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Abstract

Despite important progress in the area
of intelligent systems, most such systems
still lack commonsense knowledge that
appears crucial for enabling smarter, more
human-like decisions. In this paper, we
present a system based on a series of
algorithms to distill fine-grained disam-
biguated commonsense knowledge from
massive amounts of text. Our WebChild
2.0 knowledge base is one of the largest
commonsense knowledge bases available,
describing over 2 million disambiguated
concepts and activities, connected by over
18 million assertions.

1 Introduction

With the continued advances in natural language
processing and artificial intelligence, the general
public is increasingly coming to expect that sys-
tems exhibit what may be considered intelligent
behavior. While machine learning allows us to
learn models exploiting increasingly subtle pat-
terns in data, our systems still lack more abstract,
generic forms of commonsense knowledge. Exam-
ples of such knowledge include the fact that fire
causes heat, the property of ice being cold, as well
as relationships such as that a bicycle is gener-
ally slower than a car. Previous work in this area
has mostly relied on handcrafted or crowdsourced
data, consisting of ambiguous assertions, and lack-
ing multimodal data. The seminal work on Con-
ceptNet (Havasi et al., 2007), for instance, relied
on crowdsourcing to obtain an important collec-
tion of commonsense data. However, it conflates
different senses of ambiguous words (e.g., “hot”
in the sense of temperature vs. “hot” in the sense
of being trendy). It also lacks fine-grained details
such as specific kinds of properties, comparisons

between objects, and detailed knowledge of activ-
ities. We attempt to fill these significant gaps.

This paper presents automated methods target-
ing the acquisition of large-scale, semantically
organized commonsense knowledge. This goal
poses challenges because commonsense knowl-
edge is: (i) implicit and sparse, as humans tend
not to explicitly express the obvious, (ii) multi-
modal, as it is spread across textual and visual
sources, (iii) affected by reporting bias, as uncom-
mon facts are reported disproportionally, and (iv)
context dependent, which implies, among other
things, that at an abstract level it is perhaps best
described as merely holding with a certain con-
fidence. Prior state-of-the-art methods to acquire
commonsense are either not automated or based
on shallow representations. Thus, they cannot au-
tomatically produce large-scale, semantically or-
ganized commonsense knowledge.

To achieve this challenging goal, we divide the
problem space into three research directions.

• Properties of objects: acquisition of properties
like hasSize, hasShape, etc. We develop
a transductive approach to compile semanti-
cally organized properties.

• Relationships between objects: acquisition
of relations like largerThan, partOf,
memberOf, etc. We develop a linear-
programming based method to compile com-
parative relations, and, we further develop a
method based on statistical and logical infer-
ence to compile part-whole relations.

• Their interactions: acquisition of knowledge
about activities such as drive a car, park a car,
etc., with expressive frame based representa-
tion including temporal and spatial attributes.
For this, our Knowlywood approach is based
on semantic parsing and probabilistic graphi-
cal models to compile activity knowledge.
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Together, these methods result in the construc-
tion of a large, clean and semantically organized
Commonsense Knowledge Base that we call the
WebChild 2.0 knowledge base.

2 Web-Scale Fact Extraction

Our framework consists of two parts. First, we
rely on massive amounts of text to extract substan-
tial amounts of raw extractions. Subsequently, in
Section 3, we will present a series of algorithms
to distill fine-grained disambiguated knowledge
from raw extractions of this sort. For details on the
input dataset leading to raw extractions, refer to
the original publications, cited through each sub-
section in Section 3.

Pattern-Based Information Extraction. For
knowledge acquisition, it is well-known that one
can attempt to induce patterns based on matches
of seed facts, and then use pattern matches to mine
new knowledge. Unfortunately, this bootstrapping
approach suffers from significant noise a) when
using a very large number of seeds, and b) when
applied to large Web-scale data (Tandon et al.,
2011), which appears necessary to mine adequate
amounts of training data. Specifically, for many
of our extractions, Google’s large Web N-Gram
dataset, which provides Web-scale data. Addition-
ally, many of our experiments use a large subset of
ConceptNet as seed facts, resulting in a seed set
that is many orders of magnitude larger than the
typical set of perhaps 10 seeds used in most other
bootstrapped information extraction systems. This
problem is exacerbated by the fact that we are aim-
ing at commonsense knowledge, which is not typ-
ically expressed using explicit relational phrases.
We thus devise a custom bootstrapping approach
designed to minimize noise when applied to Web-
scale data.

