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Abstract

Social media accumulates vast amounts
of online conversations that enable data-
driven modeling of chat dialogues. It is,
however, still hard to utilize the neural
network-based SEQ2SEQ model for dia-
logue modeling in spite of its acknowl-
edged success in machine translation. The
main challenge comes from the high de-
grees of freedom of outputs (responses).
This paper presents neural conversational
models that have general mechanisms for
handling a variety of situations that affect
our responses. Response selection tests on
massive dialogue data we have collected
from Twitter confirmed the effectiveness
of the proposed models with situations de-
rived from utterances, users or time.

1 Introduction

The increasing amount of dialogue data in social
media has opened the door to data-driven model-
ing of non-task-oriented, or chat, dialogues (Rit-
ter et al., 2011). The data-driven models assume
a response generation as a sequence to sequence
mapping task, and recent ones are based on neural
SEQ2SEQ models (Vinyals and Le, 2015; Shang
et al., 2015; Li et al., 2016a,b; Xing et al., 2017).
However, the adequacy of responses generated by
these neural models is somewhat insufficient, in
contrast to the acknowledged success of the neural
SEQ2SEQ models in machine translation (Johnson
et al., 2016).

The contrasting outcomes in machine transla-
tion and chat dialogue modeling can be explained

Figure 1: Conversational situations and responses.

by the difference in the degrees of freedom on out-
put for a given input. An appropriate response
to a given utterance is not monolithic in chat di-
alogue. Nevertheless, since only one ground truth
response is provided in the actual dialogue data,
the supervised systems will hesitate when choos-
ing from the vast range of possible responses.

So, how do humans decide how to respond? We
converse with others while (implicitly) consider-
ing not only the utterance but also other various
conversational situations (§ 2) such as time, place,
and the current context of conversation and even
our relationship with the addressee. For example,
when a friend says “I feel so sleepy.” in the morn-
ing, a probable response could be “Were you up
all night?” (Figure 1). If the friend says the same
thing at midnight, you might say “It’s time to go
to bed.” Or if the friend is driving a car with you,
you might answer “If you fall asleep, we’ll die.”

Modeling situations behind conversations has
been an open problem in chat dialogue modeling,
and this difficulty has partly forced us to focus
on task-oriented dialogue systems (Williams and
Young, 2007), the response of which has a low de-
gree of freedom thanks to domain and goal speci-
ficity. Although a few studies have tried to exploit
conversational situations such as speakers’ emo-
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tions (Hasegawa et al., 2013) or personal charac-
teristics (Li et al., 2016b) and topics (Xing et al.,
2017), the methods are specially designed for and
evaluated using specific types of situations.

In this study, we explore neural conversational
models that have general mechanisms to incorpo-
rate various types of situations behind chat con-
versations (§ 3.2). These models take into account
situations on the speaker’s side and the addressee’s
side (or those who respond) when encoding ut-
terances and decoding its responses, respectively.
To capture the conversational situations, we design
two mechanisms that differ in how strong of an ef-
fect a given situation has on generating responses.

In experiments, we examined the proposed con-
versational models by incorporating three types
of concrete conversational situations (§ 2): utter-
ance, speaker/addressee (profiles), and time (sea-
son), respectively. Although the models are capa-
ble of generating responses, we evaluate the mod-
els with a response selection test to avoid known
issues in automatic evaluation metrics of gener-
ated responses (Liu et al., 2016a). Experimental
results obtained using massive dialogue data from
Twitter showed that modeling conversational situ-
ations improved the relevance of responses (§ 4).

2 Conversational situations

Various types of conversational situations could
affect our response (or initial utterance) to the ad-
dressee. Since neural conversational models need
massive data to train a reliable model, our study
investigates conversational situations that are nat-
urally given or can be identified in an unsupervised
manner to make the experimental settings feasible.

In this study, we represent conversational situ-
ations as discrete variables. That allows models
to handle unseen situations in testing by classify-
ing them into appropriate situation types via dis-
tributed representations or the like as described be-
low, and helps to analyze the outputs. We consider
the following conversational situations to each ut-
terance and response in our dialogue dataset (§ 4),
and cluster the situations to assign specific situa-
tion types to the utterances and responses in the
training data of our conversational models.

