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Abstract

Extraction from raw text to a knowledge
base of entities and fine-grained types is
often cast as prediction into a flat set of
entity and type labels, neglecting the rich
hierarchies over types and entities con-
tained in curated ontologies. Previous at-
tempts to incorporate hierarchical struc-
ture have yielded little benefit and are re-
stricted to shallow ontologies. This paper
presents new methods using real and com-
plex bilinear mappings for integrating hi-
erarchical information, yielding substan-
tial improvement over flat predictions in
entity linking and fine-grained entity typ-
ing, and achieving new state-of-the-art re-
sults for end-to-end models on the bench-
mark FIGER dataset. We also present two
new human-annotated datasets containing
wide and deep hierarchies which we will
release to the community to encourage fur-
ther research in this direction: MedMen-
tions, a collection of PubMed abstracts in
which 246k mentions have been mapped
to the massive UMLS ontology; and Type-
Net, which aligns Freebase types with the
WordNet hierarchy to obtain nearly 2k en-
tity types. In experiments on all three
datasets we show substantial gains from
hierarchy-aware training.

1 Introduction

Identifying and understanding entities is a cen-
tral component in knowledge base construction
(Roth et al., 2015) and essential for enhanc-
ing downstream tasks such as relation extraction

*equal contribution
Data and code for experiments: https://github.

com/MurtyShikhar/Hierarchical-Typing

(Yaghoobzadeh et al., 2017b), question answering
(Das et al., 2017; Welbl et al., 2017) and search
(Dalton et al., 2014). This has led to consider-
able research in automatically identifying entities
in text, predicting their types, and linking them to
existing structured knowledge sources.

Current state-of-the-art models encode a textual
mention with a neural network and classify the
mention as being an instance of a fine grained type
or entity in a knowledge base. Although in many
cases the types and their entities are arranged in a
hierarchical ontology, most approaches ignore this
structure, and previous attempts to incorporate hi-
erarchical information yielded little improvement
in performance (Shimaoka et al., 2017). Addi-
tionally, existing benchmark entity typing datasets
only consider small label sets arranged in very
shallow hierarchies. For example, FIGER (Ling
and Weld, 2012), the de facto standard fine grained
entity type dataset, contains only 113 types in a hi-
erarchy only two levels deep.

In this paper we investigate models that ex-
plicitly integrate hierarchical information into the
embedding space of entities and types, using a
hierarchy-aware loss on top of a deep neural net-
work classifier over textual mentions. By using
this additional information, we learn a richer, more
robust representation, gaining statistical efficiency
when predicting similar concepts and aiding the
classification of rarer types. We first validate
our methods on the narrow, shallow type system
of FIGER, out-performing state-of-the-art meth-
ods not incorporating hand-crafted features and
matching those that do.

To evaluate on richer datasets and stimulate fur-
ther research into hierarchical entity/typing pre-
diction with larger and deeper ontologies, we in-
troduce two new human annotated datasets. The
first is MedMentions, a collection of PubMed ab-
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stracts in which 246k concept mentions have been
annotated with links to the Unified Medical Lan-
guage System (UMLS) ontology (Bodenreider,
2004), an order of magnitude more annotations
than comparable datasets. UMLS contains over
3.5 million concepts in a hierarchy having average
depth 14.4. Interestingly, UMLS does not distin-
guish between types and entities (an approach we
heartily endorse), and the technical details of link-
ing to such a massive ontology lead us to refer to
our MedMentions experiments as entity linking.
Second, we present TypeNet, a curated mapping
from the Freebase type system into the WordNet
hierarchy. TypeNet contains over 1900 types with
an average depth of 7.8.

In experimental results, we show improvements
with a hierarchically-aware training loss on each
of the three datasets. In entity-linking MedMen-
tions to UMLS, we observe a 6% relative increase
in accuracy over the base model. In experiments
on entity-typing from Wikipedia into TypeNet, we
show that incorporating the hierarchy of types and
including a hierarchical loss provides a dramatic
29% relative increase in MAP. Our models even
provide benefits for shallow hierarchies allowing
us to match the state-of-art results of Shimaoka
et al. (2017) on the FIGER (GOLD) dataset with-
out requiring hand-crafted features.

We will publicly release the TypeNet and Med-
Mentions datasets to the community to encourage
further research in truly fine-grained, hierarchical
entity-typing and linking.

