuracy across 10 runs. ‡For meaningful comparison, runs

with <5% accuracy are excluded when computing the average, but note that, unlike ours, their method

often gives a degenerated solution (see Table 2).

language pairs require different hyperparameters:

λ = 1 works substantially better for Spanish-

English and Italian-English, but only λ = 10
works for Turkish-English.

The results for the more challenging dataset

from Dinu et al. (2015) and the extensions of

Artetxe et al. (2017, 2018a) are given in Table

2. In this case, our proposed method obtains the

best results in all metrics for all the four language

pairs tested. The method of Zhang et al. (2017a)

does not work at all in this more challenging sce-

nario, which is in line with the negative results re-

ported by the authors themselves for similar con-

ditions (only %2.53 accuracy in their large Gi-

gaword dataset). The method of Conneau et al.

(2018) also fails for English-Finnish (only 1.62%

in the best run), although it is able to get positive

results in some runs for the rest of language pairs.

Between the two configurations tested, the default

hyperparameters in the code show a more stable

behavior.

These results confirm the robustness of the pro-

posed method. While the other systems succeed

in some runs and fail in others, our method con-

verges to a good solution in all runs without excep-

tion and, in fact, it is the only one getting positive

results for English-Finnish. In addition to being

more robust, our method also obtains substantially

better accuracies, surpassing previous methods by

at least 1-3 points in all but the easiest pairs. More-

over, our method is not sensitive to hyperparame-

ters that are difficult to tune without a development

set, which is critical in realistic unsupervised con-

ditions.

At the same time, our method is significantly

faster than the rest. In relation to that, it is interest-

ing that, while previous methods perform a fixed

number of iterations and take practically the same

time for all the different language pairs, the run-

time of our method adapts to the difficulty of the

task thanks to the dynamic convergence criterion

of our stochastic approach. This way, our method

tends to take longer for more challenging language

pairs (1.7 vs 0.6 minutes for es-en and tr-en in

one dataset, and 12.9 vs 7.3 minutes for en-fi and

en-de in the other) and, in fact, our (relative) ex-

ecution times correlate surprisingly well with the

linguistic distance with English (closest/fastest is

German, followed by Italian/Spanish, followed by

Turkish/Finnish).
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EN-IT EN-DE EN-FI EN-ES

best avg s t best avg s t best avg s t best avg s t

Full system 48.53 48.13 10 8.9 48.47 48.19 10 7.3 33.50 32.63 10 12.9 37.60 37.33 10 9.1

- Unsup. init. 0.07 0.02 0 16.5 0.00 0.00 0 17.3 0.07 0.01 0 13.8 0.13 0.02 0 15.9

- Stochastic 48.20 48.20 10 2.7 48.13 48.13 10 2.5 0.28 0.28 0 4.3 37.80 37.80 10 2.6
- Cutoff (k=100k) 46.87 46.46 10 114.5 48.27 48.12 10 105.3 31.95 30.78 10 162.5 35.47 34.88 10 185.2
- CSLS 0.00 0.00 0 15.0 0.00 0.00 0 13.8 0.00 0.00 0 13.1 0.00 0.00 0 14.1
- Bidirectional 46.00 45.37 10 5.6 48.27 48.03 10 5.5 31.39 24.86 8 7.8 36.20 35.77 10 7.3

- Re-weighting 46.07 45.61 10 8.4 48.13 47.41 10 7.0 32.94 31.77 10 11.2 36.00 35.45 10 9.1

Table 4: Ablation test on the dataset of Dinu et al. (2015) and the extensions of Artetxe et al. (2017,

2018a). We perform 10 runs for each method and report the best and average accuracies (%), the number

of successful runs (those with >5% accuracy) and the average runtime (minutes).

5.2 Comparison with the state-of-the-art

Table 3 shows the results of the proposed method

in comparison to previous systems, including

those with different degrees of supervision. We

focus on the widely used English-Italian dataset

of Dinu et al. (2015) and its extensions. Despite

being fully unsupervised, our method achieves the

best results in all language pairs but one, even sur-

passing previous supervised approaches. The only

exception is English-Finnish, where Artetxe et al.

(2018a) gets marginally better results with a dif-

ference of 0.3 points, yet ours is the only unsu-

pervised system that works for this pair. At the

same time, it is remarkable that the proposed sys-

tem gets substantially better results than Artetxe

et al. (2017), the only other system based on self-

learning, with the additional advantage of being

fully unsupervised.

5.3 Ablation test

In order to better understand the role of different

aspects in the proposed system, we perform an ab-

lation test, where we separately analyze the effect

of initialization, the different components of our

robust self-learning algorithm, and the final sym-

metric re-weighting. The obtained results are re-

ported in Table 4.

In concordance with previous work, our results

show that self-learning does not work with ran-

dom initialization. However, the proposed unsu-

pervised initialization is able to overcome this is-

sue without the need of any additional informa-

tion, performing at par with other character-level

heuristics that we tested (e.g. shared numerals).

As for the different self-learning components,

we observe that the stochastic dictionary induction

is necessary to overcome the problem of poor lo-

cal optima for English-Finnish, although it does

not make any difference for the rest of easier lan-

guage pairs. The frequency-based vocabulary cut-

off also has a positive effect, yielding to slightly

better accuracies and much faster runtimes. At the

same time, CSLS plays a critical role in the sys-

tem, as hubness severely accentuates the problem

of local optima in its absence. The bidirectional

dictionary induction is also beneficial, contribut-

ing to the robustness of the system as shown by

English-Finnish and yielding to better accuracies

in all cases.

Finally, these results also show that symmet-

ric re-weighting contributes positively, bringing

an improvement of around 1-2 points without any

cost in the execution time.

6 Conclusions

In this paper, we show that previous unsupervised

mapping methods (Zhang et al., 2017a; Conneau

et al., 2018) often fail on realistic scenarios involv-

ing non-comparable corpora and/or distant lan-

guages. In contrast to adversarial methods, we

propose to use an initial weak mapping that ex-

ploits the structure of the embedding spaces in

combination with a robust self-learning approach.

The results show that our method succeeds in all

cases, providing the best results with respect to

all previous work on unsupervised and supervised

mappings.

The ablation analysis shows that our initial so-

lution is instrumental for making self-learning

work without supervision. In order to make self-

learning robust, we also added stochasticity to

dictionary induction, used CSLS instead of near-

est neighbor, and produced bidirectional dictio-

naries. Results also improved using smaller in-
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termediate vocabularies and re-weighting the fi-

nal solution. Our implementation is available as

an open source project at https://github.

com/artetxem/vecmap.

In the future, we would like to extend the

method from the bilingual to the multilingual sce-

nario, and go beyond the word level by incorporat-

ing embeddings of longer phrases.
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