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Abstract

Multimodal machine learning is a vibrant
multi-disciplinary research field which ad-
dresses some of the original goals of arti-
ficial intelligence by integrating and mod-
eling multiple communicative modalities,
including linguistic, acoustic and visual
messages. With the initial research on
audio-visual speech recognition and more
recently with language & vision projects
such as image and video captioning and vi-
sual question answering, this research field
brings some unique challenges for multi-
modal researchers given the heterogene-
ity of the data and the contingency often
found between modalities.

Tutorial overview

The present tutorial will review fundamental con-
cepts of machine learning and deep neural net-
works before describing the five main challenges
in multimodal machine learning:

1. Representation: A first fundamental chal-
lenge is to learn how to represent and summa-
rize the multimodal data to highlight the com-
plementarity and synchrony between modal-
ities. The heterogeneity of multimodal data
makes it particularly challenging for coordi-
nated and joint representations. For example,
language is often seen as symbolic while au-
dio and visual modalities will be represented
as signals.

2. Translation: A second challenge is how to
translate data from one modality to another.
Not only is the data heterogeneous, but the re-
lationship between modalities is often open-
ended or subjective. For example, when de-
scribing a specific image verbally, more than

one description can be correct. The evalua-
tion and characterization of the multimodal
translation may be subjective.

3. Alignment: A third challenge is to identify
the direct relations between elements from
two or more different modalities. For exam-
ple, when analyzing the speech and gestures
of a human subject, how can we align spe-
cific gestures with the spoken words or ut-
terances? This alignment between modali-
ties may be based on long-range dependen-
cies and the segmentation is often ambiguous
(e.g., words or utterances).

4. Fusion: A fourth challenge is to join in-
formation from two or more modalities to
perform a prediction, discrete or continuous.
For example, for audio-visual speech recog-
nition, the visual descriptoin of the lip mo-
tion is fused with the speech signal to predict
spoken words. The information coming from
different modalities may have varying predic-
tive power and noise topology. With possibly
missing data in at least one of the modalities.
Multimodal fusion needs to handle such vari-
ations.

5. Co-learning: A fifth challenge is to transfer
knowledge between modalities and their rep-
resentations. Exemplified by algorithms of
co-training, conceptual grounding and zero
shot learning, how does knowledge learn-
ing from one modality (e.g., predicted labels
or representation) can help a computational
model trained on a different modality? This
challenge is particularly relevant when one of
the modalities has limited resources (e.g., an-
notated data).

The tutorial will also present state-of-the-art al-
gorithms that were recently proposed to solve mul-
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timodal applications such as image captioning,
video descriptions and visual question-answer. We
will also discuss the current and upcoming chal-
lenges.

Structure

We plan to follow a similar structure to our ICMI
2016 tutorial which was 3 hours long:

1. Intruduction

• What is Multimodal?
– Historical view, multimodal vs mul-

timedia
• Why multimodal?

– Multimodal applications: image
captioning, video description,
AVSR,

• Core technical challenges
– Representation learning, translation,

alignment, fusion and co-learning

2. Basic concepts — Part 1

• Linear models
– Score and loss functions, regulariza-

tion
• Neural networks

– Activation functions, multi-layer
perceptron

• Optimization
– Stochastic gradient descent, back-

propagation

3. Unimodal representations

• Language representations
– Distributional hypothesis and word

embedding
• Visual representations

– Convolutional neural networks
• Acoustic representations

– Spectrograms, auto-encoders

4. Multimodal representations

• Joint representations
– Visual semantic spaces, multimodal

auto-encoder
• Coordinated representations

– Component analysis
– Similarity metrics, canonical corre-

lation analysis

===Break===

1. Basic concepts — Part 2

• Language models
– Unigrams, bigrams, skip-grams,

skip-thought
• Unimodal sequence modeling

– Recurrent neural networks, LSTMs
• Optimization

– Backpropagation through time

2. Multimodal translation and mapping

• Encoder-decoder models
– Machine translation, image caption-

ing
• Generative vs example based ap-

proaches
– Viseme generation, visual puppetry
– Model evaluation

3. Modality alignment

• Latent alignment approaches
– Attention models, multi instance

learning
• Explicit alignment

– Dynamic time warping

4. Multimodal fusion and co-learning

• Model free approaches
– Early and late fusion, hybrid models

• Kernel-based fusion
– Multiple kernel learning

• Multimodal graphical models
– Factorial HMM, Multi-view Hidden

CRF
• Co-learning

– Parallel, non-parallel and hybrid
data

5. Future directions and concluding remarks
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