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Abstract

Embedding methods which enforce a par-
tial order or lattice structure over the con-
cept space, such as Order Embeddings
(OE) (Vendrov et al., 2016), are a nat-
ural way to model transitive relational
data (e.g. entailment graphs). However,
OE learns a deterministic knowledge base,
limiting expressiveness of queries and the
ability to use uncertainty for both predic-
tion and learning (e.g. learning from ex-
pectations).  Probabilistic extensions of
OE (Lai and Hockenmaier, 2017) have
provided the ability to somewhat calibrate
these denotational probabilities while re-
taining the consistency and inductive bias
of ordered models, but lack the ability to
model the negative correlations found in
real-world knowledge. In this work we
show that a broad class of models that as-
sign probability measures to OE can never
capture negative correlation, which moti-
vates our construction of a novel box lat-
tice and accompanying probability mea-
sure to capture anticorrelation and even
disjoint concepts, while still providing the
benefits of probabilistic modeling, such as
the ability to perform rich joint and con-
ditional queries over arbitrary sets of con-
cepts, and both learning from and predict-
ing calibrated uncertainty. We show im-
provements over previous approaches in
modeling the Flickr and WordNet entail-
ment graphs, and investigate the power of
the model.

* Equal contribution.
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1 Introduction

Structured embeddings based on regions, densi-
ties, and orderings have gained popularity in re-
cent years for their inductive bias towards the
essential asymmetries inherent in problems such
as image captioning (Vendrov et al., 2016), lexi-
cal and textual entailment (Erk, 2009; Vilnis and
McCallum, 2015; Lai and Hockenmaier, 2017;
Athiwaratkun and Wilson, 2018), and knowledge
graph completion and reasoning (He et al., 2015;
Nickel and Kiela, 2017; Li et al., 2017).

Models that easily encode asymmetry, and re-
lated properties such as transitivity (the two com-
ponents of commonplace relations such as par-
tially ordered sets and lattices), have great utility
in these applications, leaving less to be learned
from the data than arbitrary relational models. At
their best, they resemble a hybrid between embed-
ding models and structured prediction. As noted
by Vendrov et al. (2016) and Li et al. (2017), while
the models learn sets of embeddings, these param-
eters obey rich structural constraints. The entire
set can be thought of as one, sometimes provably
consistent, structured prediction, such as an ontol-
ogy in the form of a single directed acyclic graph.

While the structured prediction analogy ap-
plies best to Order Embeddings (OE), which em-
beds consistent partial orders, other region- and
density-based representations have been proposed
for the express purpose of inducing a bias to-
wards asymmetric relationships. For example, the
Gaussian Embedding (GE) model (Vilnis and Mc-
Callum, 2015) aims to represent the asymmetry
and uncertainty in an object’s relations and at-
tributes by means of uncertainty in the represen-
tation. However, while the space of representa-
tions is a manifold of probability distributions, the
model is not truly probabilistic in that it does not
model asymmetries and relations in terms of prob-
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abilities, but in terms of asymmetric comparison
functions such as the originally proposed KL di-
vergence and the recently proposed thresholded
divergences (Athiwaratkun and Wilson, 2018).

Probabilistic models are especially compelling
for modeling ontologies, entailment graphs, and
knowledge graphs. Their desirable properties
include an ability to remain consistent in the
presence of noisy data, suitability towards semi-
supervised training using the expectations and un-
certain labels present in these large-scale applica-
tions, the naturality of representing the inherent
uncertainty of knowledge they store, and the abil-
ity to answer complex queries involving more than
2 variables. Note that the final one requires a true
joint probabilistic model with a tractable inference
procedure, not something provided by e.g. matrix
factorization.

We take the dual approach to density-based
embeddings and model uncertainty about rela-
tionships and attributes as explicitly probabilistic,
while basing the probability on a latent space of
geometric objects that obey natural structural bi-
ases for modeling transitive, asymmetric relations.
The most similar work are the probabilistic order
embeddings (POE) of Lai (Lai and Hockenmaier,
2017), which apply a probability measure to each
order embedding’s forward cone (the set of points
greater than the embedding in each dimension),
assigning a finite and normalized volume to the
unbounded space. However, POE suffers severe
limitations as a probabilistic model, including an
inability to model negative correlations between
concepts, which motivates the construction of our
box lattice model.