2 New Corpora and Ontologies

2.1 MedMentions

Over the years researchers have constructed many
large knowledge bases in the biomedical domain
(Apweiler et al., 2004; Davis et al., 2008; Chatr-
aryamontri et al., 2017). Many of these knowl-
edge bases are specific to a particular sub-domain
encompassing a few particular types such as genes
and diseases (Piñero et al., 2017).

UMLS (Bodenreider, 2004) is particularly com-
prehensive, containing over 3.5 million concepts
(UMLS does not distinguish between entities and
types) defining their relationships and a curated hi-
erarchical ontology. For example LETM1 Protein
IS-A Calcium Binding Protein IS-A Binding Pro-
tein IS-A Protein IS-A Genome Encoded Entity.
This fact makes UMLS particularly well suited for
methods explicitly exploiting hierarchical struc-

ture.
Accurately linking textual biological entity

mentions to an existing knowledge base is ex-
tremely important but few richly annotated re-
sources are available. Even when resources do ex-
ist, they often contain no more than a few thou-
sand annotated entity mentions which is insuffi-
cient for training state-of-the-art neural network
entity linkers. State-of-the-art methods must in-
stead rely on string matching between entity men-
tions and canonical entity names (Leaman et al.,
2013; Wei et al., 2015; Leaman and Lu, 2016). To
address this, we constructed MedMentions, a new,
large dataset identifying and linking entity men-
tions in PubMed abstracts to specific UMLS con-
cepts. Professional annotators exhaustively anno-
tated UMLS entity mentions from 3704 PubMed
abstracts, resulting in 246,000 linked mention
spans. The average depth in the hierarchy of a con-
cept from our annotated set is 14.4 and the maxi-
mum depth is 43.

MedMentions contains an order of magnitude
more annotations than similar biological entity
linking PubMed datasets (Doğan et al., 2014; Wei
et al., 2015; Li et al., 2016). Additionally, these
datasets contain annotations for only one or two
entity types (genes or chemicals and disease etc.).
MedMentions instead contains annotations for a
wide diversity of entities linking to UMLS. Statis-
tics for several other datasets are in Table 1 and
further statistics are in 2.

Dataset mentions unique entities
MedMentions 246,144 25,507
BCV-CDR 28,797 2,356
NCBI Disease 6,892 753
BCII-GN Train 6,252 1,411
NLM Citation GIA 1,205 310

Table 1: Statistics from various biological entity
linking data sets from scientific articles. NCBI
Disease (Doğan et al., 2014) focuses exclusively
on disease entities. BCV-CDR (Li et al., 2016)
contains both chemicals and diseases. BCII-GN
and NLM (Wei et al., 2015) both contain genes.

Statistic Train Dev Test
#Abstracts 2,964 370 370
#Sentences 28,457 3,497 3,268
#Mentions 199,977 24,026 22,141
#Entities 22,416 5,934 5,521

Table 2: MedMentions statistics.



99

2.2 TypeNet

TypeNet is a new dataset of hierarchical entity
types for extremely fine-grained entity typing.
TypeNet was created by manually aligning Free-
base types (Bollacker et al., 2008) to noun synsets
from the WordNet hierarchy (Fellbaum, 1998),
naturally producing a hierarchical type set.

To construct TypeNet, we first consider all Free-
base types that were linked to more than 20 enti-
ties. This is done to eliminate types that are ei-
ther very specific or very rare. We also remove
all Freebase API types, e.g. the [/freebase, /data-
world, /schema, /atom, /scheme, and /topics] do-
mains.

For each remaining Freebase type, we generate
a list of candidate WordNet synsets through a sub-
string match. An expert annotator then attempted
to map the Freebase type to one or more synsets
in the candidate list with a parent-of, child-of or
equivalence link by comparing the definitions of
each synset with example entities of the Freebase
type. If no match was found, the annotator man-
ually formulated queries for the online WordNet
API until an appropriate synset was found. See
Table 9 for an example annotation.

Two expert annotators independently aligned
each Freebase type before meeting to resolve any
conflicts. The annotators were conservative with
assigning equivalence links resulting in a greater
number of child-of links. The final dataset con-
tained 13 parent-of, 727 child-of, and 380 equiv-
alence links. Note that some Freebase types have
multiple child-of links to WordNet, making Type-
Net, like WordNet, a directed acyclic graph. We
then took the union of each of our annotated Free-
base types, the synset that they linked to, and any
ancestors of that synset.