Utterance The input utterance (to be responded
to by the system) is a primary conversational sit-
uation and is already modeled by the encoder in
the neural SEQ2SEQ model. However, we may be
able to induce a different aspect of situations that

are represented in the utterance but are not cap-
tured by the SEQ2SEQ sequential encoder (Sato
et al., 2016). We first represent each utterance of
utterance-response pairs in our dialogue dataset by
a distributed representation obtained by averaging
word2vec1 vectors (pre-trained from our dialogue
datasets (§ 4.1)) for words in the utterances. The
utterances are then classified by k-means cluster-
ing to identify utterance types.2

User (profiles) User characteristics should af-
fect his/her responses as Li et al. (2016b) have al-
ready discussed. We classify profiles provided by
each user in our dialogue dataset (§ 4.1) to acquire
conversational situations specific to the speakers
and addressees. The same as with the input utter-
ance, we first construct a distributed representation
of each user’s profile by averaging the pre-trained
word2vec vectors for verbs, nouns and adjectives
in the user profiles. The users are then classified
by k-means clustering to identify user types.3

Time (season) Our utterances can be affected by
when we speak as illustrated in § 1, so we adopted
time as one conversational situation. On the ba-
sis of timestamp of the utterance and the response
in our dataset, we split the conversation data into
four season types: namely, spring (Mar. – May.),
summer (Jun. – Aug), autumn (Sep. – Nov.), and
winter (Dec. – Feb.). This splitting reflects the cli-
mate in Japan since our data are in Japanese whose
speakers mostly live in Japan.

In training our neural conversational models,
we use each of the above conversational situation
types for the speaker side and addressee (who re-
spond) side, respectively. Note that the utterance
situation is only considered for the speaker side
since its response is unseen in response genera-
tion. In testing, the conversational situation types
for input utterances (or speaker and addressee’s
profiles) are identified by finding the closest cen-
troid obtained by the k-means clustering of the ut-
terances (profiles) in the training data.

3 Method

Our neural conversational models are based on the
SEQ2SEQ model (Sutskever et al., 2014) and inte-
grate mechanisms to incorporate various conversa-

1https://code.google.com/p/word2vec/
2We set k to 10. Although the space limitations preclude

results when varying k, this does not affect our conclusions.
3We set k to 10, and add another cluster for users whose

profiles were not available (6.3% of the users in our datasets).
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Figure 2: Local-global SEQ2SEQ.

tional situations (§ 2) at speaker side and addressee
side. In the following, we briefly introduce the
SEQ2SEQ conversational model (Vinyals and Le,
2015) and then describe two mechanisms for in-
corporating conversational situations.

3.1 SEQ2SEQ conversational model
The SEQ2SEQ conversational model (Vinyals and
Le, 2015) consists of two recurrent neural net-
works (RNNs) called an encoder and a decoder.
The encoder takes each word of an utterance as
input and encodes the input sequence to a real-
valued vector representing the utterance. The de-
coder then takes the encoded vector as its initial
state and continues to generate the most probable
next word and to input the word to itself until it
finally outputs EOS.

3.2 Situation-aware conversational models
The challenge in designing situation-aware neu-
ral conversational models is how to inject given
conversational situations into RNN encoders or de-
coders. In this paper, we present two situation-
aware neural conversational models that differ in
how strong of an effect a given situation has.

3.2.1 Local-global SEQ2SEQ

Motivated by a recent success in multi-task learn-
ing for a deep neural network (Liu et al., 2016c,b;
Gupta et al., 2016; Luong et al., 2016), our local-
global SEQ2SEQ trains two types of RNN encoder
and decoder for modeling situation-specific dia-
logues and universal dialogues jointly (Figure 2).

Local-RNNs are meant to model dialogues in
individual conversational situations at both the
speaker and addressee sides. Each local-RNN is
trained (i.e., its parameters are updated) only on

Figure 3: SEQ2SEQ with situation embeddings.

dialogues under the corresponding situation. A
salient disadvantage of this modeling is that the
size of training data given to each local-RNN de-
creases as the number of situation types increases.

To address this problem, we combine another
global-RNN encoder and decoder trained on all the
dialogue data and take the weighted sum of the
hidden states hs of the two RNNs for both the en-
coder and decoder to obtain the output as:
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where RNN
(·)
G (·) and RNN

(·)
L (·) denote global-RNN

and local-RNN, respectively, and the W s are train-
able matrices for the weighted sum. The embed-
ding and softmax layers of the RNNs are shared.