Our model represents objects, concepts, and
events as high-dimensional products-of-intervals
(hyperrectangles or boxes), with an event’s unary
probability coming from the box volume and joint
probabilities coming from overlaps. This contrasts
with POE’s approach of defining events as the for-
ward cones of vectors, extending to infinity, in-
tegrated under a probability measure that assigns
them finite volume.

One desirable property of a structured represen-
tation for ordered data, originally noted in (Ven-
drov et al., 2016) is a “slackness” shared by OE,
POE, and our model: when the model predicts
an “edge” or lack thereof (i.e. P(alb) = 0 or 1,
or a zero constraint violation in the case of OE),
being exposed to that fact again will not update

the model. Moreover, there are large degrees of
freedom in parameter space that exhibit this slack-
ness, giving the model the ability to embed com-
plex structure with 0 loss when compared to mod-
els based on symmetric inner products or distances
between embeddings, e.g. bilinear GLMs (Collins
et al., 2002), Trans-E (Bordes et al., 2013), and
other embedding models which must always be
pushing and pulling parameters towards and away
from each other.

Our experiments demonstrate the power of our
approach to probabilistic ordering-biased rela-
tional modeling. First, we investigate an instruc-
tive 2-dimensional toy dataset that both demon-
strates the way the model self organizes its box
event space, and enables sensible answers to
queries involving arbitrary numbers of variables,
despite being trained on only pairwise data. We
achieve a new state of the art in denotational prob-
ability modeling on the Flickr entailment dataset
(Lai and Hockenmaier, 2017), and a matching
state-of-the-art on WordNet hypernymy (Vendrov
et al.,, 2016; Miller, 1995) with the concurrent
work on thresholded Gaussian embedding of Athi-
waratkun and Wilson (2018), achieving our best
results by training on additional co-occurrence ex-
pectations aggregated from leaf types.

We find that the strong empirical performance
of probabilistic ordering models, and our box lat-
tice model in particular, and their endowment of
new forms of training and querying, make them a
promising avenue for future research in represent-
ing structured knowledge.

2 Related Work

In addition to the related work in structured em-
beddings mentioned in the introduction, our focus
on directed, transitive relational modeling and on-
tology induction shares much with the rich field
of directed graphical models and causal model-
ing (Pearl, 1988), as well as learning the struc-
ture of those models (Heckerman et al., 1995).
Work in undirected structure learning such the
Graphical Lasso (Friedman et al., 2008) is also
relevant due to our desire to learn from pairwise
joint/conditional probabilities and moment matri-
ces, which are closely related in the setting of dis-
crete variables.

Especially relevant research in Bayesian net-
works are applications towards learning taxo-
nomic structure of relational data (Bansal et al.,
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2014), although this work is often restricted to-
wards tree-shaped ontologies, which allow effi-
cient inference by Chu-Liu-Edmonds’ algorithm
(Chu and Liu, 1995), while we focus on arbitrary
DAGs.

As our model is based on populating a latent
“event space” into boxes (products of intervals),
it is especially reminiscent of the Mondrian pro-
cess (Roy and Teh, 2009). However, the Mondrian
process partitions the space as a high dimensional
tree (a non-parametric kd-tree), while our model
allows the arbitrary box placement required for
DAG structure, and is much more tractable in high
dimensions compared to the Mondrian’s Bayesian
non-parametric inference.

Embedding applications to relational learning
constitute a huge field to which it is impossible
to do justice, but one general difference between
our approaches is that e.g. a matrix factorization
model treats the embeddings as objects to score re-
lation links with, as opposed to POE or our model
in which embeddings represent subsets of proba-
bilistic event space which are directly integrated.
They are full probabilistic models of the joint set
of variables, rather than embedding-based approx-
imations of only low-order joint and conditional
probabilities. That is, any set of our parame-
ters can answer any arbitrary probabilistic ques-
tion (possibly requiring intractable computation),
rather than being fixed to modeling only certain
subsets of the joint.