We assume that we have a set of relations R, a
set of seed facts S(r) for a given r ∈ R, as well
as a domain(r) and range(r), specified manually
to provide the domain and range of a given r as its
type signature. For pattern induction, we look for
co-occurrences of words in the seed facts within
the n-grams data (for n = 3,4,5). Any match is
converted into a pattern based on the words be-
tween the two occurrences, e.g. “that apple is red”
would become “<x> is <y>”.

Pattern Scoring. The acquired patterns are still
rather noisy and moreover very numerous, due to

our large set of seeds. To score the reliability
of patterns, we invoke a ranking function that re-
wards patterns with high distinct seed support but
also discounts patterns that occur across multiple
dissimilar relations (Tandon et al., 2011). The in-
tuition is that a good pattern should match many of
the seed facts (reward function), but must be dis-
counted at matching too many relations (discount
function). As, e.g., the pattern “<x> and <y>” is
unreliable because it matches seeds from too many
relations.

This discount must be softened when the pat-
tern matches related relations. To allow for this,
we first define a relatedness score between rela-
tions. We can either provide these scores man-
ually, or consider Jaccard overlap statistics com-
puted directly from the seed assertion data. Let
p be a candidate pattern and r ∈ R be the rela-
tion under consideration. We define |S(r, p)| as
the number of distinct seeds s ∈ S(r) under the
relation r that p matches. We then define the dis-
count score of the pattern p for relation r as:

φ(r, p) =
∑

r′∈R,r′ 6=r

|S(r, p)|
|S(r)| −(1−sim(r, r′))

|S(r′, p)|
|S(r′)|

where sim(r, r′) is the similarity between relations
r and r′. The final score is a combination of the
discount score φ(r, p) and the judiciously calcu-
lated reward score. At the end, we choose the top-
k ranked patterns as the relevant patterns for the
extraction phase.

Assertion Extraction. We apply the chosen pat-
terns to find new occurrences in our (Google Web
N-grams) data. For instance, “<x> is <y>”
could match “the sun is bright”, yielding (“sun”,
“bright”) as an assertion for the hasProperty re-
lation. To filter out noise from these candidate as-
sertions, we check if the extracted words match
the required domain and range specification for
the relation, using WordNet’s hypernym taxon-
omy. Finally, we rank the candidate assertions
analogously to the candidate patterns, but treating
the patterns as seeds.

3 Distilling Fine-Grained Knowledge

The techniques described above provide a sizable
set of extractions that serve as the the basis for
WebChild 2.0. Next, we consider a family of al-
gorithms that take raw extractions of this form and
exploit them to distill detailed fine-grained knowl-
edge.
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3.1 Fine-Grained Properties

The first algorithm we consider (Tandon et al.,
2014a) aims at compiling a large and clean set
of fine-grained commonsense properties, connect-
ing noun senses with adjective senses by a va-
riety of relations. In contrast to prior work
that only dealt with a generic hasProperty
relation, we use 19 different (sub-)relations
such as hasShape, hasSize, hasTaste,
hasAbility, evokesEmotion, etc. This list
is systematically derived from WordNet based on
its attribute information.

Moreover, our goal is to distinguish the spe-
cific senses (e.g. green2a, or green#a#2 refers to
the second sense of WordNet adjective green) of
the arguments of these relations as well. For ex-
ample, for 〈plant hasProperty green〉, there are
two competing interpretations with very different
meanings: 〈industrial-plant hasQuality green-
environmental〉 vs. 〈botanical-plant hasColor

green-color〉.
We start out by constructing the range and do-

main of the property relations with a small set
of seed examples. Such seeds would normally
be gathered manually, but in our work, we ob-
served that an ensemble of two very different, au-
tomated, and noisy sources can also produce high-
quality seeds. We construct a graph where the
nodes are words and word senses and the edge
weights are computed based on taxonomic and
distributional similarities (these edge weights are
depicted in Figure 1). We then use a judiciously
designed form of label propagation (Talukdar and
Crammer, 2009) to learn the domain set, the range
set, and the extension of such relations, at large
scale and in terms of specific word senses. An
example of a range graph is given in Figure 1.
The highlighted seed nodes mark specific senses
of words as pertaining to a specific relation (e.g.,
hasTemperature). Via label propagation, we
can infer such information for additional nodes,
such as the “pleasantly cold” sense of “crisp” (for
the range of the relation), but not other irrelevant
senses of “crisp”. The same label propagation
technique can then also be applied to infer entire
relation tuples.