3.2.2 SEQ2SEQ with situation embeddings
The local-global SEQ2SEQ (§ 3.2.1) assumes that
dialogues with different situations involve differ-
ent domains (or tasks) that are independent of each
other. However, this assumption could be too
strong in some cases and thus we devise another
weakly situation-aware conversational model.

We represent the given situations at speaker and
addressee sides, sk′ and sk′′ , as situation embed-
dings and then feed them to the encoder and de-
coder prior to processing sequences (Figure 3) as:

h
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0 =RNN(hinit, sk′), (3)

h
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where hinit is a vector filled with zeros and h
(enc)
I+1

is the last hidden state of the encoder.
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Average length in words (utterances) 15.7
Average length in words (responses) 10.1
Average length in words (user profiles) 37.4
Number of users 386,078

Table 1: Statistics of our dialogue datasets (train-
ing, validation, and test portions are merged here).

This encoding was inspired by a neural machine
translation system (Johnson et al., 2016) that en-
ables multilingual translation with a single model.
Whereas it inputs the target language embedding
only to the encoder to control the target language,
we input the speaker-side situation to the encoder
and the addressee-side one to the decoder.

4 Evaluation

In this section, we evaluate our situation-aware
neural conversational models on massive dialogue
data obtained from Twitter. We compare our mod-
els (§ 3.2) with SEQ2SEQ baseline (§ 3.1) using a
response selection test instead of evaluating gen-
erated responses, since Liu et al. (2016a) recently
pointed out several problems of existing metrics
such as BLEU (Papineni et al., 2002) for evaluat-
ing generated responses.

4.1 Settings

Data We built massive dialogue datasets from
our Twitter archive that have been compiled since
March, 2011. In this archive, timelines of about
1.5 million users4 have been continuously col-
lected with the official API. It is therefore suitable
for extracting users’ conversations in timelines.

On Twitter, a post (tweet) and a mention to it
can be considered as an utterance-response pair.
We randomly extracted 23,563,865 and 1,200,000
pairs from dialogues in 2014 as training and vali-
dation datasets, and extracted 6000 pairs in 2015
as a test dataset in accordance with the follow-
ing procedure. Because we want to exclude ut-
terances that need contexts in past dialogue ex-
changes to respond from our evaluation dataset,
we restrict ourselves to only tweets that are not
mentions to other tweets (in other words, utter-
ances without past dialogue exchanges are chosen
for evaluation). For each utterance-response pair
in the test dataset, we randomly chose four (in to-
tal, 24,000) responses in 2015 as false response

4Our collection started from 26 popular Japanese users in
March 2011, and the user set has iteratively expanded to those
who are mentioned or retweeted by already targeted users.

Vocabulary size 100,000
Dropout rate 0.25
Mini-batch size 800
Dimension of embedding vectors 100
Dimension of hidden states 100
Learning rate 1e-4
Number of samples in sampled softmax 512

Table 2: Hyperparameters for training.

candidates which together constitute five response
candidates for the response selection test. Each
utterance and response (candidate) is tokenized by
MeCab5 with NEologd6 dictionary to feed the se-
quence to the word-based encoder decoder.7 Ta-
ble 1 shows statistics on our dialogue datasets.

Models In our experiments, we compare our
situation-aware neural conversational models (we
refer to the model in § 3.2.1 as L/G SEQ2SEQ
and the model in § 3.2.2 as SEQ2SEQ emb) with
situation-unaware baseline (§ 3.1) for taking each
type of conversational situations (§ 2) into con-
sideration. We also evaluate the model in § 3.2.1
without global-RNNs (referred to as L SEQ2SEQ)
to observe the impact of global-RNNs.

We used a long-short term memory (LSTM)
(Zaremba et al., 2014) as the RNN encoder and
decoder, sampled softmax (Jean et al., 2015) to
accelerate the training, and TensorFlow8 to imple-
ment the models. Our LSTMs have three layers and
are optimized by Adam (Kingma and Ba, 2015).
The hyperparameters are fixed as in Table 2.