Typeset Count Depth Gold KB links
CoNLL-YAGO 4 1 Yes
OntoNotes 5.0 19 1 No
Gillick et al. (2014) 88 3 Yes
Figer 112 2 Yes
Hyena 505 9 No
Freebase 2k 2 Yes
WordNet 16k 14 No
TypeNet* 1,941 14 Yes

Table 3: Statistics from various type sets. Type-
Net is the largest type hierarchy with a gold map-
ping to KB entities. *The entire WordNet could be
added to TypeNet increasing the total size to 17k
types.

We also added an additional set of 614 FB
→ FB links 4. This was done by computing
conditional probabilities of Freebase types given
other Freebase types from a collection of 5 mil-
lion randomly chosen Freebase entities. The con-
ditional probability P(t2 | t1) of a Freebase type
t2 given another Freebase type t1 was calculated
as #(t1,t2)

#t1
. Links with a conditional probability

less than or equal to 0.7 were discarded. The re-
maining links were manually verified by an expert
annotator and valid links were added to the final
dataset, preserving acyclicity.

Freebase Types 1081
WordNet Synsets 860
child-of links 727
equivalence links 380
parent-of links 13
Freebase-Freebase links 614

Table 4: Stats for the final TypeNet dataset. child-
of, parent-of, and equivalence links are from Free-
base types→WordNet synsets.

3 Model

3.1 Background: Entity Typing and Linking

We define a textual mention m as a sentence with
an identified entity. The goal is then to classify m
with one or more labels. For example, we could
take the sentence m = “Barack Obama is the
President of the United States.” with the identified
entity string Barack Obama. In the task of entity
linking, we want to map m to a specific entity in
a knowledge base such as “m/02mjmr” in Free-
base. In mention-level typing, we label m with
one or more types from our type system T such
as tm = {president, leader, politician} (Ling and
Weld, 2012; Gillick et al., 2014; Shimaoka et al.,
2017). In entity-level typing, we instead consider
a bag of mentions Be which are all linked to the
same entity. We label Be with te, the set of all
types expressed in all m ∈ Be (Yao et al., 2013;
Neelakantan and Chang, 2015; Verga et al., 2017;
Yaghoobzadeh et al., 2017a).

3.2 Mention Encoder

Our model converts each mention m to a d dimen-
sional vector. This vector is used to classify the
type or entity of the mention. The basic model de-
picted in Figure 1 concatenates the averaged word
embeddings of the mention string with the out-
put of a convolutional neural network (CNN). The
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Barack
Obama
is the

president
of the USA

Mean Max Pool

MLP

                       CNN 

Figure 1: Sentence encoder for all our models.
The input to the CNN consists of the concatena-
tion of position embeddings with word embed-
dings. The output of the CNN is concatenated
with the mean of mention surface form embed-
dings, and then passed through a 2 layer MLP.

word embeddings of the mention string capture
global, context independent semantics while the
CNN encodes a context dependent representation.

3.2.1 Token Representation

Each sentence is made up of s tokens which are
mapped to dw dimensional word embeddings. Be-
cause sentences may contain mentions of more
than one entity, we explicitly encode a distin-
guished mention in the text using position embed-
dings which have been shown to be useful in state
of the art relation extraction models (dos Santos
et al., 2015; Lin et al., 2016) and machine trans-
lation (Vaswani et al., 2017). Each word embed-
ding is concatenated with a dp dimensional learned
position embedding encoding the token’s relative
distance to the target entity. Each token within the
distinguished mention span has position 0, tokens
to the left have a negative distance from [−s, 0),
and tokens to the right of the mention span have a
positive distance from (0, s]. We denote the final
sequence of token representations as M .

3.2.2 Sentence Representation

The embedded sequence M is then fed into our
context encoder. Our context encoder is a single
layer CNN followed by a tanh non-linearity to
produce C. The outputs are max pooled across

time to get a final context embedding, mCNN.

ci = tanh(b+
w∑

j=0

W [j]M [i− bw
2
c+ j])

mCNN = max
0≤i≤n−w+1

ci

Each W [j] ∈ Rd×d is a CNN filter, the bias b ∈
Rd, M [i] ∈ Rd is a token representation, and the
max is taken pointwise. In all of our experiments
we set w = 5.

In addition to the contextually encoded men-
tion, we create a global mention encoding, mG,
by averaging the word embeddings of the tokens
within the mention span.