Our graph-based semi-supervised approach is
generic enough to extract any type of fine-grained
sub-property or attribute, for which we need only
a few seeds to begin.

3.2 Comparative Knowledge

The second algorithm (Tandon et al., 2014b) aims
at extracting and organizing large-scale compar-
ative commonsense knowledge. Prior to our
work, semantically organized comparative com-
monsense knowledge had not been studied or
compiled before.

We first gather a set of new raw extractions us-
ing patterns targeting comparisons. These include
the word “to be” followed by comparative forms
of adjectives (e.g. “smaller than”, “more educated
than”). While we again follow a Web-scale ex-
traction strategy as in Section 2, note that these
patterns are generic in the sense that they cover
all words identified as adjectives. Thus, this con-
stitutes a form of open information extraction for
comparative knowledge.

The next step is to refine and extend these ex-
tractions. The constituents of a comparative asser-
tion are strongly related (e.g., car, fast, and bike in
〈car faster than bike〉); our method builds upon
this observation to jointly disambiguate and con-
nect these assertions, while inferring additional
ones. Disambiguation is important because rela-
tionships such as “richer than” could refer to fi-
nancial assets or to calories. The joint algorithm is
also necessary to exploit dependencies and transi-
tivity between extractions (e.g., “is smaller than”,
“is larger than”, “is not bigger than”), with the
goal of validating input extractions as well as in-
ferring new relationships. This is achieved via a
custom Integer Linear Program with constraints
accounting for the coherence and logical consis-
tency of the interpretation .

3.3 Detailed Part-Whole Relationships

The third algorithm (Tandon et al., 2016)
focuses on extracting and organizing large-
scale part-whole commonsense knowledge.
In contrast to prior work, our algorithm dis-
tinguishes physicalPartOf (e.g., 〈wheel
physicalPartOf bike〉), memberOf (e.g.,
〈cyclist memberOf team〉), and substanceOf
(e.g., 〈rubber substanceOf wheel〉), and the
arguments are disambiguated. We also estimate
cardinality, describing the typical number of parts
in a whole, and visibility information, i.e., whether
the part can be perceived visually.

We again rely on raw assertions extracted from
text, but distill these via statistical scoring com-
bined with logical inference to account for tran-
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Figure 1: Inferring range of hasTemperature. Violet nodes indicate noisy candidate range. Starting
with seeds (yellow single outlined), the algorithm enforces that similar nodes have similar labels, and
infers range (yellow double outlined). For details on edge weights, see (Tandon et al., 2014a).

Figure 2: Knowlywood pipeline to extract activity frames.

sitivity and inheritance of assertions (via Word-
Net’s hypernym hierarchy). To estimate visibil-
ity, we verify the assertions in images (we call
this quasi-visual verification). Quasi-visual verifi-
cation leverages the best of text-only verification
(which is inaccurate due to reporting bias), and
visual-only verification (which is inaccurate due
to the object detectors’ inaccuracies).

Our method generalizes to any relation
with finer-grained sub-relations. This spe-
cific multimodal approach generalizes to any
commonsense relation that has multiple sub-
relations and is verifiable in images, e.g.,
hasLocation relation (with sub-relations
hasLocationAbove/Below, etc.).

3.4 Activity Knowledge
The fourth algorithm (Tandon et al., 2015) is a
novel method for a new task to extract and or-
ganize semantic frames of human activities, to-
gether with their visual content. The Knowl-
ywood pipeline, illustrated in Figure 2, distills
such knowledge from raw text, rather than start-
ing with the extractions from Section 2. In par-

ticular, we acquire knowledge about human ac-
tivities from narrative text, focusing in particular
on movie scripts, which are structured in terms
of scenes, and provide descriptions of scene set-
tings/locations, speakers, etc. Moreover, when
scripts come with representative images or time
points in the movie, it is possible to align a scene
description with the actual visual contents of the
movie. The main difficulty, however, is that all this
rich contents in movie scripts is merely in textual
form – still far from structured KB representation.