Evaluation procedure We use the above mod-
els to rank response candidates for a given utter-
ance in the test set. We compute the averaged
cross-entropy loss for words in each response can-
didate (namely, its perplexity) by giving the can-
didate following the input utterance to each con-
versational model, and used the resulting values
for ranking candidates to choose top-k plausible
ones. We adopt 1 in t P@k (Wu et al., 2016) as
the evaluation metric, which indicates the ratio of
utterances that are provided the single ground truth
in top k responses chosen from t candidates. Here
we use 1 in 2 P@1,9 1 in 5 P@1, and 1 in 5 P@2.

5http://taku910.github.io/mecab/
6https://github.com/neologd/

mecab-ipadic-neologd
7The number of words in the utterances and the response

candidates in the test set is limited to equal or less than 20,
since very long posts do not constitute usual conversation.

8https://www.tensorflow.org/
9We randomly selected one false response candidate from

the four pre-selected ones when t = 2.
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Model 1 in 2 P@1 1 in 5 P@1 1 in 5 P@2
Baseline 64.5% 33.9% 56.6%
Situation: utterance
L SEQ2SEQ 67.2% 37.2% 60.6%
L/G SEQ2SEQ 68.5% 38.2% 62.1%
SEQ2SEQ emb 65.6% 35.4% 58.2%
Situation: speaker/addressee (profiles)
L SEQ2SEQ 67.3% 38.0% 60.9%
L/G SEQ2SEQ 66.4% 36.4% 59.2%
SEQ2SEQ emb 67.8% 37.5% 61.1%
Situation: time (season)
L SEQ2SEQ 62.0% 30.8% 54.8%
L/G SEQ2SEQ 65.9% 35.8% 58.1%
SEQ2SEQ emb 67.3% 37.6% 60.7%

Table 3: Results of the response selection test.

4.2 Results

Table 3 lists the results of the response selection
test. The proposed conversational models success-
fully improved the relevance of selected responses
by incorporating conversational situations.

The proposed model that performed best is dif-
ferent depending on the situation type. We found
from the dataset that many of the conversations did
not seem to be affected by the seasons, that is, time
(season) situation is less influential than other sit-
uations. This explains the poor performance of L
SEQ2SEQ with time (season) situations due to the
data sparseness in training local-RNNs, although
the sparseness is mostly addressed by global RNNs
in L/G SEQ2SEQ.

As stated in § 3.2.2, L/G SEQ2SEQ is ex-
pected to capture situations more strongly than
SEQ2SEQ emb. To confirm this, we plotted scat-
tergrams of the utterance vectors (Figure 4) and
the user profile vectors (Figure 5) in the training
data by using t-SNE (Maaten and Hinton, 2008).
We provide cluster descriptions by manually look-
ing into the content of the utterances and user pro-
files in each cluster. The descriptions are followed
by ↗ if L/G SEQ2SEQ performed better than
SEQ2SEQ emb in terms of 1 in 5 P@1 for test
utterances with the corresponding situation type,
by↘ if the opposite and by→ if comparable (dif-
ferences are within ± 1.0%). Elements of clusters
were randomly sampled.

L/G SEQ2SEQ tends to perform better for ut-
terances with densely concentrated (or coherent)
speaker profile clusters (Figure 5). This is because
utterances given by the speakers in these coherent
clusters (and the associate responses) have similar
conversations, situations of which are captured by
local-RNNs in the local-global SEQ2SEQ.
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Figure 4: The scattergram of sampled utterance
vectors visualized using t-SNE.
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Figure 5: The scattergram of sampled user profile
vectors visualized using t-SNE.

This explains the reason why L/G SEQ2SEQ
outperformed the other situation-aware conversa-
tional models when utterance situations are con-
sidered (Figure 4). Conversations in the same
clusters are naturally consistent, and conversations
assigned to the same clusters form typical activ-
ities or specific tasks (e.g., greetings, following
other users, and questions (and answering)) in
Twitter conversation. L/G SEQ2SEQ, designed as
a kind of multi-task SEQ2SEQ, literally captures
these task-specific behaviors in the conversations.

Although some utterance clusters have general
conversations (e.g., diverse topics), the response
performances in those clusters have still improved.
This is because these general clusters are free from
harmful common responses that are quarantined
into situation-specific clusters (e.g., greetings etc.)
and the corresponding local-RNNs should avoid
generating those common responses. Note that
this problem has been pointed out and addressed
by Li et al. (2016a) in a totally different way.
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Situation: utterance (opinions, questions)
Input: ちょっと最近BOTのフォロー多いん

ですけど (I’ve recently been followed by
many bot accounts.)