The final mention representation mF is con-
structed by concatenating mCNN and mG and ap-
plying a two layer feed-forward network with
tanh non-linearity (see Figure 1):

mF = W2 tanh(W1

[
mSFM
mCNN

]
+ b1) + b2

4 Training

4.1 Mention-Level Typing
Mention level entity typing is treated as multi-
label prediction. Given the sentence vector mF,
we compute a score for each type in typeset T as:

yj = tj
>mF

where tj is the embedding for the jth type in T
and yj is its corresponding score. The mention is
labeled with tm, a binary vector of all types where
tmj = 1 if the jth type is in the set of gold types
for m and 0 otherwise. We optimize a multi-label
binary cross entropy objective:

Ltype(m) = −
∑
j

tmj log yj + (1− tmj ) log(1− yj)

4.2 Entity-Level Typing
In the absence of mention-level annotations, we
instead must rely on distant supervision (Mintz
et al., 2009) to noisily label all mentions of entity
e with all types belonging to e. This procedure in-
evitably leads to noise as not all mentions of an
entity express each of its known types. To allevi-
ate this noise, we use multi-instance multi-label
learning (MIML) (Surdeanu et al., 2012) which
operates over bags rather than mentions. A bag
of mentions Be = {m1,m2, . . . ,mn} is the set of
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all mentions belonging to entity e. The bag is la-
beled with te, a binary vector of all types where
tej = 1 if the jth type is in the set of gold types for
e and 0 otherwise.

For every entity, we subsample k mentions from
its bag of mentions. Each mention is then encoded
independently using the model described in Sec-
tion 3.2 resulting in a bag of vectors. Each of the
k sentence vectors mi

F is used to compute a score
for each type in te:

yij = tj
>mi

F

where tj is the embedding for the jth type in te

and yi is a vector of logits corresponding to the ith

mention. The final bag predictions are obtained
using element-wise LogSumExp pooling across
the k logit vectors in the bag to produce entity level
logits y:

y = log
∑
i

exp(yi)

We use these final bag level predictions to opti-
mize a multi-label binary cross entropy objective:

Ltype(Be) = −
∑
j

tej log yj + (1− tej) log(1− yj)

4.3 Entity Linking
Entity linking is similar to mention-level entity
typing with a single correct class per mention. Be-
cause the set of possible entities is in the mil-
lions, linking models typically integrate an alias
table mapping entity mentions to a set of possible
candidate entities. Given a large corpus of entity
linked data, one can compute conditional probabil-
ities from mention strings to entities (Spitkovsky
and Chang, 2012). In many scenarios this data is
unavailable. However, knowledge bases such as
UMLS contain a canonical string name for each
of its curated entities. State-of-the-art biologi-
cal entity linking systems tend to operate on vari-
ous string edit metrics between the entity mention
string and the set of canonical entity strings in the
existing structured knowledge base (Leaman et al.,
2013; Wei et al., 2015).

For each mention in our dataset, we generate
100 candidate entities ec = (e1, e2, . . . , e100) each
with an associated string similarity score csim.
See Appendix A.5.1 for more details on candidate
generation. We generate the sentence representa-
tion mF using our encoder and compute a similar-
ity score between mF and the learned embedding

e of each of the candidate entities. This score and
string cosine similarity csim are combined via a
learned linear combination to generate our final
score. The final prediction at test time ê is the
maximally similar entity to the mention.

φ(m, e) = α e>mF + β csim(m, e)

ê = argmax
e∈ec

φ(m, e)

We optimize this model by multinomial cross en-
tropy over the set of candidate entities and correct
entity e.

Llink(m, ec) = − φ(m, e) + log
∑
e′∈ec

expφ(m, e′)

5 Encoding Hierarchies

Both entity typing and entity linking treat the label
space as prediction into a flat set. To explicitly in-
corporate the structure between types/entities into
our training, we add an additional loss. We con-
sider two methods for modeling the hierarchy of
the embedding space: real and complex bilinear
maps, which are two of the state-of-the-art knowl-
edge graph embedding models.

5.1 Hierarchical Structure Models
Bilinear: Our standard bilinear model scores a hy-
pernym link between (c1, c2) as:

s(c1, c2) = c1
>Ac2

where A ∈ Rd×d is a learned real-valued non-
diagonal matrix and c1 is the child of c2 in the
hierarchy. This model is equivalent to RESCAL
(Nickel et al., 2011) with a single IS-A relation
type. The type embeddings are the same whether
used on the left or right side of the relation. We
merge this with the base model by using the pa-
rameter A as an additional map before type/entity
scoring.
Complex Bilinear: We also experiment with
a complex bilinear map based on the ComplEx
model (Trouillon et al., 2016), which was shown
to have strong performance predicting the hyper-
nym relation in WordNet, suggesting suitability
for asymmetric, transitive relations such as those
in our type hierarchy. ComplEx uses complex val-
ued vectors for types, and diagonal complex ma-
trices for relations, using Hermitian inner products
(taking the complex conjugate of the second ar-
gument, equivalent to treating the right-hand-side
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type embedding to be the complex conjugate of the
left hand side), and finally taking the real part of
the score1. The score of a hypernym link between
(c1, c2) in the ComplEx model is defined as:

s(c1, c2) = Re(< c1, rIS-A, c2 >)