Table 1: Semantic Parse Example

Input WordNet VerbNet Expected Frame
Mapping Mapping

the man man#1 Agent . animate Agent: man#1
begin to shoot shoot#4 shoot#vn#3 Action: shoot#4
a video video#1 Patient . solid Patient:video#1
in in PP . in
the moving bus bus#1 NP . Location . solid Location: moving bus#1

Our method considers joint semantic role la-
beling and word sense disambiguation for pars-
ing these scripts to generate candidate items for
the activity frames. In particular, we rely on
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Figure 3: Example of an activity frame

Table 2: Knowlywood Coverage and Precision: manual assessments over a sample of 100 activity frames

Source #Scenes #Unique Parent Parti. Prev Next Loc. Time Avg.
Activities

Movie scripts 148,296 244,789 0.87 0.86 0.78 0.85 0.79 0.79 0.84
TV series 886,724 565,394 0.89 0.85 0.81 0.84 0.82 0.84 0.86
Sitcoms 286,266 200,550 0.88 0.85 0.81 0.87 0.81 0.83 0.87
Novels 383,795 137,365 0.84 0.84 0.78 0.88 0.85 0.72 0.84
Crowdsrc. 3,701 9,575 0.82 0.91 0.91 0.87 0.74 0.40 0.86

Knowlywood 1,708,782 964,758 0.87 0.86 0.84 0.85 0.78 0.84 0.85±0.01

ConceptNet 5 - 4,757 0.15 0.81 0.92 0.91 0.33 N/A 0.46±0.02

a semantic parsing like approach that fills the
slot values of such frames (activity type, loca-
tion, participants, etc.), while also jointly disam-
biguating the verb and the slot fillers with re-
spect to WordNet. This is achieved by comput-
ing strong priors that are fed into an integer lin-
ear program. In the example in Table 1, we see
how this process also jointly relies on information
from VerbNet. For the WordNet verb sense num-
ber 2: shoot#2 (killing), VerbNet provides a role
restriction Agent.animate V Patient.animate

PP Instrument.solid, where animate refers to
living beings, as opposed to inanimate objects.
This allows us to infer that this shoot#2 sense
is not compatible with the argument “the video”,
which is not animate. This way, we can disqual-
ify the incorrect interpretation of “shoot”.

We then perform inference using probabilistic
graphical models that can encode joint dependen-
cies among different candidate activity frames.
Unlike the previous contribution, this method goes
beyond disambiguation of the arguments of an
assertion; and, additionally assign roles to these
arguments. A final taxonomy construction step

groups together similar activity frames and forms
a hierarchy of activities. For movie scripts with
aligned movie data, we associate the correspond
video key frames with our activities. Figure 3 pro-
vides an example of the resulting activity frames.

4 Results and Demonstration

Together, these methods have been used to create
the WebChild 2.0 KB, which is one of the largest
commonsense knowledge bases available, describ-
ing over 2 million disambiguated concepts and ac-
tivities, connected by over 18 million assertions.

Among this data, we highlight the Knowlywood
pipeline that produced 964,758 unique activity in-
stances, grouped into 505,788 activity synsets. In
addition to the edges mentioned above, we also
obtain 581,438 location, 71,346 time, and
5,196,156 participant attribute entries over
all activities. This is much larger than other com-
monsense KBs such as ConceptNet, refer Table 2.

The WebChild 2.0 KB is bigger and richer than
any other automatically constructed commonsense
KB. It can also be viewed as an extended Word-
Net (comprising not just words, but also activi-
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Figure 4: WebChild 2.0 browser results for mountain. It presents semantic knowledge for concepts,
comparisons, and activities. For more examples, visit gate.d5.mpi-inf.mpg.de/webchild

ties and other concepts expressed via multi-word
expressions), with an orders of magnitude denser
relationship graph (connecting the concepts with
novel relations such as comparatives), and with
additional multimodal content.

The WebChild 2.0 browser provides a user in-
terface to semantically browse the current com-
monsense database, combining the knowledge
from all of the above algorithms, refer to Figure 4.

5 Conclusion

From a resource perspective, people looking for
commonsense knowledge bases had few options
available before our construction of the WebChild
2.0 knowledge base. The available alternatives
do not offer the same level of size, richness and
semantic rigor over multiple modalities. In on-
going work, we are developing improved algo-
rithms to prune noisy extractions, and computing
the weights for the inference steps to distill cleaner
knowledge.

WebChild 2.0 has already been effective in
providing background knowledge to applications
such as visual question answering (Wang et al.,
2016) and neural relation prediction (Chen et al.,
2016). The WebChild 2.0 data is freely down-
loadable at http://www.mpi-inf.mpg.
de/yago-naga/webchild/, and browsable
at https://gate.d5.mpi-inf.mpg.de/
webchild/.
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