Embedding-based learning’s large advantage
over the combinatorial structure learning pre-
sented by classical PGM approaches is its applica-
bility to large-scale probability distributions con-
taining hundreds of thousands of events or more,
as in both our WordNet and Flickr experiments.

3 Background

3.1 Partial Orders and Lattices

A non-strict partial ordered set (poset) is a set P
equipped with a binary relation < such that for all
a,b,c e P,

o a = a (reflexivity)
e a = b =< aimplies a = b (antisymmetry)
e a =< b =< cimplies a = c (transitivity)

This is simply a generalization of a totally ordered
set that allows some elements to be incomparable,
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and is a good model for the kind of acyclic directed
graph data found in knowledge bases.

A lattice is a poset where any subset has a
a unique least upper and greatest lower bound,
which will be true of all posets (lattices) consid-
ered in this paper. The least upper bound of two
elements a, b € P is called the join, denoted a \V b,
and the greatest lower bound is called the meet,
denoted a A b.

Additionally, in a bounded lattice we have two
extra elements, called rop, denoted T and bot-
tom, denoted 1, which are respectively the least
upper bound and greatest lower bound of the en-
tire space. Using the extended real number line
(adding points at infinity), all lattices considered
in this paper are bounded lattices.

3.2 Order Embeddings (OE)

Vendrov et al. (2016) introduced a method for em-
bedding partially ordered sets and a task, partial
order completion, an abstract term for things like
hypernym or entailment prediction (learning tran-
sitive relations). The goal is to learn a mapping
from the partially-ordered data domain to some
other partially-ordered space that will enable gen-
eralization.

Definition 1. Vendrov et al. (2016)
A function f : (X,=x) — (Y, =Xy) is an order-
embedding if for all u,v € X

u=xv <= f(u) Xy f(v)

They choose Y to be a vector space, and the
order <y to be based on the reverse product order
on R}y, which specifies

xRy < Vie{l.n}, z; >y

so an embedding is below another in the hierarchy
if all of the coordinates are larger, and O provides
a top element.

Although Vendrov et al. (2016) do not explic-
itly discuss it, their model does not just capture
partial orderings, but is a standard construction
of a vector (Hilbert) lattice, in which the opera-
tions of meet and join can be defined as taking the
pointwise maximum and minimum of two vectors,
respectively (Zaanen, 1997). This observation is
also used in (Li et al., 2017) to generate extra con-
straints for training order embeddings.

As noted in the original work, these single point
embeddings can be thought of as regions, i.e. the



cone extending out from the vector towards infin-
ity. All concepts “entailed” by a given concept
must lie in this cone.

This ordering is optimized from examples of or-
dered elements and negative samples via a max-
margin loss.

3.3 Probabilistic Order Embeddings (POE)

Lai and Hockenmaier (2017) built on the “region”
idea to derive a probabilistic formulation (which
we will refer to as POE) to model entailment prob-
abilities in a consistent, hierarchical way.

Noting that all of OE’s regions obviously
have the same infinite area under the standard
(Lebesgue) measure of R'!, they propose a prob-
abilistic interpretation where the Bernoulli prob-
ability of each concept a or joint set of concepts
{a, b} with corresponding vectors {z,y} is given
by its volume under the exponential measure:

(o) =exp(~ w0 = [ ep(-lzl)dz

z=x

p(a,b) = p(x Ay) = exp(—|| max(z;, yi) (1)

since the meet of two vectors is simply the in-
tersection of their area cones, and replacing sums
with ¢1 norms for brevity since all coordinates are
positive. While having the intuition of measuring
the areas of cones, this also automatically gives a
valid probability distribution over concepts since
this is just the product likelihood under a coordi-
natewise exponential distribution.

However, they note a deficiency of their model
— it can only model positive (Pearson) correla-
tions between concepts (Bernoulli variables).

Consider two Bernoulli variables a and b,
whose probabilities correspond to the areas of
cones x and y. Recall the Bernoulli covariance
formula (we will deal with covariances instead of
correlations when convenient, since they always
have the same sign):

cov(a,b) = p(a,b) — p(a)p(b) =
exp(—[| max(z;, yi)[[1) — exp(=|[zi + yil}1)

Since the sum of two positive vectors can only
be greater than the sum of their pointwise max-
imum, this quantity will always be nonnegative.
This has real consequences for probabilistic mod-
eling in KBs: conditioning on more concepts will
only make probabilities higher (or unchanged),

e.g. p(dog|plant) > p(dog).