= Re(
∑
k

c1krk c̄2k)

= 〈Re(c1),Re(rIS-A),Re(c2)〉
+ 〈Re(c1), Im(rIS-A), Im(c2)〉
+ 〈Im(c1),Re(rIS-A), Im(c2)〉
− 〈Im(c1), Im(rIS-A),Re(c2)〉

where c1, c2 and rIS-A are complex valued vectors
representing c1, c2 and the IS-A relation respec-
tively. Re(z) represents the real component of z
and Im(z) is the imaginary component. As noted
in Trouillon et al. (2016), the above function is an-
tisymmetric when rIS-A is purely imaginary.

Since entity/type embeddings are complex vec-
tors, in order to combine it with our base model,
we also need to represent mentions with complex
vectors for scoring. To do this, we pass the out-
put of the mention encoder through two different
affine transformations to generate a real and imag-
inary component:

Re(mF) = WrealmF + breal

Im(mF) = WimgmF + bimg

where mF is the output of the mention encoder,
and Wreal, Wimg ∈ Rd×d and breal, bimg ∈ Rd .

5.2 Training with Hierarchies
Learning a hierarchy is analogous to learning em-
beddings for nodes of a knowledge graph with a
single hypernym/IS-A relation. To train these em-
beddings, we sample (c1, c2) pairs, where each
pair is a positive link in our hierarchy. For each
positive link, we sample a set N of n negative
links. We encourage the model to output high
scores for positive links, and low scores for neg-
ative links via a binary cross entropy (BCE) loss:

Lstruct = − log σ(s(c1i, c2i))

+
∑
N

log(1− σ(s(c1i, c
′
2i)))

L = Ltype/link + γLstruct

1This step makes the scoring function technically not bi-
linear, as it commutes with addition but not complex multi-
plication, but we term it bilinear for ease of exposition.

where s(c1, c2) is the score of a link (c1, c2), and
σ(·) is the logistic sigmoid. The weighting param-
eter γ is ∈ {0.1, 0.5, 0.8, 1, 2.0, 4.0}. The final
loss function that we optimize is L.

6 Experiments

We perform three sets of experiments: mention-
level entity typing on the benchmark dataset
FIGER, entity-level typing using Wikipedia and
TypeNet, and entity linking using MedMentions.

6.1 Models
CNN: Each mention is encoded using the model
described in Section 3.2. The resulting embedding
is used for classification into a flat set labels. Spe-
cific implementation details can be found in Ap-
pendix A.2.
CNN+Complex: The CNN+Complex model is
equivalent to the CNN model but uses complex
embeddings and Hermitian dot products.
Transitive: This model does not add an additional
hierarchical loss to the training objective (unless
otherwise stated). We add additional labels to
each entity corresponding to the transitive closure,
or the union of all ancestors of its known types.
This provides a rich additional learning signal that
greatly improves classification of specific types.
Hierarchy: These models add an explicit hierar-
chical loss to the training objective, as described
in Section 5, using either complex or real-valued
bilinear mappings, and the associated parameter
sharing.

6.2 Mention-Level Typing in FIGER
To evaluate the efficacy of our methods we first
compare against the current state-of-art models of
Shimaoka et al. (2017). The most widely used type
system for fine-grained entity typing is FIGER
which consists of 113 types organized in a 2 level
hierarchy. For training, we use the publicly avail-
able W2M data (Ren et al., 2016) and optimize the
mention typing loss function defined in Section-
4.1 with the additional hierarchical loss where
specified. For evaluation, we use the manually an-
notated FIGER (GOLD) data by Ling and Weld
(2012). See Appendix A.2 and A.3 for specific
implementation details.