Baseline お疲れ様やで (You’ve gotta be tired.)
L/G SEQ2SEQブロックしちゃいましょう (Let’s block

them.)
Situation: addressee profiles (girls)
Input: なにグラブル始めてるんだ原稿しろ

(Why am I starting Granblue Fantasy? I
have to write the paper...)

Baseline おい、大丈夫か？ (Hey, are you okay?)
SEQ2SEQ embフレンドなろ♥ (Let’s be friends♥)
Situation: time (season) (summer)
Input: 7月になって、流石にパーカーは暑く

なってきた (July is too warm to wear a
hoodie.)

Baseline そうなんです! (Yes!)
SEQ2SEQ embまだ着てたの!? (Do you still wear one?)

Table 4: Responses selected by the systems.

Examples Table 4 lists the response candidate
selected by the baseline and our models. As we
had expected, the situation-aware conversational
models are better at selecting ground-truth re-
sponses for situation-specific conversations.

5 Related Work

Conversational situations have been implicitly ad-
dressed by preparing datasets specific to the target
situations and by solving the problem as a task-
oriented conversation task (Williams and Young,
2007); examples include troubleshooting (Vinyals
and Le, 2015), navigation (Wen et al., 2015), in-
terviewing (Kobori et al., 2016), and restaurant
search (Wen et al., 2017). In what follows, we in-
troduce non-task-oriented conversational models
that explicitly consider conversational situations.

Hasegawa et al. (2013) presented a conversa-
tional model that generates a response so that it
elicits a certain emotion (e.g., joy) in the addressee
mind. Their model is based on statistical ma-
chine translation and linearly interpolates two con-
versational models that are trained from a small
emotion-labeled dialogue corpus and a large non-
labeled dialogue corpus, respectively. This model
is similar to our local-global SEQ2SEQ but differs
in that it has hyperparameters for the interpolation,
whereas our local-global SEQ2SEQ automatically
learns WG and WL from the training data.

Li et al. (2016b) proposed a neural conversa-
tional model that generates responses taking into
consideration speakers’ personalities such as gen-
der or living place. Because they fed a specific

speaker ID to their model and represent individual
(known) speakers with embeddings, Their model
cannot handle unknown speakers. In contrast, our
model can consider any speakers with profiles be-
cause we represent each cluster of profiles with an
embedding and find an appropriate profile type for
the given profile by nearest-neighbor search.

Sordoni et al. (2015) encoded a given utter-
ance and the past dialogue exchanges, and com-
bined the resulting representations for RNN to de-
code a response. Zhao et al. (2017) used a condi-
tional variational autoencoder and automatically-
induced dialogue acts to handle discourse-level di-
versity in the encoder. While these sophisticated
architectures are designed to take dialogue histo-
ries into consideration, our simple models can eas-
ily exploit various situations.

Recently, Xing et al. (2017) proposed to explic-
itly consider topics of utterances to generate topic-
coherent responses. Although they used latent
Dirichlet allocation while we use k-means clus-
tering, both methods confirmed the importance of
utterance situations. The way to obtain specific
situations is still an open research problem. As
demonstrated in this study, our primary contribu-
tion is the invention of neural mechanisms that can
consider various conversational situations.

Our local-global SEQ2SEQ model is closely re-
lated to a many-to-many multi-task SEQ2SEQ pro-
posed by Luong et al. (2016). The critical dif-
ference is in that their model assumes only lo-
cal tasks, while our model assumes many local
tasks (situation-specific dialogue modeling) and
one global task (general dialogue modeling).

6 Conclusion

We proposed two situation-aware neural conver-
sational models that have general mechanisms
for handling various conversational situations rep-
resented by discrete variables: (1) local-global
SEQ2SEQ that combines two SEQ2SEQ models
(§ 3.2.1) to handle situation-specific dialogues and
universal dialogues jointly, and (2) SEQ2SEQ with
situation embeddings (§ 3.2.2) that feeds the situa-
tions directly to a SEQ2SEQ model. The response
selection tests on massive Twitter datasets con-
firmed the effectiveness of using situations such
as utterances, user (profiles), or time.
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