3.4 Probabilistic Asymmetric Transitive
Relations

Probabilistic models have pleasing consistency
properties for modeling asymmetric transitive re-
lations, in particular compared to density-based
embeddings — a pairwise conditional probability
table can almost always (in the technical sense) be
asymmetrized to produce a DAG by simply taking
an edge if P(a|b) > P(bla). A matrix of pair-
wise Gaussian KL divergences cannot be consis-
tently asymmetrized in this manner. These claims
are proven in Appendix C. While a high P(al|b)
does not always indicate an edge in an ontology
due to confounding variables, existing graphical
model structure learning methods can be used to
further prune on the base graph without adding a
cycle, such as Graphical Lasso or simple thresh-
olding (Fattahi and Sojoudi, 2017).

4 Method

We develop a probabilistic model for lattices based
on hypercube embeddings that can model both
positive and negative correlations. Before describ-
ing this, we first motivate our choice to abandon
OE/POE type cone-based models for this purpose.

4.1 Correlations from Cone Measures

Claim. For a pair of Bernoulli variables p(a) and
p(b), cov(a,b) > 0 if the Bernoulli probabili-
ties come from the volume of a cone as measured
under any product (coordinate-wise) probability
measure p(z) = [ pi(z;) on R", where F;, the
associated CDF for p;, is monotone increasing.

Proof. For any product measure we have

p(z)dz = ﬂ pi(zi)dz; = ﬁ 1 — Fi(x)
[ =11 | |

7
z=x x;<z;

This is just the area of the unique box correspond-
ing to [['[Fi(z;),1] € [0,1]", under the uniform
measure. This box is unique as a monotone in-
creasing univariate CDF is bijective with (0, 1) —
cones in R™ can be invertibly mapped to boxes
of equivalent measure inside the unit hypercube
[0,1]™. These boxes have only half their degrees
of freedom, as they have the form [F;(z;), 1] per
dimension, (intuitively, they have one end ’stuck
at infinity” since the cone integrates to infinity.

So W.L.O.G. we can consider two transformed
cones r and y corresponding to our Bernoulli

266



variables a and b, and letting F;(z;) = wu; and
Fi(y;) = wv;, their intersection in the unit hyper-
cube is [ [ [max(u;, v;), 1].

Pairing terms in the right-hand product, we have

p(a,b) — p(a)p(b) =
[T = masx(ui, vi)) = T = w)(1 = v5) >0

% %

since the right contains all the terms of the left and
can only grow smaller. This argument is easily
modified to the case of the nonnegative orthant,
mutatis mutandis. 0

An open question for future work is what non-
product measures this claim also applies to. Note
that some non-product measures, such as multi-
variate Gaussian, can be transformed into product
measures easily (whitening) and the above proof
would still apply. It seems probable that some
measures, nonlinearly entangled across dimen-
sions, could encode negative correlations in cone
volumes. However, it is not generally tractable to
integrate high-dimensional cones under arbitrary
non-product measures.

4.2 Box Lattices

The above proof gives us intuition about the pos-
sible form of a better representation. Cones can
be mapped into boxes within the unit hypercube
while preserving their measure, and the lack of
negative correlation seems to come from the fact
that they always have an overly-large intersection
due to “pinning” the maximum in each dimension
to 1. To remedy this, we propose to learn repre-
sentations in the space of all boxes (axis-aligned
hyperrectangles), gaining back an extra degree of
freedom. These representations can be learned
with a suitable probability measure in R"”, the non-
negative orthant R”, or directly in the unit hyper-
cube with the uniform measure, which we elect.

We associate each concept with 2 vectors, the
minimum and maximum value of the box at each
dimension. Practically for numerical reasons these
are stored as a minimum, a positive offset plus an
€ term to prevent boxes from becoming too small
and underflowing.