6.2.1 Results
In Table 5 we see that our base CNN models (CNN
and CNN+Complex) match LSTM models of Shi-
maoka et al. (2017) and Gupta et al. (2017), the
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Model Acc Macro F1 Micro F1
Ling and Weld (2012) 47.4 69.2 65.5
Shimaoka et al. (2017) † 55.6 75.1 71.7
Gupta et al. (2017)† 57.7 72.8 72.1
Shimaoka et al. (2017)‡ 59.6 78.9 75.3
CNN 57.0 75.0 72.2
+ hierarchy 58.4 76.3 73.6
CNN+Complex 57.2 75.3 72.9
+ hierarchy 59.7 78.3 75.4

Table 5: Accuracy and Macro/Micro F1 on FIGER
(GOLD). † is an LSTM model. ‡ is an attentive
LSTM along with additional hand crafted features.

previous state-of-the-art for models without hand-
crafted features. When incorporating structure
into our models, we gain 2.5 points of accuracy in
our CNN+Complex model, matching the overall
state of the art attentive LSTM that relied on hand-
crafted features from syntactic parses, topic mod-
els, and character n-grams. The structure can help
our model predict lower frequency types which is
a similar role played by hand-crafted features.

6.3 Entity-Level Typing in TypeNet

Next we evaluate our models on entity-level typ-
ing in TypeNet using Wikipedia. For each en-
tity, we follow the procedure outlined in Section
4.2. We predict labels for each instance in the en-
tity’s bag and aggregate them into entity-level pre-
dictions using LogSumExp pooling. Each type
is assigned a predicted score by the model. We
then rank these scores and calculate average pre-
cision for each of the types in the test set, and use
these scores to calculate mean average precision
(MAP). We evaluate using MAP instead of accu-
racy which is standard in large knowledge base
link prediction tasks (Verga et al., 2017; Trouil-
lon et al., 2016). These scores are calculated only
over Freebase types, which tend to be lower in the
hierarchy. This is to avoid artificial score inflation
caused by trivial predictions such as ‘entity.’ See
Appendix A.4 for more implementation details.

6.3.1 Results
Table 6 shows the results for entity level typ-
ing on our Wikipedia TypeNet dataset. We see
that both the basic CNN and the CNN+Complex
models perform similarly with the CNN+Complex
model doing slightly better on the full data regime.
We also see that both models get an improvement
when adding an explicit hierarchy loss, even be-
fore adding in the transitive closure. The tran-
sitive closure itself gives an additional increase

Model Low Data Full Data
CNN 51.72 68.15
+ hierarchy 54.82 75.56
+ transitive 57.68 77.21
+ hierarchy + transitive 58.74 78.59
CNN+Complex 50.51 69.83
+ hierarchy 55.30 72.86
+ transitive 53.71 72.18
+ hierarchy + transitive 58.81 77.21

Table 6: MAP of entity-level typing in Wikipedia
data using TypeNet. The second column shows
results using 5% of the total data. The last column
shows results using the full set of 344,246 entities.

Model original normalized
mention tfidf 61.09 74.66
CNN 67.42 82.40
+ hierarchy 67.73 82.77
CNN+Complex 67.23 82.17
+ hierarchy 68.34 83.52

Table 7: Accuracy on entity linking in MedMen-
tions. Maximum recall is 81.82% because we use
an imperfect alias table to generate candidates.
Normalized scores consider only mentions which
contain the gold entity in the candidate set. Men-
tion tfidf is csim from Section 4.3.

in performance to both models. In both of these
cases, the basic CNN model improves by a greater
amount than CNN+Complex. This could be a re-
sult of the complex embeddings being more dif-
ficult to optimize and therefore more susceptible
to variations in hyperparameters. When adding in
both the transitive closure and the explicit hierar-
chy loss, the performance improves further. We
observe similar trends when training our models
in a lower data regime with ~150,000 examples,
or about 5% of the total data.

In all cases, we note that the baseline models
that do not incorporate any hierarchical informa-
tion (neither the transitive closure nor the hierar-
chy loss) perform ~9 MAP worse, demonstrating
the benefits of incorporating structure information.

6.4 MedMentions Entity Linking with UMLS

In addition to entity typing, we evaluate our
model’s performance on an entity linking task
using MedMentions, our new PubMed / UMLS
dataset described in Section 2.1.

6.4.1 Results
Table 7 shows results for baselines and our pro-
posed variant with additional hierarchical loss.
None of these models incorporate transitive clo-
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Tips and Pitfalls in Direct Ligation of Large Spontaneous Splenorenal Shunt during Liver Transplantation Patients with large
spontaneous splenorenal shunt . . .
baseline: Direct [Direct → General Modifier → Qualifier → Property or Attribute]
+hierarchy: Ligature (correct) [Ligature → Surgical Procedures → medical treatment approach ]
A novel approach for selective chemical functionalization and localized assembly of one-dimensional nanostructures.
baseline: Structure [Structure → order or structure → general epistemology]
+hierarchy: Nanomaterials (correct) [Nanomaterials → Nanoparticle Complex → Drug or Chemical by Structure]
Gcn5 is recruited onto the il-2 promoter by interacting with the NFAT in T cells upon TCR stimulation .
baseline: Interleukin-27 [Interleukin-27 → IL2 → Interleukin Gene]
+hierarchy: IL2 Gene (correct) [IL2 Gene → Interleukin Gene]

Table 8: Example predictions from MedMentions. Each example shows the sentence with entity mention
span in bold. Baseline, shows the predicted entity and its ancestors of a model not incorporating struc-
ture. Finally, +hierarchy shows the prediction and ancestors for a model which explicitly incorporates
the hierarchical structure information.

sure information, due to difficulty incorporating it
in our candidate generation, which we leave to fu-
ture work. The Normalized metric considers per-
formance only on mentions with an alias table hit;
all models have 0 accuracy for mentions other-
wise. We also report the overall score for com-
parison in future work with improved candidate
generation. We see that incorporating structure in-
formation results in a 1.1% reduction in absolute
error, corresponding to a ~6% reduction in relative
error on this large-scale dataset.

Table 8 shows qualitative predictions for mod-
els with and without hierarchy information incor-
porated. Each example contains the sentence (with
target entity in bold), predictions for the baseline
and hierarchy aware models, and the ancestors of
the predicted entity. In the first and second exam-
ple, the baseline model becomes extremely depen-
dent on TFIDF string similarities when the gold
candidate is rare (≤ 10 occurrences). This shows
that modeling the structure of the entity hierar-
chy helps the model disambiguate rare entities. In
the third example, structure helps the model un-
derstand the hierarchical nature of the labels and
prevents it from predicting an entity that is overly
specific (e.g predicting Interleukin-27 rather than
the correct and more general entity IL2 Gene).

Note that, in contrast with the previous tasks,
the complex hierarchical loss provides a signifi-
cant boost, while the real-valued bilinear model
does not. A possible explanation is that UMLS
is a far larger/deeper ontology than even TypeNet,
and the additional ability of complex embeddings
to model intricate graph structure is key to realiz-
ing gains from hierarchical modeling.

7 Related Work

By directly linking a large set of mentions and typ-
ing a large set of entities with respect to a new on-
tology and corpus, and our incorporation of struc-
tural learning between the many entities and types
in our ontologies of interest, our work draws on
many different but complementary threads of re-
search in information extraction, knowledge base
population, and completion.

Our structural, hierarchy-aware loss between
types and entities draws on research in Knowledge
Base Inference such as Jain et al. (2018), Trouil-
lon et al. (2016) and Nickel et al. (2011). Com-
bining KB completion with hierarchical structure
in knowledge bases has been explored in (Dalvi
et al., 2015; Xie et al., 2016). Recently, Wu et al.
(2017) proposed a hierarchical loss for text classi-
fication.

Linking mentions to a flat set of entities, of-
ten in Freebase or Wikipedia, is a long-standing
task in NLP (Bunescu and Pasca, 2006; Cucerzan,
2007; Durrett and Klein, 2014; Francis-Landau
et al., 2016). Typing of mentions at varying lev-
els of granularity, from CoNLL-style named en-
tity recognition (Tjong Kim Sang and De Meulder,
2003), to the more fine-grained recent approaches
(Ling and Weld, 2012; Gillick et al., 2014; Shi-
maoka et al., 2017), is also related to our task.
A few prior attempts to incorporate a very shal-
low hierarchy into fine-grained entity typing have
not lead to significant or consistent improvements
(Gillick et al., 2014; Shimaoka et al., 2017).

The knowledge base Yago (Suchanek et al.,
2007) includes integration with WordNet and type
hierarchies have been derived from its type system
(Yosef et al., 2012). Del Corro et al. (2015) use
manually crafted rules and patterns (Hearst pat-
terns (Hearst, 1992), appositives, etc) to automati-
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cally match entity types to Wordnet synsets.
Recent work has moved towards unifying these

two highly related tasks by improving entity link-
ing by simultaneously learning a fine grained en-
tity type predictor (Gupta et al., 2017). Learning
hierarchical structures or transitive relations be-
tween concepts has been the subject of much re-
cent work (Vilnis and McCallum, 2015; Vendrov
et al., 2016; Nickel and Kiela, 2017)

We draw inspiration from all of this prior work,
and contribute datasets and models to address pre-
vious challenges in jointly modeling the structure
of large-scale hierarchical ontologies and mapping
textual mentions into an extremely fine-grained
space of entities and types.