Let us define our box embeddings as a pair
of vectors in [0,1]", (2, zar), representing the
maximum and minimum at each coordinate.

Then we can define a partial ordering by inclu-
sion of boxes, and a lattice structure as

xz Ay = L if z and y disjoint, else

TNy = H[max(mm,i, Ym,i), MIN(T A4, Yari)]
(2
xV Yy = H[min(mm,i, ym,z’>7 max(xMﬂ-, yM,z)]
7
where the meet is the intersecting box, or bottom
(the empty set) where no intersection exists, and
join is the smallest enclosing box. This lattice,
considered on its own terms as a non-probabilistic
object, is strictly more general than the order em-
bedding lattice in any dimension, which is proven
in Appendix B.

However, the finite sizes of all the lattice el-
ements lead to a natural probabilistic interpre-
tation under the uniform measure. Joint and
marginal probabilities are given by the volume of
the (intersection) box. For concept a with associ-
ated box (x,,, xps), probability is simply p(a) =
[ (xri — m,i) (under the uniform measure).
p(L) is of course zero since no probability mass
is assigned to the empty set.

It remains to show that this representation can
represent both positive and negative correlations.

Claim. For a pair of Bernoulli variables p(a) and
p(b), corr(a,b) can take on any value in [—1, 1] if
the probabilities come from the volume of associ-
ated boxes in [0, 1]™.

Proof. Boxes can clearly model disjointness (ex-
actly —1 correlation if the total volume of the
boxes equals 1). Two identical boxes give their
concepts exactly correlation 1. The area of the
meet is continuous with respect to translations of
intersecting boxes, and all other terms in correla-
tion stay constant, so by continuity of the corre-
lation function our model can achieve all possible
correlations for a pair of variables. O

This proof can be extended to boxes in R™ with
product measures by the previous reduction.

Limitations: Note that this model cannot per-
fectly describe all possible probability distribu-
tions or concepts as embedded objects. For exam-
ple, the complement of a box is not a box. How-
ever, queries about complemented variables can
be calculated by the Inclusion-Exclusion princi-
ple, made more efficient by the fact that all non-
negated terms can be grouped and calculated ex-
actly. We show some toy exact calculations with
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negated variables in Appendix A. Also, note that
in a knowledge graph often true complements are
not required — for example mortal and immortal
are not actually complements, because the concept
color is neither.

Additionally, requiring the total probability
mass covered by boxes to equal 1, or exactly
matching marginal box probabilities while model-
ing all correlations is a difficult box-packing-type
problem and not generally possible. Modeling
limitations aside, the union of boxes having mass
< 1 can be seen as an open-world assumption on
our KB (not all points in space have corresponding
concepts, yet).

4.3 Learning

While inference (calculation of pairwise joint,
unary marginal, and pairwise conditional proba-
bilities) is quite straightforward by taking inter-
sections of boxes and computing volumes (and
their ratios), learning does not appear easy at first
glance. While the (sub)gradient of the joint prob-
ability is well defined when boxes intersect, it is
non-differentiable otherwise. Instead we optimize
a lower bound.

Clearly p(a V b) > p(a U b), with equality only
when a = b, so this can give us a lower bound:

plaAb) =p(a) +p(b) —plaUb
> p(a) +p(b) —p(a Vb)

Where probabilities are always given by the vol-
ume of the associated box. This lower bound al-
ways exists and is differentiable, even when the
joint is not. It is guaranteed to be nonpositive ex-
cept when a and b intersect, in which case the true
joint likelihood should be used.

While a negative bound on a probability is odd,
inspecting the bound we see that its gradient will
push the enclosing box to be smaller, while in-
creasing areas of the individual boxes, until they
intersect, which is a sensible learning strategy.

Since we are working with small probabilities it
is advisable to negate this term and maximize the
negative logarithm:

—log(p(a Vv b) — p(a) — p(b))

This still has an unbounded gradient as the lower
bound approaches 0, so it is also useful to add a
constant within the logarithm function to avoid nu-
merical problems.
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Since the likelihood of the full data is usu-
ally intractable to compute as a conjunction of
many negations, we optimize binary conditional
and unary marginal terms separately by maximum
likelihood.

In this work, we parametrize the boxes as
(min, A max — min), with Euclidean pro-
jections after gradient steps to keep our parame-
ters in the unit hypercube and maintain the mini-
mum/delta constraints.

Now that we have the ability to compute prob-
abilities and (surrogate) gradients for arbitrary
marginals in the model, and by extension condi-
tionals, we will see specific examples in the ex-
periments.

5 Experiments

5.1 Warmup: 2D Embedding of a Toy Lattice

We begin by investigating properties of our model
in modeling a small toy problem, consisting of
a small hand constructed ontology over 19 con-
cepts, aggregated from atomic synthetic examples
first into a probabilistic lattice (e.g. some rabbits
are brown, some are white), and then a full CPD.
We model it using only 2 dimensions to enable
visualization of the way the model self-organizes
its “event space”, training the model by mini-
mize weighted cross-entropy with both the unary
marginals and pairwise conditional probabilities.
We also conduct a parallel experiment with POE
as embedded in the unit cube, where each repre-
sentation is constrained to touch the faces x =
1,y 1. In Figure 2, we show the represen-
tation of lattice structures by POE and the box
lattice model as compared to the abstract proba-
bilistic lattice used to construct the data, shown in
Figure 1, and compare the conditional probabili-
ties produced by our model to the ground truth,
demonstrating the richer capacity of the box model
in capturing strong positive and negative correla-
tions. In Table 1, we perform a series of multivari-
able conditional queries and demonstrate intuitive
results on high-order queries containing up to 4
variables, despite the model being trained on only
2-way information.

5.2 WordNet

We experiment on WordNet hypernym prediction,
using the same train, development and test split
as Vendrov et al. (2016), created by randomly
taking 4,000 hypernym pairs from the 837,888-
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Figure 1: Representation of the toy probabilistic lattice used in Section 5.1. Darker color corresponds
to more unary marginal probability. The associated CPD is obtained by a weighted aggregation of leaf
elements.
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Figure 2: Lattice representations and conditional probabilities from POE vs. box lattice. Note how the
box lattice model’s lack of “anchoring” to a corner allows it vastly more expressivity in matching the
ground truth CPD seen in Figure 1.
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P(grizzly bear | ... ) P(cactus | ... ) P(plant | ... )

P(grizzly bear) 0.12 | P(cactus) 0.10 | P(plant) 0.20
omnivore 0.29 | green 0.16 | green 0.37
white 0.00 | plant 0.39 | snake 0.00
brown 0.30 | american, green 0.19 | carnivore 0.00
omnivore, white 0.00 | plant, green, american 0.40 | cactus 0.78
omnivore, brown 0.38 | american, carnivore 0.00 | american, cactus 0.85

Table 1: Multi-way queries: conditional probabilities adjust when adding additional evidence or contra-
diction. In constrast, POE can only raise or preserve probability when conditioning.

term1 term?2
craftsman.n.02 shark.n.03
homogenized milk.n.01 | apple_juice.n.01
tongue_depresser.n.01 paintbrush.n.01
deerstalker.n.01 bathing_cap.n.01
skywriting.n.01 transcript.n.01

Table 2: Negatively correlated variables produced
by the model.

Method Test Accuracy %
transitive 88.2
word2gauss 86.6
OE 90.6
Lietal. (2017) 91.3
DOE (KL) 92.3
POE 91.6
POE (100 dim) 91.7
Box 92.2
Box + CPD 92.3

Table 3: Classification accuracy on WordNet test
set.

edge transitive closure of the WordNet hypernym
hierarchy as positive training examples for the
development set, 4,000 for the test set, and us-
ing the rest as training data. Negative training
examples are created by randomly corrupting a
train/development/test edge (u, v) by replacing ei-
ther u or v with a randomly chosen negative node.
We use their specific train/dev/test split, while
Athiwaratkun and Wilson (2018) use a different
train/dev split with the same test set (personal
communication) to examine the effect of different
negative sampling techniques. We cite their best
performing model, called DOE (KL).