8 Conclusion

We demonstrate that explicitly incorporating and
modeling hierarchical information leads to in-
creased performance in experiments on entity typ-
ing and linking across three challenging datasets.
Additionally, we introduce two new human-
annotated datasets: MedMentions, a corpus of
246k mentions from PubMed abstracts linked to
the UMLS knowledge base, and TypeNet, a new
hierarchical fine-grained entity typeset an order
of magnitude larger and deeper than previous
datasets.

While this work already demonstrates consid-
erable improvement over non-hierarchical model-
ing, future work will explore techniques such as
Box embeddings (Vilnis et al., 2018) and Poincaré
embeddings (Nickel and Kiela, 2017) to represent
the hierarchical embedding space, as well as meth-
ods to improve recall in the candidate generation
process for entity linking. Most of all, we are ex-
cited to see new techniques from the NLP commu-
nity using the resources we have presented.
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A Supplementary Materials

A.1 TypeNet Construction

Freebase type: musical chord
Example entities: psalms chord, power chord

harmonic seventh chord
chord.n.01: a straight line connecting two points on a curve
chord.n.02: a combination of three or more
notes that blend harmoniously when sounded together
musical.n.01: a play or film whose action and dialogue is
interspersed with singing and dancing

Table 9: Example given to TypeNet annota-
tors. Here, the Freebase type to be linked is
musical chord. This type is annotated in Free-
base belonging to the entities psalms chord, har-
monic seventh chord, and power chord. Below
the list of example entities are candidate Word-
Net synsets obtained by substring matching be-
tween the Freebase type and all WordNet synsets.
The correctly aligned synset is chord.n.02 shown
in bold.

A.2 Model Implementation Details
For all of our experiments, we use pretrained 300
dimensional word vectors from Pennington et al.
(2014). These embeddings are fixed during train-
ing. The type vectors and entity vectors are all 300
dimensional vectors initialized using Glorot ini-
tialization (Glorot and Bengio, 2010). The num-
ber of negative links for hierarchical training n ∈
{16, 32, 64, 128, 256}.

For regularization, we use dropout (Srivastava
et al., 2014) with p ∈ {0.5, 0.75, 0.8} on the sen-
tence encoder output and L2 regularize all learned
parameters with λ ∈ {1e-5, 5e-5, 1e-4}. All our
parameters are optimized using Adam (Kingma
and Ba, 2014) with a learning rate of 0.001. We
tune our hyper-parameters via grid search and
early stopping on the development set.

A.3 FIGER Implementation Details
To train our models, we use the mention typing
loss function defined in Section-5. For models
with structure training, we additionally add in the
hierarchical loss, along with a weight that is ob-
tained by tuning on the dev set. We follow the
same inference time procedure as Shimaoka et al.
(2017) For each mention, we first assign the type
with the largest probability according to the log-
its, and then assign additional types based on the
condition that their corresponding probability be
greater than 0.5.

A.4 Wikipedia Data and Implementation
Details

At train time, each training example randomly
samples an entity bag of 10 mentions. At test time
we classify bags of 20 mentions of an entity. The
dataset contains a total of 344,246 entities mapped
to the 1081 Freebase types from TypeNet. We con-
sider all sentences in Wikipedia between 10 and
50 tokens long. Tokenization and sentence split-
ting was performed using NLTK (Loper and Bird,
2002). From these sentences, we considered all
entities annotated with a cross-link in Wikipedia
that we could link to Freebase and assign types in
TypeNet. We then split the data by entities into a
90-5-5 train, dev, test split.

A.5 UMLS Implementation details
We pre-process each string by lowercasing and re-
moving stop words. We consider ngrams from size
1 to 5 and keep the top 100,000 features and the fi-
nal vectors are L2 normalized. For each mention,
In our experiments we consider the top 100 most
similar entities as the candidate set.

A.5.1 Candidate Generation Details
Each mention and each canonical entity string in
UMLS are mapped to TFIDF character ngram vec-
tors. We pre-process each string by lowercasing
and removing stop words. We consider ngrams
from size 1 to 5 and keep the top 100,000 features
and the final vectors are L2 normalized. For each
mention, we calculate the cosine similarity, csim,
between the mention string and each canonical en-
tity string. In our experiments we consider the top
100 most similar entities as the candidate set.