Since our model is probabilistic, we would like
a sensible value for P(n), where n is a node. We
assign these marginal probabilities by looking at
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the number of descendants in the hierarchy un-

der a node, and normalizing over all nodes, taking

| descendants(n) |
P(TL) - | nodes |

Furthermore, we use the graph structure (only
of the subset of edges in the training set to
avoid leaking data) to augment the data with ap-
proximate conditional probabilities P(z|y). For
each leaf, we consider all of its ancestors as
pairwise co-occurences, then aggregate and di-
vide by the number of leaves to get an approx-
imate joint probability distribution, P(z,y)
Loy coroccurin ancestorset] iy this and the unary
marginals, we can create a conditional probabil-
ity table, which we prune based on the difference
of P(z|y) and P(y|z) and add cross entropy with
these conditional “soft edges” to the training data.
We refer to experiments using this additional data
as Box + CPD in Table 3.

We use 50 dimensions in our experiments.
Since our model has 2 parameters per dimension,
we also perform an apples-to-apples comparison
with a 100D POE model. As seen in Table 3,
we outperform POE significantly even with this
added representational power. We also observe
sensible negatively correlated examples, shown in
2, in the trained box model, while POE cannot
represent such relationships. We tune our mod-
els on the development set, with parameters docu-
mented in Appendix D.1. We observe that not only
does our model outperform POE, it beats all previ-
ous results on WordNet, aside from the concurrent
work of Athiwaratkun and Wilson (2018) (using
different train/dev negative examples), the base-
line POE model does as well. This indicates that
probabilistic embeddings for transitive relations
are a promising avenue for future work. Addition-
ally, the ability of the model to learn from the ex-
pected “’soft edges” improves it to state-of-the-art
level. We expect that co-occurrence counts gath-
ered from real textual corpora, rather than merely




aggregating up the WordNet lattice, would further
strengthen this effect.

5.3 Flickr Entailment Graph

POE Corr

| Box Cor

Pearson Correlation

Ground Truth Probability

Figure 3: R between model and gold probabilities.

P(aly)
Full test data | KL Pearson R
POE 0.031 0.949
POE* 0.031 0.949
Box 0.020 0.967
Unseen pairs
POE 0.048 0.920
POE* 0.046 0.925
Box 0.025 0.957
Unseen words
POE 0.127 0.696
POE* 0.084 0.854
Box 0.050 0.900

Table 4: KL and Pearson correlation between
model and gold probability.

We conduct experiments on the large-scale
Flickr entailment dataset of 45 million image cap-
tion pairs. We use the exactly same train/dev/test
from Lai and Hockenmaier (2017). We use a
slightly different unseen word pairs and unseen
words test data, obtained from the author. We
include their published results and also use their
published code, marked *, for comparison.

For these experiments, we relax our boxes
from the unit hypercube to the nonnegative or-
thant and obtain probabilities under the exponen-
tial measure, p(x) = exp(—z). We enforce the
nonnegativity constraints by clipping the LSTM-
generated embedding (Hochreiter and Schmidhu-
ber, 1997) for the box minimum with a ReLU,
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and parametrize our A embeddings using a soft-
plus activation to prevent dead units. As in Lai
and Hockenmaier (2017), we use 512 hidden units
in our LSTM to compose sentence vectors. We
then apply two single-layer feed-forward networks
with 512 units applied to the final LSTM state to
produce the embeddings.

As we can see from Table 4, we note large im-
provements in KL and Pearson correlation to the
ground truth entailment probabilities. In further
analysis, Figure 3 demonstrates that while the box
model outperforms POE in nearly every regime,
the highest gains come from the comparatively dif-
ficult to calibrate small entailment probabilities,
indicating the greater capability of our model to
produce fine-grained distinctions.

6 Conclusion and Future Work

We have only scratched the surface of possible
applications. An exciting direction is the in-
corporation of multi-relational data for general
knowledge representation and inference. Sec-
ondly, more complex representations, such as
2n-dimensional products of 2-dimensional con-
vex polyhedra, would offer greater flexibility in
tiling event space. Improved inference of the la-
tent boxes, either through better optimization or
through Bayesian approaches is another natural
extension. Our greatest interest is in the applica-
tion of this powerful new tool to the many areas
where other structured embeddings have shown
promise.
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